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Abstract— The focus of the sensor network community on
energy-efficiency has produced a string of novel MAC, routing,
and data-aggregation protocols. Their power consumption has
mainly been assessed through simulations, i.e. by countingthe
fraction of time spent in sending, receiving, and computing,
and multiplying that by figures taken from data sheets or iso-
lated (single-node) power measurements. In contrast we present
PowerBench, a 24-node testbed capable of recording the power
consumption of all nodes inparallel with a 5 kHz sampling rate
and 30 µA resolution. This is accomplished by means of a low-cost
interface board featuring a shunt resistor and an A/D converter,
whose output is collectively sampled by an embedded Linux
platform (Linksys NSLU2).

The experience with the PowerBench testbed so far is twofold.
First, we have determined that –much to our surprise– timer-
based estimations can match true, measured power consumption
values within a few percent. Second, we have experienced
that a graphical display of the power traces is an effective
means to study (and debug) protocol behavior; in particular,
inter-node related timing issues can be easily viewed from the
state (IDLE/COMPUTE/RX/TX) changes embodied in the power
data.

I. I NTRODUCTION

One of the key characteristics that defines the field of
Wireless Sensor Networks (WSNs) is the focus on energy
consumption, and the efforts in reducing that to near zero
levels, in order to reach the goal of being able to deploy
large-scale networks built out of small, autonomous devices
operating without human assistance. Typical WSN deploy-
ment scenarios involve nodes powered by small batteries,
so (average) energy consumption must be limited to tens of
µW to keep the recurring maintenance costs within economic
feasibility when compared to the one-time installation costs of
traditional, wired networks. As today’s sensor nodes consume
in the order of mW when processing and tens of mW when
communicating, the WSN research community has looked
extensively at the problem of reducing energy consumption.

Common approaches for achieving energy efficiency include
duty cycling the radio at the MAC layer and sleep/awake
scheduling at the routing/clustering layer. These can be very
effective with researchers claiming energy savings of a factor
of ten to a hundred –or even more– over conventional protocols
like IEEE 802.11 (CSMA/CA). The true gains, however, re-
main to be determined as most results are based on simulations
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using coarse energy-consumption models; in the case of MAC
protocols for example, one generally maintains statisticsabout
what percentage of time the radio is used for transmitting,
receiving, and listening (for incoming traffic) to compute the
energy a node consumes by factoring in the current drawn in
each particular radio state as specified in the data sheet. A
slight improvement is to measure the power consumption of
each state using an expensive oscilloscope hooked up to a node
performing a ping-pong test. To the best of our knowledge,
however, we are not aware of any experiments that verify that
single-node consumption rates may be extrapolated to large,
multihop networks.

Until recently the WSN community heavily depended on
simulation results; only 10 % of the papers mentions the term
testbed, with an even smaller fraction actually using one
for experimental evaluation. Fortunately, as WSN technology
is maturing, the number of experimental testbeds is rapidly
expanding, as well as the number of nodes within. Nowadays,
testbeds with 100+ nodes are readily available (e.g., Mote-
Lab [13], Kansei [3], TWIST [5]), which provides researchers
with a firm grip on the notoriously unpredictable wireless
channel. In that respect the Deployment Support Network
approach [2] offers the unique possibility to exercise (and
debug) protocols in real-world conditions by attaching wireless
monitoring nodes instead of running cables to each sensor
node. However, regarding the task of determining the energy
efficiency of a protocol, none of the testbeds provide support
to actually measure the power consumed by each node.

In this paper we present PowerBench, a scalable testbed
infrastructure for benchmarking power consumption. Power-
Bench is centered around a low-cost interface board capturing
the power consumption of a target TNOde (a Mica2 clone) in
the testbed by means of a shunt resistor and an A/D converter
(30 µA resolution). Up to eight interface boards are connected
to a modified Linksys NSLU2 device (an embedded Linux
platform) sampling the output of the A/D converters in parallel
at a rate of 5 kHz. The samples are time stamped and sent
out over an Ethernet backbone to a central host storing the
power data of the complete testbed. Our current configuration
consists of 24 nodes (4 rooms with 6 nodes each), generating
a continuous feed of 180 KB/s. After each experimental run
the power traces can be graphically displayed for detailed
analysis, or processed into a set of per-node statistics (average
power consumption, etc). Preliminary experience with the
PowerBench testbed includes the surprising observation that



crude three-level, timer-based estimations can match true,
measured power consumption values within a few percent.
This important result provides credibility to (unvalidated)
estimation-based research performed on other testbeds

