
ADAPTIVE END-TO-END OPTIMIZATION OF MOBILE VIDEO STREAMING
USING QOS NEGOTIATION

Jacco R. Taal, Koen Langendoen, Arjen van der Schaaf, Hylke W. van Dijk, and R. (Inald) L. Lagendijk

Faculty of Information Systems and Technology
Delft University of Technology, The Netherlands

{jacco,koen,hylke }@ubicom.tudelft.nl

ABSTRACT

Video streaming over wireless links is a non-trivial problem due
to the large and frequent changes in the quality of the underly-
ing radio channel combined with latency constraints. We believe
that every layer in a mobile system must be prepared to adapt its
behavior to its environment. Thus layers must be capable of oper-
ating in multiple modes; each mode will show a different quality
and resource usage. Selecting the right mode of operation requires
exchange of information between interacting layers. For exam-
ple, selecting the best channel coding requires information about
the quality of the channel (capacity, bit-error-rate) as well as the
requirements (latency, reliability) of the compressed video stream
generated by the source encoder. In this paper we study the appli-
cation of our generic QoS negotiation scheme to a specific config-
uration for mobile video transmission. We describe the results of
experiments studying the overall effectiveness, stability, and dy-
namics of adaptation of our distributed optimization approach.

1. INTRODUCTION

Mobile systems often operate in a highly variable context. The
two dominant factors causing context variability are the user and
the mobile channel. The characteristics of mobile transmission
strongly depend on the user’s location and environment. This is
reflected in variable throughput, reliability, and required transmis-
sion power. The user context is variable because mobile systems
are often designed to support multiple interactive services, which
impose different workloads on the system in different situations.
Handling the variable context is not the only requirement for mo-
bile systems. They must also be efficient, since resources (espe-
cially battery energy) are scarce in mobile systems. Handling vari-
able workloads efficiently under variable conditions necessitates
the use of collaborative adaptive modules.

The mobile system that we consider in this paper supports
video streaming over a wireless link. It consists of various adap-
tive modules, including a video encoder and protocols (see Fig-
ure 1). The video encoder is driven by a workload obtained from
an application module, and the protocols induce a workload on
a radio module. The application module directly experiences the
user context variability, while the radio module is subjected to the
fluctuating conditions of the mobile channel.

In Figure 1 it is apparent that the video encoder and the proto-
col modules are not directly influenced by any context variability at

This work was conducted within the Ubicom program and funded by
the TU Delft, DIOC research program.

either side of the system. However, if we optimize the system un-
der global efficiency constraints, then the video encoding and pro-
tocol module will indirectly experience context fluctuations from
neighboring modules when they adapt. Therefore, all modules will
have to be context dependent, requiring their internal operation to
be flexible and adaptive to local context fluctuations.

Application

Video Encoder

Protocols

Radio A
da

pt
iv

e
sy

st
em

 m
od

ul
es

Variable
user

context

mobile
channel

raw channelVariable

link

Fig. 1. Mobile video communication system.

Each module in an adaptive system usually contains many pa-
rameters that influence its behavior. System-wide optimization of
the decision variables is difficult for two reasons. First, jointly
optimizing many parameters yields computationally complex so-
lution strategies. Second, every single module is a complex sys-
tem in itself, whose application requires specific domain knowl-
edge. To keep the optimization procedure manageable, we have to
decompose the global optimization problem into several smaller
problems. Ideally, we can perform independent optimization for
each individual module. However, as we have argued, the opti-
mization of one module depends on the context and inner workings
of other modules. Therefore, the adaptation of individual modules
cannot be optimized separately [1, 2]. Instead, context and imple-
mentation details of the components must be exposed and shared,
but in an appropriate format.

The problem we address in this paper is therefore essentially
one of coordination. Figure 1 gives a computational view on the
system, emphasizing functionality but hiding implementation as-
pects. Ideally the component-specific parameters must be tuned
such that system behavior complies to its objectives while being
constrained by its conditions. Taking an engineering view on the
system, however, introduces additional conditions. Suppose we
opt – for the sake of this paper – for a straightforward implemen-
tation. We then effectively map the functionality of Figure 1 to
the limited processing resources of a mobile terminal. In a simple
battery-powered mobile terminal, the components that compose
Figure 1shareCPU, memory, and battery capacity. Consequently,

the distribution ofshared resourcesover the components must be
added to the coordination process. Controlling QoS with more
than a single parameter is a complex problem. Solutions do exist in
literature, but they usually result in ad-hoc control structures [3, 4].

In previous work, we have introduced a generic QoS negotia-
tion method, called Adaptive Resource Contracts (ARC) [5]. This
method is able to handle complex systems, such as the one stud-
ied in this paper, and facilitates evolution. In this paper we apply
the distributed and non-iterative ARC framework to the problem
of mobile video streaming.

