1-4244-0507-6/06/$20.00 ©2006 IEEE

Apples, Oranges, and Testbeds

Koen Langendoen
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, The Netherlands
K.G.Langendoen@tudelft.nl

Abstract— Research into wireless sensor networks
is rapidly moving from simulations to realistic
testbeds. The widely varying characteristics (e.g.,
radio hardware, #nodes, topology) of various testbeds
raises concerns about the validity of results across
different testbeds. This paper presents empirical data
of an experiment involving one application (Surge),
two routing protocols (MultiHop and MintRoute),
and two testbeds (MoteLab and MistLab). The
outcome is somewhat mixed. When increasing the
data rate, congestion causes goodput to fall off in
a similar fashion on both testbeds, which is good,
but only when ignoring MintRoute ill-behaving for
low rates on MoteLab, which is bad. Accounting for
differences in communication hardware is necessary,
but even then results should be taken with a grain
of salt. This certainly holds for TOSSIM simulation
results, since we found that they generally do not
match those of physical testbeds.

I. INTRODUCTION

Research into wireless sensor networks is rapidly
maturing as can be witnessed from the explosive
growth in number of testbeds. Every respected
group now has its own, and some testbeds have
even been been made publicly available so anybody
can — and is expected to — prototype algorithms
and protocols. The shift from simulation-based
research to testbed measurements raises important
questions about the validity of the results obtained
on individual testbeds. Do performance results from
protocol X on testbed Y also hold for testbed Z?
Certainly not! Differences in type and number of
nodes, network topology, and link quality guarantee
that every testbed is unique. Worse, even results
from a single testbed are difficult, if not impossible,
to reproduce exactly over time (i.e. one week later)
due to the inherent instability of wireless links and
the inevitable node failures (and resurrections).

These concerns make interpreting results from
different testbeds look like comparing apples and
oranges. Fortunately, the situation is not as bleak
as that. The problems with link quality fluctuations
are generally known to researchers, and therefore
most protocols and algorithms tolerate a certain
degree of variation in performance of the wireless
network. Nevertheless, many protocols do break
down when operated outside their original settings
as many have found out when porting code from
one platform to the other, for example, when trying
to run third-party TinyOS software on their own
testbed.

This paper presents empirical data of an ex-
periment involving one application (Surge), two
routing protocols (MultiHop and MintRoute), and
two testbeds (MoteLab and MistLab). The outcome
is somewhat mixed. When increasing the data rate,
congestion causes goodput to fall off in a similar
fashion on both testbeds, which is good, but only
when ignoring MintRoute ill-behaving for low rates
on MoteLab, which is bad. Accounting for dif-
ferences in communication hardware (CC1000 vs.
CC2420 radios) is necessary, but even then results
should be taken with a grain of salt. For example,
generally MultiHop outperforms MintRoute by a
small margin, but under specific circumstances the
reverse holds! Also, the TOSSIM simulation results
included for reference do not compare to those
obtained on the physical testbeds.

Although protocol and algorithm comparisons on
a single sensor network testbed are quite common,
to the best of our knowledge, this is the first paper
to compare results across multiple testbeds. The
remainder of this paper is structured as follows.
Section II briefly reviews related work, and de-
scribes the methodology used in our comparison
experiments. Section III discusses the setup of

387

the experiments, and various results are presented
in Section IV. The relevance of these results is
discussed in Section V, and Section VI concludes
the paper.

II. METHODOLOGY

Wireless communications are notoriously diffi-
cult to characterize because of physical effects like
fading, multi-path reflections, interference, and an-
tenna diversity causing irregular reception patterns.
In the case of sensor networks, several studies have
demonstrated severe performance effects across a
considerable fraction of the transmission range, the
so-called gray area, for different types of radios
and environments [7, 10, 11, 12]. This makes it
hard to build testbeds that allow for controllable
experiments with repeatable results. Although the
use of simple, low-cost radios aggravates problems,
wireless testbeds including more advanced radios
(IEEE 802.11) generally score bad on repeatability
as well, as observed in a recent survey by De et
al. [1]. Some researchers therefore resort to exotic
solutions involving remotely controlled equipment
in an anechoic chamber [8]. Besides being costly,
such an approach is unlikely to deliver results that
are of use in a practical setting.

To provide the research community with a refer-
ence point on how good (or bad) WSN testbeds per-
form relatively to each other, we need a benchmark
that captures various metrics of interest. Exactly
which metrics to consider is an open question, since
only a few papers address benchmarking of sensor
networks. TinyBench [2] puts out a first proposal
for a standardized benchmark suite focusing on
single node performance parameters (code size,
runtime and power consumption). Bisque [5], a
benchmark for in-network query processing, con-
siders multiple nodes (arranged in a square grid
topology) and reports power consumption, response
time, and relative error rate (accuracy) of individual
queries. It is left unspecified how to normalize
these (application-specific) metrics to account for
differences in processing and communication speed
of various testbeds. The lack of common metrics
has prompted us to use our own. One set for charac-
terizing individual testbeds, and another capturing
application performance to allow for comparisons
between testbeds.