II. RELATED WORK

Due to a lack of tools, researchers initially resorted to
ad-hoc solutions when quantifying the energy consumption of
their algorithms and protocols. The focus was on accounting
for the induced wireless communication as the radio is gener-
ally the part of a sensor node that consumes most energy.
At higher levels in a protocol stack, simply counting the
number of message transfers was considered good enough;
at lower levels protocols were instrumented to record the time
spent in each radio state in order to provide more accurate
power-consumption estimates.

Energy =

∑

state j

Pstate j × tstate j (1)

The level of detail, i.e. the number of states would vary
from a crude two (RX/TX), via a reasonable three (RX/TX/
SLEEP), to an elaborate six or more when taking radio state
transitions into account. Eventually, this approach foundits
way into mainstream network simulators like NS-2 [7] and
GloMoSim/Qualnet [9], as well as WSN-specific simulators
like PowerTOSSIM [12], AEON [8], and Prowler [1]. Be-
sides estimating the power consumption of the radio, both
PowerTOSSIM and AEON also consider the other hardware
components in a sensor node (e.g., CPU, sensors, and LEDs).
The resulting level of accuracy was determined to be within
5 % (AEON) and 10 % (PowerTOSSIM) for a number of
TinyOS applications running on a single node; AEON has
the edge as it is emulating at the instruction level, while
PowerTOSSIM performs a discrete event simulation at the
basic block level.

With the recent move to experimentation on testbeds, mainly
inspired by the lack of realism regarding the simulation models
of wireless channels, some testbeds like MoteLab include
one node hooked up to a digital multimeter for accurately
measuring the power consumption of that node. This single
probe provides valuable insight into the actual behavior of
an application, but it is hard to expand the scope to the
full testbed due to the costs of the measuring equipment.
Some extrapolating, however, is possible by feeding the
measured power consumption levels back into equation (1)
while actually recording at each node the time spend in each
state. A large-scale study is desired to determine the validity
of this approach, which implies the need for low-cost, but
accurate equipment to measure the power consumption of an
individual node. We are aware of two dedicated hardware
designs addressing this need.

The first design, called SPOT [6], uses the standard current
sensing technique of putting a shunt resistor between the
supply and the sensor node (MicaZ). The voltage drop across
that resistor is amplified and fed to an A/D converter stage.
The analog-to-digital conversion is performed with a voltage-
to-frequency converter (VFC), and two counters (accumulating
time and energy) to provide the large dynamic range of
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Fig. 1. Testbed building block.

10.000:1 needed for precisely monitoring sleep currents. While
this VFC-based method provides good accuracy and high
sampling rates, there are some disadvantages. First, it is more
costly than a simple single-chip successive approximation
ADC solution (see Section III), which makes it less useful
for large-scale deployment. Second, as the authors noticed
themselves, the oscillator and the VFC can be sources of
significant noise in the system, which must be suppressed to
avoid interfering with neighboring modules like the wireless
sensor node itself. (This requires additional decoupling cir-
cuitry and quite expensive metal shielding.) Third, the SPOT
design is such that the measurements must be processed by
the host sensor node that the SPOT board is attached to. This
interferes with normal operation as counters must be read,
and their values must be processed on-the-fly, which seriously
compromises the usability of this approach.

In contrast to SPOT, the approach by Milenkovic et al. [10]
is truly unobtrusive as they use a non-contact current probe
(Extech 380946) in combination with a high-end data acquisi-
tion card (National Instruments DAQCard-AI-16XE-50). This
setup allows for high accuracy and sampling rates, but only at
considerable cost limiting the use to a single node only; the
authors’ claim of using “inexpensive” equipment is not backed
up by retail prices of US$ 230 and US$ 1500 for the current
probe and acquisition card, respectively.

