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ABSTRACT
The Java programming language enjoys widespread popu-
larity on platforms ranging from servers to mobile phones.
While efforts have been made to run Java on microcontroller
platforms, there is currently no feature-rich, open source vir-
tual machine available. In this paper we present Darjeeling,
a system comprising offline tools and a memory efficient run-
time. The offline post-compiler tool analyzes, links and con-
solidates Java class files into loadable modules. The runtime
implements a modified Java VM that supports multithread-
ing and is designed specifically to operate in constrained exe-
cution environments such as wireless sensor network nodes.
Darjeeling improves upon existing work by supporting in-
heritance, threads, garbage collection, and loadable mod-
ules while keeping memory usage to a minimum. We have
demonstrated Java running on AVR128 and MSP430 micro-
controllers at speeds of up to 70,000 JVM instructions per
second.

Categories and Subject Descriptors
D.1.5 [Object-oriented Programming]: Miscellaneous

General Terms
Languages

Keywords
Java, Sensor Networks

1. INTRODUCTION
Virtual machines (VMs) are a well known and powerful

means of abstracting underlying computer hardware from
an application, allowing portability across platforms without
recompilation. A VM is an abstract machine for which code
is compiled, and the run-time interpreter for the VM code
is written specifically for each platform. The best known
example is the Java language and the Java VM (JVM) but
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VMs also underpin many other common software systems,
for example Microsoft’s .NET, Python and Perl.

Virtual machines provide a means of overcoming the chal-
lenges of fault tolerance, cost and heterogeneity. Low-cost
embedded systems often have no user interface and are de-
ployed in remote or dangerous areas so must run auton-
omously throughout their complete lifetime, i.e. for sev-
eral years. Microcontrollers lack advanced features such
as a memory management unit and a single faulty process
can potentially take down the entire software system. Vir-
tual machines help to alleviate these problems by providing
strong checking, memory management and error handling
services that improve robustness and allow software faults
to be handled appropriately before they become failures.

The total cost of ownership includes not only the price
of hardware, but also other costs such as software devel-
opment, software and hardware maintenance, testing and
cost of failures. Virtual machines may help to cut costs in
the areas of software development and testing. This effect
can be attributed to a number of factors, such as increased
maintainability and productivity [2].

Large systems deployed for long periods of time eventu-
ally face the problem of obsolescence. Virtual machines al-
low elements of the system to be replaced with different
computation hardware yet still be able to run the original
applications and relieve programmers from having to deal
with this diversity. A virtual machine solves this problem
by providing one execution model that is universal to all
node platforms. This is illustrated by the success of Java in
the mobile phone market [13].

Growing interest in Java virtual machines for embedded
applications, including Wireless Sensor Networks (WSNs),
reflected by recent efforts like [14, 7], shows a need for a
more flexible and accessible programming abstraction. At
the time of writing Java is one of the most popular program-
ming languages [19]. This gives Java a significant advantage
over other alternatives in terms of accessibility, integration
with other network components and availability of tools such
as IDEs and compilers, not to mention programmers.

On the technical side, the execution model of a Java vir-
tual machine has numerous advantages over native code.
Stack frames are allocated on the heap in an ad-hoc man-
ner so threads can be very light-weight. The Java language
and its compiler guarantee type safety, and common pro-
gramming errors such as buffer overflows and null pointers
are caught at runtime. Unreachable memory is automat-
ically reclaimed by the garbage collector, greatly reducing
memory leaks.
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Java Card NanoVM TinyVM AmbicompVM VM*
Stack 16-bit 32-bit 32-bit 32-bit (48) 32-bit
Multithreading no no yes yes yes
Garbage yes yes no yes yes
Loadable yes no no yes yes
Open no yes yes no no

Table 1: JVM comparison

In this paper we discuss a new virtual machine and tool-
chain that allows a significant subset of the Java language
to execute on a microcontroller of the MSP430 or ATmega
128 class. These devices have 1-8KB of RAM and about
16-128KB of program memory so a low RAM footprint is
critical.

The next sections of the paper discuss prior work on VMs
for embedded microcontrollers, introduce the Java VM, and
then outline our solution for executing Java on embedded
microcontrollers. Our focus is the application in WSNs but
our Java system can be used for any embedded microcon-
troller application.