To collect basic information characterizing indi-
vidual testbeds we want to record the number of
nodes, their topology, and the link qualities between
them. To limit the amount of data in the light
of changing link conditions, and hence topology,
we propose to capture the essentials only during a
benchmark run:

TABLE I
TESTBED CHARACTERIZATION PARAMETERS.

parameter description

#nodes number of active nodes

connectivity | average number of neighbors over all

active nodes (topology information)

link maximum raw radio throughput over any
capacity one link [bytes/s]

link raw packet success rate (no retransmis-
quality sions) averaged over all links

By logging these parameters over various runs,
we can determine important second order param-
eters like stability and drift. Note that we do not
include any power consumption numbers; although
the focus on energy efficiency is a defining char-
acteristic of WSN research, none of the testbeds
that we are aware of offers the capability to mea-
sure power consumption of applications running on
multiple nodes.

To allow for cross-testbed comparisons of ap-
plication performance we need to monitor a set
of application-level parameters. However, to un-
derstand the impact of testbed characteristics on
application behavior, we also need to monitor a
set of parameters about the system-level software
that drives the raw testbed hardware. The choice
of parameters is vast, so we must limit ourselves
to some manageable set. In this paper we focus on
a small set of communication-related parameters,
since generally sensor nodes spend most of their
energy on driving the radio.

At the application-level we monitor end-to-end
goodput for the prototypical convergecast commu-
nication pattern embodied in many monitoring ap-
plications (e.g., Surge) where all nodes periodically
send a message to the sink node in the network.
By varying the message injection period we can
control the communication load, and study how
the protocol stack copes with it, i.e. how goodput

388

TABLE II
COMMUNICATION-RELATED PARAMETERS.

parameter | description

goodput fraction of injected messages delivered at
the sink

hop count | average hop count of the delivered mes-
sages

tree depth | average hop count over all paths to the
sink

route one-hop message success rate averaged

quality over all used links

falls off when increasing the send rate. Another
parameter of interest is the average path length (hop
count), which is a metric for the induced aggregate
load on the network (assuming no retransmissions)
and captures changes in fairness between near and
far nodes when the communication load varies.

For the routing component, which is responsible
for setting up a spanning tree to the sink, we
monitor how it trades off link quality and path
length (short paths with long, poor links vs. long
paths with short, good links). In particular, we
monitor tree depth and the success rate of raw one-
hop (intermediate) transmissions. These parameters
will change when increasing the communication
load, because the underlying MAC protocol will at
some point break down and “lose” messages due to
collisions and/or buffer overflows.

By monitoring parameters at different layers in
the protocol stack we can perform a detailed analy-
sis of the observed application behavior in contrast
to typical black-box approaches that only measure
end-to-end performance parameters (goodput). The
work by Malesci et al. is a fine example of the
latter approach and closely resembles the setup in
this paper (Surge + different protocol stacks), but
limits itself to a single testbed [6].

III. SETUP

The comparison experiments were carried over
a time period of about two months (January 27 -
April 12, 2006). The setup of these experiments
involved two testbeds, the accompanying platform-
specific TinyOS protocols, two routing protocols,
and a modified Surge application. All of which will
be discussed below.

A. Testbeds

When deciding on which testbeds to use, we
initially looked for publicly accessible testbeds with
similar node hardware to ease comparisons and
avoid having to account for differences in com-
munication speeds, etc. Of course, life is not that
easy, so we ended up with two testbeds, MistLab
from MIT [13] and MoteLab from Harvard [9], and
three node types (mica2, micaz, and Tmote Sky).
MistLab consists of a mixture of 47 mica2 nodes
and 14 Cricket nodes spread across multiple rooms
located on the 9th floor of MIT’s CS department.
For our experiments we only used the popular
mica2 nodes from Crossbow, which are equipped
with a CC1000 radio from Chipcon. The CC1000
radio provides a raw speed of 19.2 kbps, but under
TinyOS (see below) the effective link capacity is
783 bytes/s (see Table III).

When we started using MoteLab it was config-
ured as a 30-node testbed equipped with micaz
nodes, also manufactured by Crossbow. In con-
trast to the mica2 nodes, the micaz nodes are
equipped with a packet-based CC2420 radio. The
maximum throughput available to TinyOS appli-
cations (without routing) is about 3 KB/s. In the
middle of February MoteLab was upgraded to host
an impressive number of 190 Tmote Sky nodes
manufactured by Moteiv. Keeping so many nodes
functioning, however, is quite difficult and during
our experiments we were only able to operate (at
most) 76 nodes (see Table III). The Tmote Sky
nodes are equipped with the same CC2420 radio as
the micaz nodes, but since they are operated on the
same three floors of Harvard’s EECS building the
node density is a lot higher; on average a Tmote Sky
node has about twice as many neighbors in range
as a micaz node.