III. T ESTBED DESIGN

The primary objective of designing the PowerBench infras-
tructure was to be able to measure the power consumption
of all 24 nodes in our testbed, which translates into the
requirement for a low cost solution. In Delft we are using
TNOdes, which are similar to the familiar Mica2 nodes, in
combination with a separate programmer board powering a
TNOde and offering convenient wired access by means of
an USB interface for programming and serial I/O. The idea
was to re-design the programmer to provide the additional
functionality of measuring the power consumption of the
TNOde hosted by it. The target was to keep the costs of
the additional components (e.g., A/D converter) belowe10,
roughly 25 % of the total price of a programmer. This price
increase would allow us to scale to any number of nodes in
our testbed (see Section IV).
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Fig. 2. Schematics of the power measurement module extension.

Further requirements on the testbed infrastructure include
a minimum accuracy and time resolution of the power sam-
ples, as derived from our objective to study energy-efficient
MAC protocols. An effective carrier sense operation with the
CC1000 radio takes about 0.5 ms [11], so a sampling rate in
the order of 5-10 kHz would suffice to observe these basic
(shortest) events. As we want to limit the measurement errors
to 5 %, and the base current drawn by an active TNOde
is about 5 mA (CPU running idle, radio off), the sampling
resolution must be below 250 µA. Capturing the ATmega 128L
processor in sleep mode would be nice, but is not essential as
the current drawn then drops to 30 µA rendering it insignificant
for MAC protocols like B-MAC [11] waking up every couple
of hundred milliseconds.

A final set of requirements is derived from the desire to
process (view) the power data after it has been captured
by the testbed. Such off-line processing requires accurate
time-stamping of (batches of) raw power samples, and (some)
local processing would reduce the delay between measurement
and time-stamping. Also, it is essential that the stream of
power data can be aligned with the serial output of the TNOde
such that internal protocol events can be used to “explain”
particular power profiles. Again, the finest granularity of
events is in the order of milliseconds, which translates to a
time synchronization in the order of 100 µs.

Figure 1 shows the basic architecture of the PowerBench
testbed. The central component is a pair of Linksys NSLU2
devices (a low cost, embedded Linux platform) accessible by
Ethernet. One of them is used for controlling the application
running on the TNOdes in the testbed; it can be instructed
to install (flash) specific program images, start/stop execution,
and handles serial I/O. The second Linksys device is dedicated
to capturing the raw ADC samples produced by the modified
programmer board (see below). Note that we initially planned
to use a simpler design featuring only one Linksys device
by reusing the USB interface chip on the programmer board

to access the A/D converter in parallel with the serial I/O.
However, a hardware fault in the USB interface chip forced
us to implement dedicated circuitry (wires + Linksys device)
for handling the power data.

Figure 2 provides the schematics of our design modifica-
tions to the TNOde programmer that allow for external power
measurements. We use the standard current measurement
method of an ADC sensing the voltage drop across a shunt
resistor (R2) placed in series between the supply and the
sensor node. To avoid any disturbance in the operation of a
programmer and the sensor node hosted by it, we ensure that
the voltage drop is small (max 60 mV). This signal must be
amplified before it can be read by an ADC. The amplification
(of a factor 51.5) is done by an op-amp (U1), which also
inverts the amplified signal and conditions it to be referenced
to the 3.3 V supply. Then the signal is fed through a low-pass
filter consisting of a resistor (R3) and a capacitor (C1). To
avoid aliasing effects the cut-off frequency of this filter is
about 5 kHz–half of the maximum required sampling rate
of 10 kHz– in accordance with Shannon’s sampling theorem.
For the analog-to-digital conversion we use a simple (cheap)
single-chip successive-approximation 12-bit ADC with an SPI
interface, made by Microchip (U2). The step size of the
ADC (with 3.3 V reference) is about 806 µV corresponding
to an ideal current resolution of 16 µA. The full current
dynamic range is 65 mA. This range was selected based on
the maximum possible power consumption by the sensor node
(about 60 mA) and a small safety margin. Note that since the
voltage signal is inverted and referenced to the 3.3 V supply,
the digital codes read from the ADC have an inverse meaning
as well, with0xFFF corresponding to zero current.

For temperature-related calibration purposes and for sanity
checking of the power measurement data, the programmer
design includes a temperature sensor (U3) and ADC (U4) pair.
To save on costs, we only mount one temperature sensor per
testbed building block (i.e. one per Linksys device). Another



useful feature, supported by our design through transistors Q1
and Q2 and the surrounding passive components, is the ability
to cut off the power to the sensor node completely. This allows
us to simulate node failures according to some given scenario
and study protocol behavior in a controlled manner.