2. PRIOR WORK
Reported VM projects can be roughly divided into two

groups: traditional VMs such as Java VMs and so called
Application Specific Virtual Machines, or ASVMs. Appli-
cation specific VMs abstract common operations as instruc-
tions in a stack-based virtual machine. They trade off flexi-
bility for code footprint, both in the VM and the application
code. This approach has been popular especially in the field
of wireless sensor networks, where applications are trans-
mitted wirelessly and small code size means reduced power
consumption for communication. Examples of such VMs are
Maté [8] and VMSCRIPT [12].

A multitude of projects have focused on making Java ex-
ecute on tiny platforms. An overview of these projects and
their features is given in Table 1. We have looked at stack
width as this influences memory consumption, support for
multithreading and garbage collection, support for runtime
loadable modules (libraries) and whether these projects are
open source.

Java Card [10] is an effort by SUN, the creators of Java,
that targets smart cards. These platforms typically have
1-2KB of memory and about 16KB of program memory.
An interesting feature of Java Card is that it uses a stack
width of 16 bits rather than the standard 32. This essentially
means it is a 16-bit JVM, which makes it more suitable for
microcontrollers.

NanoVM [11] is an open-source, limited JVM written for
Atmel’s AVR series of microprocessors. It can run in less
than 8KB of program flash, and 1KB of memory. It was
designed for robot platforms and does not support more
advanced features such as exceptions and threads and has
a limited inheritance model. TinyVM [18] was developed
to bring Java support to the Lego Mindstorms RCX brick.
It has many features including multithreading but unfortu-
nately lacks garbage collection.

Java has been reported for WSN applications, notably
AmbicompVM [14] and VM* [7]. The AmbiComp VM is a
flexible and complete JVM. It can operate in a distributed
fashion using key-based routing to address remote objects.

Stack elements carry two additional bytes with type infor-
mation, making the stack width 48 bit. VM* features a few
interesting performance optimizations. Memory limitations
are addressed by synthesizing a VM for a specific applica-
tion.

Of the examined projects only NanoVM and TinyVM are
open source. Upon examination neither of these proved a
suitable starting point for further work.

3. DARJEELING
The Java Virtual Machine (JVM) [9] was designed specif-

ically to execute compiled Java programs. It uses a stack-
based instruction set, called bytecode to reflect the general
size of opcodes. The stack is 32 bits wide, but 64 bit data
types are supported by having them occupy two stack slots.
Because it is a stack-based VM, code density is generally
greater than with register-based instruction sets [16]. Java
is an object-oriented language and the VM supports features
such as class inheritance, interfaces, and virtual method in-
vocation.

The design constraints for many embedded systems, par-
ticularly wireless sensor networks, are quite different to those
for desktops and mobile phones. One important difference
is that system RAM is limited, ranging from about 1-8KB
on most sensor node hardware. Another is that sensor node
applications spend most of their lifetime in sleep mode, peri-
odically executing small segments of code. Execution speed
of non time-critical applications is therefore less important.
This observation has led us to actively trade off clock cycles
for bytes on the heap, the exact reverse of many optimiza-
tions found in desktop and mobile JVMs where memory is
available by the megabyte.

When designing our Darjeeling Virtual Machine (DVM)
we have chosen not to implement the full Java virtual Ma-
chine Specification. It is our philosophy that instead of scal-
ing down the JVM to fit on our target processors, it is better
to design a new VM from the ground up and map appropri-
ate parts of the Java platform onto it. Important tradeoffs
have been compatibility, features, and performance versus
code complexity and memory usage.

Darjeeling does not use the class loader system present
in Java, and as a result memory overhead is greatly re-
duced. Darjeeling uses a static linking model discussed in
Section 3.1. Modifications have been made to the instruc-
tion set to accommodate this new linking model, support
packing of heap objects and static variables. Support for
64-bit datatypes and floating point has been omitted.