2. QOS NEGOTIATION: ARC

The ARC QoS negotiation method is illustrated in Figure 2. In
conformance with the hierarchical setup shown in Figure 1, each
module acts both as a server to ’higher’ layers and as a client to
’lower’ layers. The hierarchical concatenation of modules is im-
portant, because subsequent modules determine each others con-
text. A QoS interface deals with the interaction of one module
acting as server and one module acting as client. A contract is
negotiated at the interface, holding a number of abstract QoS pa-
rameters.

The process of QoS negotiation starts with the client issuing a
request. The request is a partial specification of the expectations
the client has about the performance of the underlying server. The
server (now approximately aware of what is expected) responds
with an offer, stating possible performance options. This informs
the client about the context dependent capabilities of the server.
The client can respond to the offer, either by selecting an option
and issuing it as a contract, or restarting the negotiation by for-
mulating a modified request. Once the contract is established, the
client can put the appropriate workload on the server. The server,
in turn, must inform the client on the status of the workload pro-
cessing. This feedback of context dependent QoS information to
the client is essential for fast local adaptation. If the QoS status
of the server becomes unsatisfactory for the client (due to changes
in context), then the contract must be re-negotiated. This form of
adaptation is slower, but involves more precise mutual tuning of
QoS parameters, which improves efficiency.

As an example of QoS negotiation consider Figure 3. The ab-
stract QoS is here represented in a two-dimensional space, the two
parameters denoting capacity and quality. Contrary to how QoS is
often used , an ARC interface reflects capacity (i.e. costs) in addi-
tion to quality parameters. The request from the client in Figure 3
is a range selection from the QoS space. Now the server knows
what the client is interested in, and responds with a number of de-
tailed offers. Each offer is in the initial request range, but gives a
tighter description of the QoS that the server can offer within the
current context. The client then marks a QoS range that includes
at least one offer and sets it as the contract. Specifying a range
rather than a single point for a contract leaves room for adaptation
within the contract boundaries. When the contract is established,
the server tries with best effort to keep the actual QoS within the
contract range. The actual QoS status is returned to the client as
a single point in the QoS domain. Using an abstract QoS domain
as common language between the client and the server effectively
hides explicit implementation details from the negotiations.

The QoS interface is the result of a collaborative design by the
server and the client; they share a consistent interpretation of the
QoS parameters. For reasons of efficiency, run-time implementa-
tions need not be that explicit. Minimization of power dissipation

is a system-wideimplicit agreement. Another example of an im-
plicit agreement is ranking of parameters which improves the in-
tegrity of the system. In case of a contract violation a server can
continue operation in a predetermined way. In Figure 3, for in-
stance, the server will degrade quality, utilize more capacity, or do
both.

Client side interface

Server side interfaceVideo coder

Exposure Status
negotiations

QoS

ContractRequest

W
or

kl
oa

d

Server side interface

Client side interfaceProtocols

Fig. 2. ARC protocol outline.

3. MOBILE VIDEO STREAMING IMPLEMENTATION

The implementation of the mobile video communication system
involves a video encoder, a protocol component, and a radio trans-
mission component. In our experiments we concentrate on the
video encoder and protocol components, and assume without loss
of generality that the applied radio component is non-adaptive.
The applied channel model is time-varying though. Both the video
encoder and protocol component support the ARC framework for
doing QoS negotiations. Their fundamentals are described in this
section.

The QoS parameters at the interface between the video en-
coder and protocols components are given in Table 1. For an de-
tailed description of the design of this interface we refer to [6].

Table 1. QoS parameters (descending priority).
Parameter Description

latency (max) The time required to transmit a single bit.
bit-error rate

(max)
The net bit-error probability after FEC
and ARQ.

CPU usage (max) The allowed share ofCPU capacity for
protocols and transmission processes.

throughput (min) The minimum net throughput.

3.1. Video Encoder

The video encoder implements a flexible H.263 encoder/decoder
pair. Internally there are numerous video encoding parameters that
can be tuned. In the context of ARC, we apply an abstract behavior
description of the encoder, much like the work in [1, 2]. In this pa-
per we consider as dominant decision variables the frame-skipNfs,
the maximal motion vector lengthRmv, and the rate control’s target
bit-rater. The variable user context is observed through the video

capacity

qu
al

ity
Request

capacity

qu
al

ity

Exposure

capacity

qu
al

ity

Contract

capacity

qu
al

ity

Status

Fig. 3. ARC operation spaces.

sequence, namely through a model of the temporal predictability
τ̂ and the (average) amount of varianceσ2

0 .
The control model focuses ona priori estimation of the rate-

distortion behavior as a function ofRmv, Nfs, τ̂ , and the choice
whether or not to use motion compensation. The model expresses
the prediction gainG as follows:

G =

(
Gmv − (Gmv −G0)e

−Rmv
Lmv(Nfs+1)

)
e
−Nfs
Lmc + 1 (1)

whereG0, Gmv, Lmc, andLmv are the model parameters ofτ̂ . G0

andGmv are the prediction gains without and with motion com-
pensation, respectively.Lmc is the motion coherence, describing
the decay of prediction gain when the frame skip increases.Lmv is
the average motion vector length, which characterizes the amount
of motion in the sequence.