IV. I MPLEMENTATION DETAILS

The basic building block of the PowerBench infrastructure,
a pair of Linksys devices (cf. Figure 1), can host up to 8 TN-
Odes and must be replicated to support larger configurations.
For example, the current testbed installed into the ceilings of
4 rooms in our department consists of 24 nodes and 8 Linksys
devices (one pair per room). Experiments can be started from
any PC connected to the Ethernet backbone, with the power
data being streamed back to the PC by the Linksys devices.

The costs of the additional components for a programmer
amount toe8.68, which is within thee10 budget. When
taking all components of the PowerBench infrastructure (4
modified Linksys devices, 24 programmer modifications, and
ADC wirings) into account, the costs total toe640, ore27
per node. This is affordable given the basic price ofe 78 for
a TNOde/programmer pair. Of course some manual labor has
to be factored in as well for making the Linksys modifications
and special wirings (24h in total, or 1h/node) and for installing
the equipment, but as this does not require expert skills it
should not be much of a concern.

Besides hardware the PowerBench infrastructure includes
various software components to make it all work. There is soft-
ware for controlling the execution of the application programs
on the testbed, software for sampling the A/D converters, and
a set of tools to process the recorded power consumption
traces. We also developed an extensive debugging interface
(using serial I/O) that has proven itself to be very useful.
In the remainder of this section we provide additional detail
regarding these software components.

A. Runner software

The software that controls the execution of application
programs on the PowerBench testbed was designed to make
the life of both user and administrator simple. In particular,
the software is self configuring such that adding, removing,
and replacing TNOdes and Linksys controllers can be handled
automatically, i.e. the user can simply request execution on
N nodes without further ado. For experimentation purposes,
however, a user can request a specific set of nodes such
that a measurement can be repeated with the exact same
configuration. To rule out interference by other users executing
another application on a different part of the testbed, users can
lock the whole testbed for the duration of their experiments.

The software consists of two parts: aserver program
running on each Linksys device and arunner program run-
ning on the user’s own computer. Software updates, which
occurred frequently during the development of the testbed,
are downloaded from a central repository. Protocol version
numbers help to detect incompatible versions of theserverand
runnersoftware. The runner program takes a single application
image (compiled from TinyOS code for the TNOde target) and

distributes that to the Linksys servers involved in the particular
run. Each server then checks for all nodes attached to it if they
need to participate, and if so inserts the node number (as TOS
LOCAL ADDRESS) into a copy of the image and flashes
that into the node. Next the server waits for a start command
from the runner to reset the node and start capturing output
(serial data or power traces). The start command is sent out as
one broadcast packet over the Ethernet to ensure synchronized
execution and data capture across all nodes in the run. All data
is streamed back to the runner program at the user’s computer,
who can then process the raw output. An example of the serial
output is shown below:

11:1422736: 00 1A 00 1B 00 0D F4 33 00 1C 00 01 1E 2A
00:1432098: 7E 42 7D 5E 00 11 DE 0C 00 00 02 00 18 00 00 00 ...
00:1435625: 7E 42 7D 5E 00 11 DE 0C 00 00 14 00 17 00 00 00 ...
00:1436718: 7E 42 7D 5E 00 11 DE
00:1436878: 0C 00 00 16 00 18 00 00 00 F0 00 17 00 D2 C1 7E
18:1513929: 00 00

The format of the data is<node ID:time stamp:data>. Time
is measured in ticks of 1/10,000 seconds since the start of the
program. The data is a simple byte stream and needs to be
interpreted by the user. In the example above we can see a
mixture of TOSMsgs (delimited by7E markers) and our own
UARTDebug support (lines marked11 and18, see Section IV-
D). Note that information may be spread across multiple lines,
as is the case with the third TOSMsg (lines00:1436718 and
00:1436878)

B. Sampling software

We adapted the original Linksys NSLU2 firmware (a mod-
ified Linux 2.4.22+ kernel) to match our hardware mod-
ifications and include a sampling driver. A major change
was the reconfiguration of 7 GPIO pins to interface to the
switchboard/wiring hooked up to the 9 ADCs (8 TNOdes + 1
temperature sensor) in a testbed building block (cf. Figure1).
As we operate the Linksys at its peak performance under
strong real-time constraints, a number of bugs surfaced in the
USB subsystem and kernel time-keeping code that we fixed
along the way. In addition we added proper initialization of
the CPU GPIO pins and corrected some basic errors in the
handling of endianness, all of which resulted in a stable kernel.