Darjeeling does not support the full standard class li-
braries, but rather provides a small footprint, bare-essentials
system module (“infusion”). Libraries can be added to give
the application developer control over peripherals such as
the radio. This is discussed in more depth in Section 3.4.
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Figure 1: Infusion process

3.1 Linking model
In Java, every class is treated as a dynamically linked,

loadable module. Entities, such as fields and methods, are
referenced by name, and these names are stored as string val-
ues in the class files. While this model is very flexible and
allows for code updates on a per-class basis, it is also very
costly in terms of storage. Other embedded JVMs have im-
plemented a static linking model where all application class
files are linked together into a single binary [11], resolving
each reference into an integer identifier. This results in bi-
naries that are considerably smaller, but the downside of
this approach is that common code cannot be shared across
applications.

To achieve a small code footprint while ensuring modular-
ity, Darjeeling uses a model where groups of classes are stati-
cally linked into loadable modules called infusions. Infusions
may reference each other, can be loaded and unloaded at run
time, and support versioning.

An application or library consisting of a group of classes
is transformed in a post-compile step by a tool called the in-
fuser. The infuser statically links Java .class files together
and resolves names into identifiers. Classes, methods and
fields are sequentially numbered. A header file is produced
that contains the mapping between the original names and
the identifiers that replace them. These header files are used
when one infusion imports another, and to make sure that
new versions of infusions do not break previous dependencies
by changing identifiers.

The process is illustrated in Figure 1. The Java class files
that make up the application or library are input to the
infuser, along with the header files of imported infusions.
The output consists of two files, a Darjeeling infusion file
(.di) that contains the actual bytecode and a Darjeeling
infusion header (.dih) that contains a mapping between the
original Java entity names and the generated identifiers.

The identifiers that are found in the .di files are called
local IDs and consist of two parts, a local infusion ID and an
entity ID. The first element refers to an item in the import
list of an infusion. The second element refers to an entity
within that imported infusion. Local IDs are stored as a
two-byte tuple. Figure 2 shows how a method is resolved
at runtime. In this example a method inside the ‘motor’
infusion is called from the ‘car’ infusion. First, the local

ID is partially resolved into a global ID by looking up the
infusion in the import list. A global ID is a tuple of a pointer
to a loaded infusion, and an entity ID. The method itself can
now be retrieved from the infusion’s method list.

3.2 Executable size
By removing the naming information we can substantially

reduce the size of executables. Table 2 shows file sizes of
four applications. The Car application is a single class that
controls an r/c car, SimpleApp is a token-ring application
that uses the radio, the system library is the system infusion
that is required by all applications to run and lastly the re-
gression tests are a group of classes used to test Darjeeling.
The first column shows the sum of the class file sizes, with
the code column showing how much of that is used for stor-
ing actual bytecode. The code/class ratio shows how much
overhead dynamic linking information contributes for each
case, and illustrates why we decided to remove it from our
format. The jar column shows the compressed size of the
classes, with no manifest files included. The system library
consists of many classes which explains why the jar file is ac-
tually larger than the uncompressed class files, as file path
information was added to the archive. The size of the .di

files and the ratios versus .class and .jar files show that
even though we do not use code compression our executable
format produces files that are considerably smaller than the
corresponding .jar files.

3.3 Memory model
Java is in its core a 32-bit virtual machine. On the stack,

in local variables, and in objects, values are stored in 32-bit
slots. This is beneficial for performance on 32-bit architec-
tures but leads to memory wastage on 8 and 16-bit micro-
controllers. Most applications can use short instead of int
for counters, temporary variables and so forth. Ideally vari-
ables of type byte or short should only occupy 1 or 2 bytes
respectively instead of 4.

Darjeeling packs the fields of objects on the heap, with
references being separated from integer fields to help with
garbage collection. The instructions getfield and setfield

have been replaced by the new instructions getfield_<T>

and setfield_<T>, where T is one of int, short, byte or
ref. The offset of the field inside the object is stored as
an immediate value in the instruction. A similar method is
used to pack static fields, which are allocated on the heap
as a part of the loaded infusion.

Darjeeling uses a simple mark & sweep garbage collector.
We chose this algorithm because of its simplicity, and be-
cause it does not move objects. This allows allocated Java
objects to coexist with native objects such as stack frames.
A downside is that non-compacting collectors typically cause
fragmentation on the heap. Another is that the mark phase
is usually implemented using recursion, which can poten-
tially cause stack overflows. We are therefore implementing
a slower but non-recursive marking algorithm.