Givenσ2
0 we derive an estimate of the amount of variance to

be encoded:σ2
d = σ2

0/G. The distortion is estimated by a pa-
rameterized rate-distortion curve that describes the performance of
the quantizer and the arithmetic coder. The estimated quantization
noise is

σ2
q = σ2

d 22(b(e
−r
a −1)−r) (2)

The distortion after transmission and decoding is aPSNRvalue
estimated from the quantization noise including effects of skipped
frames and bit errors. Skipped frames yield aPSNRbased on the
last received frame and̂τ . Bit errors degrade thePSNRassuming
that one bit error destroys half of a Group of Blocks.

With our distortion model we evaluate different modes of op-
eration. There is a trade-off between distortion andCPUutilization.
The encoder offers the application a set of non-inferior points.

3.2. Protocols

The communication protocols run on top of a very simple radio
that offers a TDMA scheme with fixed length transmission/receive
slots to access the physical channel. Due to interference, fading,
and other factors the data transmitted over the radio channel is
subject to errors. The protocols employ two methods to counter
the high bit-error rate (BER) of the physical channel: forward error
correction (FEC) and automatic retransmit requests (ARQ).

Note that, contrary to many implementations, FEC is imple-
mented in software. We use a Reed-Solomon protection scheme
with four different code rates: 0%, 12.5%, 25%, and 50%. The
code rate determines the maximum effective throughput that can
be offered. We have run a number of off-line tests to determine the
computational complexity and effectiveBER of the four code rates

using white Gaussian noise. These results have been collected in a
lookup table that is consulted during on-line execution.

For data that must be delivered reliably (i.e., without any error)
packets are extended with a 32-bit checksum. When the receiver
observes a checksum failure, it sends a retransmit request back
to the sender, who will in turn re-send the data. ARQ increases
latency (L) and reduces the throughput (T) that can be obtained.
We use the following model to quantify the efficiency loss due to
retransmits:

TARQ =
TFEC

1 + Perr
(3)

LARQ = (1 + 2Perr)LFEC (4)

wherePerr is the probability that a packet is corrupted.
By combining the lookup tables for FEC and the ARQ model,

the protocol layer can quickly evaluate what its best setting (code
rate + enable/disable ARQ) is, given the current channel conditions
and contract with the video encoder. When asked for an offer it
prunes the inferior points out of the eight alternatives.

4. EXPERIMENTAL EVALUATION

The experiment set up is as follows. A pre-recorded video stream
(carphone) is encoded at a mobile terminal, transmitted over a
(simulated) wireless link and decoded at a base station. Latency
requirements are such thatlive viewing is possible (< 0.5s). The
radio has fixed settings: constant transmission power and constant
modulation schemes during the length of the experiment. However
interference at the physical channel will occur. Interference causes
an increased bit error rate at the radio channel.

We present here the following three experiments. For all ex-
periments the user requests the best quality possible within100%
CPU budget.

1. Steady run. There is constant interference on the mobile
channel. Therefore neither of the components adapts during
this experiment. Note the video encoder also does not adapt
to changing characteristics of the incoming video source.
We have run this experiment for a) a bad channel,BER =
2 10−2 b) a medium channel,BER = 10−2 and c) a good
channel,BER = 10−4. The raw channel bitrate is kept at
1.8 104bit/s.

2. Frozen run. After 20 seconds from the start of the experi-
ment the initialmediumchannel changes to abadchannel.
The throughput is maintained at1.8 104bit/s. At t = 47.5s
the channel changes to agoodstate. The protocols layer

adapts instantaneously to the changed raw channel condi-
tions. Initially it keeps the contractedBER at the link to the
video encoder but it has to sacrifice throughput at the link.
The video encoder establishes an initial contract assuming
a (worst-case)BER of 2 10−2 right after the start of the ex-
periments. For the remainder of the experiment, all internal
settings (and contracts) are frozen. To maintain the agreed
CPU budget and real-time objectives, some frames will be
skipped, which decreases the delivered quality.