Our sampling software, which is part of theserverprogram,
communicates with the ADCs on the TNOde programmers
via the SPI protocol made available in user space. We control
the chip enable lines, generate the clock signal, and capture
the 12-bit data samples from the 9 ADCs in parallel. Each
ADC value is paired with the corresponding node ID, and one
timestamp is attached to the collection of 9 readings beforeit
is sent out over the Ethernet to the user who initiated the run.
The maximum sampling rate that we can reliably sustain on
a Linksys device is 5 kHz, which meets the requirements to
be able to observe basic events like a carrier sense operation
(taking about 0.5 ms).

C. Trace processing software

The power data that is received by therunner program
from the testbed consists of raw ADC values. These values
need further processing to be useful. The first step consists



of converting (inverting and scaling) the ADC values to
power consumption in mA. However, because of hardware
differences the values obtained from each programmer have
to be adjusted by a small offset to ensure correct power
consumption values. To this end we have calibrated the power
consumption of each individual sensor node in the testbed.
Once the ADC values have been converted to true power
consumption figures, the data can be used to generate plots
and calculate total power consumption over the trace (see
Section V for sample results).

D. UARTDebug

Our initial experiences with developing and analyzing
MAC protocols on the PowerBench testbed indicated that the
standard TinyOS methods of debugging on node hardware
(dumping 39 byte TOSMsg’s onto the serial port) were
inadequate. Specifically, the most useful data when debugging
a MAC protocol tends to be information regarding changes in
state variables, with the amount of actual data required being
no more than 4 bytes, and we ideally require being able to
output as many of these state changes as possible. Wrapping
a few bytes of state change in a 39-byte TOSMsg was an
unacceptable level of overhead, especially given the relatively
low serial data rates (57k6) on our hardware. We therefore
developed the UARTDebug system, a flexible and extensible
system for state-change debugging. The core of UARTdebug
is in three parts:

• Module-specificevents files, listing the events that the
user wishes to be able to record from a particular TinyOS
module, along with information regarding the quantity
of data associated with an event (0-4 bytes) e.g. for an
update of a counter value, the associated data would be
the value of the counter. Parts of this file are generated
by a support program.

• A UART interface module running on the sensor node,
used for metadata generation and buffering of debug
messages.

• A client-side parser program for translating the UART
output into human-readable form.

The sections of the events file generated by the support
program are also used to provide module-specific #define’s
to make wiring the debugging module simple, along with
enabling simple per-module and system-level enabling/dis-
abling of specific debugging data. A sample output illustrating
the startup of a Surge + Multihop application with local
modifications for debugging is shown below.
00 0.0489 MultiHopLEPSM.Debug DUPLICATE
00 0.0489 MultiHopEngineM.Debug ROUTE_SELECT_FAIL
00 0.0489 MultiHopEngineM.Debug _MSG_RCVD 13 (0x0D)
00 0.0489 MultiHopEngineM.Debug _MSG_ORIGIN 0 (0x00)
00 0.0489 MultiHopEngineM.Debug MSG_LOCAL
00 0.0489 MultiHopEngineM.Debug MSG_FWDING
00 0.0489 MultiHopLEPSM.Debug _SDELTA_NEG 12 (0x0C)
00 0.0489 MultiHopLEPSM.Debug DUPLICATE
00 0.0489 MultiHopEngineM.Debug ROUTE_SELECT_FAIL
00 0.0489 SurgeM.Debug SURGE_ADC_START
00 0.0489 SurgeM.Debug __SURGE_ADC_READ 2 (0x0002)

Note that the time seems to be stuck at 0.0489s, but this is an
artefact of our setup in which the timestamps are generated by
theserverprogram on the Linksys device in combination with

buffering on the TNOde’s side. The order of events, however,
is always correct and the accuracy of time synchronization
between Linksys devices (in the order of a few milliseconds)
has been good enough to unravel many bugs at various levels
in the protocol stack.