A function call causes a new stack frame to be allocated
on the heap. This stack frame contains bookkeeping such as
a pointer to the parent frame, a stack, and local variables.
When slots are 32-bit wide, each stack element and local
variable occupies four bytes. This causes an average stack
frame to occupy in the order of 30-50 bytes. To reduce this
overhead, it is possible to use 16-bit slots instead of 32. This
requires bytecode analysis and changes to the instruction set
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Figure 2: Resolving a method reference

Application Class Code Code/Class Jar DI DI/Class DI/Jar
Car 699 108 0.15 601 179 0.26 0.30
SimpleApp 2,205 623 0.28 1,593 813 0.37 0.51
System library 2,264 84 0.04 3,320 724 0.32 0.22
Regression tests 28,998 10,798 0.37 18,349 12,337 0.43 0.67

Table 2: File size comparison

[17]. We are planning on implementing this technique in the
future.

The .di files are placed in different memory sections on
different platforms. The AVR and MSP430 platforms both
have a certain amount of program flash, but access to them
is quite different. On the MSP430 for instance, reads have to
be word-aligned. On the AVR program flash is not mapped
into the general address space and reading is done through a
special instruction. To resolve these differences a thin layer
of macros is written for each platform to access a .di file
and its elements.

3.4 Interaction with native code
A mechanism for calling native methods is implemented to

allow Java programs to make use of the platform hardware
and interact with the virtual machine. When a method is
declared with the native keyword, calling that method in
a Java program will result in the virtual machine resolving
the corresponding native (written in C) implementation of
that method and executing it.

The mapping between a native method declaration in Java
and a native method is generated by the infuser tool. It can
generate a .h file that contains definitions for native methods
found in an infusion and the identifiers that were assigned
to them. Parameters to, and return values from the native
methods are passed through the runtime stack.

3.5 Multithreading
As previously mentioned, Darjeeling was developed in the

context of wireless sensor networks. Allowing multiple tasks
such as a network stack, routing layer and data processing
application to be executed simultaneously is a challenge for
which different solutions have been proposed in the field.

The traditional method of supporting concurrency is by
means of multitasking. Operating systems such as Mantis
OS [1] and FOS [3] provide this functionality. A drawback of
this technique is that every thread requires a separate, pre-
allocated stack, the size of which is equal to the worst-case
usage. TinyOS [6] and Contiki [20] solve this problem by
using event-driven concurrency. The event model has proven
difficult for developers to work with however, especially as
application complexity grows [5].

The lack of support for light-weight threads in existing
operating systems is partly due to how C code is compiled

Test Time Heap VM Instr. Instr/sec
Tree sort 136s 890 bytes 3,652,006 26,533
Tree sort 128s 1200 bytes 3,652,006 28,531

Table 4: Tree sort test

and executed. The Darjeeling runtime allocates stack space
dynamically rather than statically. More specifically, each
stack frame is allocated as a single heap object. This might
seem inefficient in terms of memory, since in most JVM im-
plementations the stack frame of the caller is overlapped
with the stack frame of the callee. In scenarios with many
threads however, the benefit of not having to pre-allocate
stack space for each thread quickly outweighs this draw-
back. If the application programmer decides to use thread
synchronization to to keep threads from allocating a lot of
stack space all at the same time, these benefits can be even
more considerable. This is illustrated in section 4.

When there is not enough heap space for a function to
be called, an OutOfStackException is thrown, and the sys-
tem can decide how to appropriately deal with the situation.
Possible actions might be restarting the thread, blocking the
thread until more memory is available, or killing a lower-
priority task.

Darjeeling implements preemptive multithreading with
atomic JVM instructions. Timeslicing is done by perform-
ing a context switch every n instructions, where n can be
chosen freely and currently defaults to 256. Darjeeling sup-
ports thread synchronization with the Java synchronized

keyword. Because the vast majority of objects will never
act as monitors, monitor counters are not stored in the ob-
ject headers as in some other implementations but rather
live in a separate construct to further save space.