3. Adaptive run. The physical channel and protocols layer be-
have as in the frozen run above. This time, however, the
video encoder initiates QoS negotiations and adapts to the
changed conditions. Like in the frozen run the net effect is
that the video encoder maintains the agreed real-time and
CPU-budget constraints.

Figure 4 shows the results of the experiments. The top dia-
gram shows theBER of the raw channel for the steady cases as
well as the changing channel case. The diagram in the middle
shows the effects on the throughput delivered by the protocols to
the video encoder. The bottom diagram has four curves, three for
the “steady” runs and one for the adaptive run. The frozen run
closely follows the “bad” steady run, and is left out for clarity.
The curves plot the quality (PSNR) per received frame. As can
be expected the “good channel” steady run has the highest qual-
ity. Quality variations over time are due to variations of the input
source characteristics. Observe that the curve for the adaptive run
switches between the three steady curves (medium→bad→good)
when the channel conditions change. This shows that ARC-based
negotiations succeed in selecting appropriate settings of the video
coder that outperform a coder that assumes worst-case conditions.

0 10 20 30 40 50 60 70
10

−5

10
0

BER on raw channel

time (s)

B
E

R
 (

p e)

0 10 20 30 40 50 60 70
0.5

1

1.5
x 10

4

Throughput on link

time (s)

T
 (

B
/s

)

0 10 20 30 40 50 60 70
30

35

40

45

time (s)

av
er

ag
e

P
S

N
R

Average quality (PSNR)

medium channel
bad channel
good channel
varying channel adaptive

Fig. 4. Experiment results.

Compared to thegoodchannel steady run the average quality
of the frozen run is1.97 dB less. The average quality of adaptive
run is only0.91 dB less than the steady run. In the adaptive run,
864 operation points were evaluated in three negotiations. The
total time needed for these quality of service negotiations is 80ms.
It is instructive to present the internal settings of the respective
components for each of the experiments. Table 2 shows the results.
The values shown for the frozen and adaptive run are averages,
because the parameters are changing over time.

Table 2. Parameter settings.

steady frozen adaptive
medium bad good

Rmv 12.00 9.00 12.00 9.00 14.30
r (bpp) 0.67 0.47 0.79 0.47 0.51
Nfs 1.15 1.03 1.07 1.01 1.04
Video
CPU-budget

50% 45% 56% 52% 86%

FEC 25% 50% 0% 43% 38%
ARQ 0 0 0 0 0
Proto
CPU-budget

6% 14% 2% 8% 7%

Until now we did not adapt to changes in source characteris-
tics, but they vary drastically. An experiment in which the param-
eters were optimised taking into account the changing character-
istics, improved the average quality with1.1dB. This result was
obtained using thebad channel and aCPU-budget of30%. The
user can trade quality for resources.

5. DISCUSSION

The experiments show that our ARC framework is able to improve
the overall performance in cases where the channel conditions or
video source characteristics fluctuate. Moreover the ARC frame-
work makes it possible to keep the resource usage within bounds,
even when the channel status is changing. It is able to make more
efficient use of the available resources. The ARC-framework al-
lows for a flexible implementation of modules. Therefore an ARC
setup can operate in different environments: mobile or internet.

Stability problems may arise when the context changes occur
too often, the optimiser might lag behind, and persists in making
the wrong decisions. One way to avoid this problem, is to relax the
contract margins. This allows the component to perform internal
adaptations at the expense of being suboptimal.

References
[1] B. Girod and N. Farber,Compressed Video Over Networks, chapter

Wireless Video, Marcel Dekker, 1999.
[2] T.-H. Lan and A. Tewfik, “Power optimized mode selection for H.263

video coding and wireless communications,” inIEEE Conference on
Image Processing, (ICIP 98), 1998.

[3] G. Le Bodic, J. Irvine, and J. Dunlop, “Resource cost and QoS
achievement in a contract-based resource manager for mobile com-
munications systems,” inProceedings of Eurocomm, May 2000.

[4] M. Bechler, H. Ritter, and J. Schiller, “Quality of service in mobile and
wireless networks: The need for proactive and adaptive applications,”
in Hawaii Int. Conf. on System Sciences (HICSS-33), Jan. 2000.

[5] H. van Dijk, K. Langendoen, and H. Sips, “ARC: a bottom-up ap-
proach to negotiated QoS,” in3rd IEEE Workshop on Mobile Com-
puting Systems and Applications (WMCSA 2000), Monterey, CA, Dec.
2000, pp. 128–137.

[6] A. van der Schaaf, K. Langendoen, and R. Lagendijk, “Design of an
adaptive interface between video compression and transmission pro-
tocols for mobile communications,” in11th Packet Video Workshop
(PV-2001), Kyongju, Korea, Apr. 2001.