V. RESULTS

After having installed the PowerBench testbed we were
anxious to use it to falsify (or validate) the estimation-based
approach widely used for assessing the energy efficiency of
protocols. First, however, we needed to validate the accuracy
of our modified programmer board and software-based sam-
pling method.

A. PowerBench validation

We started off by performing a careful static calibration of
the power measurement subsystem for each programmer. We
replaced the normal TNOde with a resistor to precisely control
the current to be measured. That current was measured simul-
taneously by a precise (≤1%) multimeter and our power trace
capturing setup. We recorded the difference and incorporated
that into a calibration table (one entry per node) that assures
compensation for both absolute and proportional errors. (This
table is used by therunner when processing the raw ADC
values.) By using resistors with different values the whole
current measurement range (0-65 mA) could be calibrated.

The dynamic accuracy of the setup depends on the one hand
on the noise of the op-amp and the ADC, and on the other hand
on the bandwidth of the measured signal (the node current)
and the acquisition sampling rate. Unfortunately we do not
have access to the necessary (and quite expensive) equipment
to test the real dynamic measurement accuracy of our setup.
However, since we do not work with high sampling rates
(5 kHz) and high bandwidth signals (≤5 kHz) we are confident
that most of the dynamic errors come from the noise of the
ADC and the op-amp. The magnitude of this noise expressed
in terms of ADC code difference is about±1 LSB, resulting
in a dynamic resolution of about 30µA.

B. Estimation versus measurements

With the calibrated testbed we engaged in the following
experiment to determine the accuracy of the estimations
derived from tracing the radio states. We modified the core
CC1000ControlM module from the TinyOS protocol stack
to intercept all state changes of the radio; at every change
we read out an internal, high-accuracy timer and update the
amount of time spent in the current state (RX/TX/SLEEP).
This corresponds to the simple three-state model commonly
used to estimate the energy consumption of MAC protocols.
The resulting statistics are periodically output over the serial
link. We multiply the measured time in each radio state with
a combined figure for CPU and radio power consumption for
that state. This is because the CPU of the nodes consumes
more energy during transmission and reception than during
sleep, for two reasons: Firstly, the radio on the nodes is a
byte based radio, which means that each byte received or
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transmitted causes an interrupt on the CPU. Secondly, to
receive that interrupt the CPU cannot go to its lowest power
mode, but instead has to stay in idle mode.

We used the instrumented CC1000ControlM module to
estimate the power consumption of the canonical TinyOS
Surge application, with Multihop routing and two different
MAC protocols; B-MAC [11] and Crankshaft [4]. At the
same time we used the power traces to derive the real power
consumption at each of the 24 nodes in the testbed. Figure 3
shows the estimated average power consumption and the
measured power consumption for running B-MAC configured
to use Low-Power-Listening with a 12 Hz polling rate, i.e.
performing a carrier sense every 83 ms. (Note that we only
show the results for 12 out of 24 nodes to enhance readability.)

The first bar shown for each node is an estimate based on
theaveragepower consumption of all nodes for the three radio
states. The second bar shows the real power consumption as
measured by our testbed. As can be seen from the figure, using
the average consumption numbers can lead to significant errors
in estimating the power consumption of a node. For example
node 7 has an estimated power consumption of 4.75 mA, but
a real power consumption of 5.95 mA, an undershoot of 21 %.
However, if we use per-node calibrated values for the different
states we get far more accurate values, as shown by the third
bar. In the example of node 7 it is also clear what is causing the
difference between the first estimate and the measured power
consumption: node 7 uses a lot more power in sleep mode
than is estimated with the average power consumption figures.
However, even with the calibrated estimates, some estimates
can still be off by several percent for a specific run as shown
by the results for node 21 (-5.0 %).

From the estimates that are based on the average consump-
tion figures we can see that nodes have to listen a lot. This
is because at the default transmit power setting the network
is a two-hop network. This means that when one node is
transmitting, most of the others can hear this. Node 0 is the
sink collecting all Surge data, and consequently transmitsthe
least; it only has to send routing advertisements. Furthermore,
we see that node 5 transmits a little more than most others.

TABLE I

ERROR AS A PERCENTAGE BETWEEN ESTIMATED AND REAL POWER

CONSUMPTION FOR THESURGE APPLICATION WITH DIFFERENTMACS.