4. RESULTS
In order to quantify the performance of Darjeeling we have

written two test applications and measured their execution
times. The Bubblesort test is a standard O(n2) sorting algo-
rithm, which we tested with an array of 500 values in reverse
order (worst case). We also tested an 8×8 vector convolu-
tion [4] executed 10,000 times. Test were written in both
Java and C and timed on an ATmega128 running at 8MHz.
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Test C Java VM Instr. Instr/sec AVR/VM Java/Native
Bubble sort 0.74s 72s 5,134,766 71,316 112.18 97.30
Vector Convolution 2.97s 421s 28,650,085 68,052 117.56 141.75

Table 3: Performance comparison
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Figure 3: Binary tree test, unsynchronized

The compilers were GCC 4.2.1 for AVR and Javac from the
Sun JDK 1.6.

The results are shown in Table 3. The first two columns
show execution times for the C and Java programs respec-
tively. The third column displays the number of instruc-
tions that were executed by the JVM, the next shows the
number of instructions per second. The AVR/VM column
shows the number of AVR clocks per VM instruction, and
the Java/Native ratio quantifies the performance overhead
of Java over C. The tests show a performance of about 70,000
JVM instructions per second on these benchmarks.

We performed a worst-case test of the JVM with a binary
tree implementation. Each tree node is represented by an
object that has a byte value and references to the left and
right child nodes. The tree is constructed by inserting 20
random numbers, after which it is walked and the numbers
are placed into an array in ascending order. This is repeated
1,000 times. Both the insert and walk operations are imple-
mented using recursion.

Obviously this is not an effective way to sort, but it pro-
vides a good stress test for the virtual machine because
it generates a large number of small objects and virtual
method calls which triggers the garbage collector frequently.
The worst-case from the perspective of memory consump-
tion occurs when the tree is being walked and the deepest
node is being visited, as this causes a large amount of stack
space to be allocated by the main thread.

From Table 4 we see that this application can run in 890
bytes. In order to do that, the garbage collector is invoked
twice per iteration which reduces performance. Still the
VM is able to execute about 26,500 instructions per second.
When the heap is increased to 1200 bytes, the collector is
invoked only once per iteration and performance increases
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Figure 4: Binary tree test, synchronized

to about 28,500 instructions per second.
In order to illustrate how stack space is allocated dynami-

cally rather than statically and how this effects memory con-
sumption, we wrote an application that runs the tree sort
test concurrently in three threads. We measured the total
stack size for each thread, which we define as the size of
the thread object plus the total size of the individual stack
frame objects. The overhead of the heap manager in the
form of chunk headers is included in this number. Figure
3 shows the total stack size of each thread over time. The
three individual threads each peak at 525 bytes. The total
stack space of all threads in this test peaks at 1515 bytes.

The application is run again, but slightly altered. A syn-

chronized block is added in the code so that only one thread
at a time is allowed to execute the tree sort test while the
other two threads remain blocked. The result is shown in
figure 4. In this case the total peak consumption is 699
bytes, less than half of the unsynchronised case.

These tests show how thread synchronization can be used
effectively to automatically serialize complex computations
and prevent programs from running out of memory.

5. CONCLUSIONS
We have presented the motivation and design principles

for Darjeeling, a system that allows Java to run on a small
embedded microcontroller. The system comprises offline
tools, the Infuser, and a memory efficient run-time which
implements a modified Java VM. Darjeeling supports a sig-
nificant subset of the Java language including inheritance,
threads, native methods and garbage collection, as well as
allowing loadable modules. Results have been presented for
the AVR128 microcontroller and the system also runs on the
MSP430.
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Our plans for future work are focused on issues regarding
memory. The current mark & sweep garbage collector is re-
cursive which is problematic in a memory constrained envi-
ronment, and we will investigate alternatives including incre-
mental schemes. We also plan to add memory compaction to
eliminate some issues we have observed with fragmentation.
Finally we plan to change the stack slot width to 16 bits and
support 32 bit int and float types which would occupy two
slots, and this would also add support for float types which
is currently missing. We do not see a requirement for double
precision floating point arithmetic in the targeted applica-
tions. For sensor network applications we will add support
for secure ‘over the air’ code loading, memory management
for loaded infusions, and ‘hot’ infusion linking.
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