Since much research is still performed in simu-
lation we included the popular TOSSIM [4] frame-
work, which is generally used for prototyping
TinyOS applications. We used the default config-
uration that models an old-style mica node (RFM
1000 radio), because the optional mica2 protocol
stack (CC1000 radio) yielded unexplainable results
not matching any physical testbed observations.
To limit simulation times we set the TOSSIM
parameters to model 30 nodes randomly placed in

389

TABLE 111
TESTBED CHARACTERISTICS (MIN - AVG - MAX).

MistLab MoteLab TOSSIM
parameter mica2 micaz Tmote Sky mica
#nodes 30 - 35.3 -39 12 - 23.7 - 27 27 -50.9 - 76 30
connectivity 96-11.8-142 46-54-63 44-104-175 6.9 -81-98
link capacity [KB/s] 0.76 3.12 3.83 1.33
link quality 0.74 - 0.77 - 0.84 0.74 - 0.82 - 0.89 0.45-0.52 - 0.58

a 20x20 grid with a radio range of 5 units. We
used the lossy radio model provided with TOSSIM
(lossy-20x20-5.nss), where bit errors de-
pend on the distance from sender to receiver and
background noise (other nodes communicating).
Experiments were repeated with different topolo-
gies and random seeds, explaining the variation in
connectivity and link qualities (see Table III).

The characteristics of the three physical testbeds
under study and the TOSSIM simulator are con-
cisely represented in Table III. Most parameters
show a considerable spread, which is for a large
part caused by changes in the configuration of
the testbeds. Figure 1 shows the number of active
nodes in each testbed (Mistlab, Motelab-z, and
Motelab-sky) over the course of the experiments,
and Figure 2 shows the corresponding changes in
connectivity. Note that there is no direct correlation
between node failures and connectivity; in the case
of Motelab-z a significant reduction in nodes (at the
end of its lifetime) has little effect on connectivity,
but for Motelab-sky node failures correspond with a
reduction in connectivity. We conjecture that these
differences are caused by random failures (lower
connectivity for everybody) vs. localized failures
(no change for most survivors).

We have tried to determine what other factors
besides testbed configuration contribute to the ob-
served variability in characterization parameters,
but with no success. For example, we have com-
pared measurements taken during the day with
measurements at night to see if human activity
influences link quality, but no significant differences
were found, ruling out its importance. The insta-
bility of the testbeds made it impossible to study
long-term effects like drift. As far as repeatability
is concerned, we observed that back-to-back mea-
surements generally yield similar characteristics.

B. TinyOS and friends

The software used in the comparison experiments
is based on the reference TinyOS implementation
(snapshot release 1.1.15) available at the Source-
Forge CVS repository as of March 13, 2006. We
have been using the standard protocol stacks for the
hardware platforms in the two testbeds under study.
For the mica2 platform (MistLab) the CC1000 radio
is driven by a MAC layer that, in principle, uses
low-power listening to save energy. Since we do not
monitor energy efficiency, we simply use the default
setting of always keeping the radio on. The MAC
layer itself does not perform any retransmissions,
but notifies the routing layer above of missing
acknowledgements for unicast traffic.

Although the CC2420 radio used in both
MoteLab setups (micaz and Tmote Sky) is IEEE
802.15.4 compliant, the built-in MAC functionality
is not used. In both cases the TinyOS protocol
stack only uses the standardized framing structure
(packet layout), while implementing the medium
access control in software, much like for the mica2
platform (without low-power listening).

The next level up in the protocol stack is the rout-
ing layer, which in TinyOS takes care of sending
messages from individual nodes to the sink node
along paths that may span multiple hops. We have
been experimenting with two implementations:

MultiHop This protocol selects routes based
on the shortest hop count to the sink.
We made a few alterations to the code
in /1ib/Route. First, we changed the
(hard-coded) identity of the sink node
from O to 1 since none of the physical
testbeds includes a node zero. Second,
we set the default route update interval
to 20 seconds to control the overhead

390

#nodes

#neighbors

80

70

60

50

40 |

30

20

Mistlab —— -
Motelab-z - ?
Motelab-sky & o |

10 t * 8
O 1 1 1 1 1
Jan 21 Feb 04 Feb 18 Mar 04 Mar 18 Apr 01 Apr 15

Fig. 1. Number of working nodes over time.
18 T T T T T

Mistlab —<— o

16 Motelab-z ----%--- %

[Motelab-sky o 7
14 + 8 1
12 b .
10} P
8t i A
6 % }5& %é 1
4t]
2 . 4
0
Jan 21 Feb 04 Feb 18 Mar 04 Mar 18 Apr 01 Apr 15

Fig. 2. Connectivity over time.

for route setup and maintenance. Third,
we changed the default destination, used
when the parent in the spanning tree
is unknown, from TOS_BCAST_ADDR to
BASE_STATION_ADDRESS allowing all
nodes within a one-hop distance from the
sink to deliver their messages instead of
them being silently discarded because of
the destination address not matching the
local address.