Protocol Average Std. dev.
B-MAC [always on] -1.62 % 0.97
B-MAC [12 Hz poll] -1.03 % 1.16
B-MAC [5.5 Hz poll] -1.91 % 1.44
Crankshaft -13.48 % 5.93

This is because after some time it will start forwarding
messages for the few nodes that cannot directly communicate
with the sink (node 0).

For the B-MAC protocol we experimented with different
polling frequencies, to see the impact of the radio switching.
Table I shows the average error over 2 runs with a total of 46
traces. (The estimations are obtained with per-node calibrated
power consumption information.)

Much to our surprise it was quite easy to obtain fairly
accurate estimations for the B-MAC protocol; on average
the estimations are off by only 2 %. The experiments with
polling did show that radio state transitions cannot be ignored
completely, with higher errors for more frequent polling. The
underlying issue is that during the SLEEP-to-RX state transi-
tion of the radio the CPU is kept in a busy-waiting loop for
correct timing. The energy consumed during this busy-waiting
cannot be ignored. However, by simply modeling the power
consumed by the CPU as an additional fraction of time spent
in RX mode, we were able to obtain accurate estimations of
the total consumed power. This result demonstrates that the
standard practice of disregarding the intricacies of radiostate
transitions when estimating power consumption is valid, for
B-MAC that is.

The results for the Crankshaft protocol paint a different pic-
ture. Using the radio states to model the energy consumption
for Crankshaft leaves us with a significant underestimate of
the real power consumption (-13 % on average). The reason
for this is the inefficient implementation of the Crankshaft
protocol. Crankshaft is a slotted protocol, but nodes do not
wake up in each slot (see Section V-C.2 for additional detail).
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Fig. 4. Power trace of a node (4) running B-MAC switching to transmit
mode immediately after receiving a message (from 1). Receiving consumes
approximately 18 mA, transmitting 23 mA.

However, for ease of implementation the current version of
the protocoldoes wake up the CPU at each slot. Waking
up the CPU and the subsequent processing also costs energy.
Because the Crankshaft protocol keeps the radio turned off for
most of the time, this limited CPU use still has a significant
impact on the estimate. If the CPU were to only wake up for
the slots in which the radio is turned on, the estimate would
improve. As a quick fix, we did attempt to model the power
consumed by the CPU when the radio was off, but failed to
do so accurately due to most processing taking placeinside
interrupt handlers, which is very difficult to account for. This
problem was also observed by Landsiedel et al. and explains
why AEON (emulator-based) yields more accurate results than
PowerTOSSIM (estimation-based) in certain cases [8].

In summary, our results demonstrate that the times the radio
spends in different states (RX/TX/SLEEP) can be used to
calculate accurate estimates of the real energy consumption,
provided the CPU is used sparingly.

C. Trace visualization

The power traces from the nodes can also be used for
debugging purposes. Many artifacts are much easier to see
from a visualization than from textual debug output. Although
the debug output can be visualized as well, the power traces
provide a natural visualization by plotting the consumed power
versus the time. We cannot provide quantitative evidence on
how much the visualization of the power traces helps in
debugging, but we will provide some anecdotal evidence.

1) B-MAC contention anomaly:When running Surge with
B-MAC as the underlying MAC protocol we observed that
in some cases where contention was high, a node would
switch to send mode almost immediately after receiving a
message (see Figure 4). This seemed to be contrary to the
back-off mechanism which B-MAC is advertised to employ.
The expected behavior is for the node that has just received
a message to wait for a small random amount of time to do
a clear channel assessment before starting to send itself. Of
course it is possible that the random amount of time is actually
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Fig. 5. Power trace for nodes running Crankshaft. Node 4 (topgraph)
and node 12 (bottom graph) should listen to the same slots. The bottom
graph demonstrates the missing power spike at 2.68 seconds which would
correspond to turning the radio to receive mode.

zero, but further examination of the trace showed that this
behavior occurs quite frequently.

Careful examination of the B-MAC implementation for the
Mica2 platform revealed that there is in fact a deviation from
the advertised behavior. Rather than picking a new random
back-off period after receiving a message, the time remaining
from a lost contention is used as the back-off period. Also,
when a node starts its contention during a data part of a
message sent by a neighboring node, it will count down the
back-off timer. These two artifacts have the effect that the
back-off period is not uniformly random, but rather skewed
towards short periods. Although the quick switching behavior
does not seem to have a large impact on the protocol workings,
it does increase the chance of collisions. Particularly in high
contention situations the chances of collisions are increased
because of the skewed distribution of the back-off periods.

Having the power traces from all 24 nodes was invaluable
for finding the quick switching behavior. By plotting all
traces in a single graph it quickly becomes apparent that
something strange is happening. If one were to have the traces
from only two nodes it would be likely that there would be
a message from another node between the messages from
the instrumented nodes, hiding the quick switching behavior.
Trying to find this behavior in the debug data or the simulator
output is possible, but requires far more effort.

2) Crankshaft modulo bug:In the Crankshaft protocol time
is divided into frames, and frames are subsequently divided
into slots. All frames have the same structure with respect to
the slots. The frame starts with a set of unicast slots, followed
by one or more broadcast slots. The number of unicast and
broadcast slots is fixed, but can be changed at compile time.
A node has to listen to each broadcast slot, and to one unicast
slot. The unicast slot a node has to listen to is determined by
taking the MAC address modulo the number of unicast slots.
For example, when there are 8 unicast slots, a node with MAC
address 4 will listen in the fourth unicast slot, as will a node
with MAC address 12.

During implementation of the MAC protocol, it was initially



decided that the number of unicast slots would be 16. However,
later on during the implementation process the number of
unicast slots was made a compile time constant. The code
was changed for determining when a neighboring node would
be awake, but the code to determine in which slot to listen
was accidentally left untouched.

The result of this oversight can be seen in Figure 5. The
two graphs show the power traces for node 4 and 12, with
the number of unicast slots set to eight and the number
of broadcast slots set to two. One can clearly see the two
consecutive spikes in power consumption for the broadcast
slots for two consecutive frames, where the radio was set
to receive mode (at 2.40, 2.45, 2.85 and 2.9 seconds). For
node 4 we can also see another spike between the two sets of
broadcast slots at 2.68 seconds, which corresponds to unicast
slot 4. In the bottom graph, which shows the power trace for
node 12, the spike in the middle is missing.

Of course the modulo bug could also have been found either
by simulation or by inspecting the debug output from the serial
port. However, detecting that the start of slot marker is missing
from the the simulator output or the debug output is made
difficult by all the other messages. In the visualization it is
immediately clear. Although for this case it is not necessary
to have all 24 traces available, it is necessary to have the trace
of a node with a MAC address in a specific range. If the
traces of a limited set of nodes were available, there would be
a good chance that none of these nodes had appropriate MAC
addresses, and the bug would have been missed.

VI. CONCLUSIONS

In this paper we have presented PowerBench, a scalable
testbed infrastructure for benchmarking power consumption.
PowerBench includes hardware components as well as soft-
ware for capturing the power traces of all nodes in the testbed
in parallel. These traces are stored for off-line processing and
viewing, aiding in the analysis and debugging of the energy
footprint of various protocols. PowerBench was developed for
the TNOde architecture, which is similar to the familiar Mica2,
and is validated to accurately measure power consumption
with a 30 µA resolution at a sampling rate of 5 kHz. This
is precise enough to trace events at the lowest level in the
protocol stack, for example B-MAC performing a (periodic)
carrier sense and then going to sleep immediately.

The software developed for the PowerBench testbed in-
cludes programs to run applications on the nodes, collect the
resulting power traces, and to visualize them or to compute
the average power consumption. The PowerBench hardware
consists of a modified programmer, measuring the power
consumption by means of a shunt resistor, op-amp, and ADC,
and a set of Linksys devices monitoring the ADCs (8 nodes
per device). The costs of the additional components amount
to e8.68 per programmer; when factoring in all components
of the PowerBench infrastructure the costs total toe27 per
node, or 34 % of a node/programmer pair.

We have installed a 24-node testbed in our labs and used
it for two purposes. First, we have compared the traditional
method of estimating energy consumption –based on counting

the time spent in each radio state– with the true measurements
provided by PowerBench. Much to our surprise the estimates
can be tuned (calibrated) to perfection with errors generally
below 2 %, provided the CPU is used sparingly. Second,
we used it to study/develop MAC protocols and provided
examples of anomalies detected through visualizing the power
traces obtained on the PowerBench testbed.
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