MintRoute This protocol considers link qual-

ity when selecting parents in the spanning
tree favoring multiple hops with good
links over a single, long hop with a
poor link (which MultiHop would take).
MintRoute’s definition of link quality is
not simply packet success rate (as used
for testbed characterization in Table I)

and the selection process also considers
some other factors, see [11] for details.
We applied the same set of alterations to
the code in /lib/MintRoute as for
MultiHop. However, since MintRoute is
very slow in setting up routes we set
the routing update interval to 10 seconds.
To speed up the selection process even
further, we added some skew proportional
to the node number before broadcasting
a route update to reduce the number of
collisions. (As a side effect, the quality of
the selection process was also improved.)
Despite these changes, MintRoute in gen-
eral takes much longer than MultiHop to
set up a spanning tree to the sink.

C. MultiRateSurge

Surge is one of the few applications generally
used to evaluate sensor networks. Nodes periodi-
cally send a message to the sink reporting a reading
of their light sensor. The interval period between
consecutive measurements can be controlled, al-
lowing for experimentation with different network
loads. We have adapted Surge to cycle through a
pattern of decreasing intervals (3s - 50ms). The
length of each stage is inversely proportional to the
length of its inter-message period, which ensures
that approximately the same number of messages
is injected into the network for each stage. To
avoid stages partly overlapping each other, and
to allow for the underlying routing protocol to
recover from heavy traffic resulting in the loss of its
spanning tree, stages are separated by one minute
of “silence”. Figure 3 shows an example taken from
the MistLab testbed displaying application-level
goodput; the alternation of (shortening) active and
passive periods is clearly visible. The drop off
in goodput signals that the network suffers from
collisions for high loads. The goodput numbers
presented in Figure 3 and Section IV are obtained
with an optimization to Surge that skews message
injection times, as for the routing updates, to
avoid all nodes sending at the same time causing
collisions even for stages with long inter-message
intervals.

Surge has also been adapted to obtain both the
testbed characterization parameters (Table 1) and

391

" mintroute/Mistlab —

0.8 - 1
= 06]
a
°
o
o
S o4t |

0.2 H 1

ol . | ﬂﬂ
0 200 400 600 800 1000 1200 1400 1600 1800
time [s]
Fig. 3. Surge example run (36 nodes, 2006-02-15 18:01:13).

the communication-related parameters (Table II)
with each run. To this end the routing protocols
were used in promiscuous mode delivering all mes-
sages to the application for inspection. By peeking
at the source and sequence-number fields in the
routing header, which is the same for MultiHop and
MintRoute, we can count the number of transmitted
and lost messages from each neighboring node (i.e.,
parent and child nodes, as well as other nodes
within radio range). From these counts, nodes com-
pute the connectivity and link-quality parameters,
which are send out over the serial port every 20
seconds. Serial output is automatically captured
by the testbed software and logged for off-line
analysis.

Surge messages arriving at the sink are logged
through the serial port to compute communication
parameters (goodput, hop count, etc.). We changed
the message format to include an application-level
sequence number (for computing goodput) and a
hop count, which is incremented by Surge at in-
termediate nodes through the promiscuous routing
Intercept interface. This interface only reports
messages from child nodes (the Snoop interface
catches messages from the other nodes), which
makes it easy to compute the one-hop message suc-
cess rate for the child links. These rates are logged
through the serial port, and later averaged over all
nodes to arrive at the route-quality parameter.

IV. EXPERIMENTS

In this section we report on results obtained by
running two flavors of MultiRateSurge (MultiHop

" mintroute/Mistlab —
0.8 <
=~ 06 i
a
o
o
o
S oaf 1
02t ﬂ g
L U D
0 200 400 600 800 1000 1200 1400 1600 1800
time [s]
Fig. 4. Surge/MintRoute (36 nodes, 2006-02-15 18:32:07).
4 : .
tree depth -+
hop count
35 <
3 . 4
25 g
2 . 4
15 | <
1 . 4
05 g
0 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
time [s]
Fig. 5. MintRoute details (36 nodes, 2006-02-15 18:32:07).

and MintRoute) on the three testbeds (Mistlab,
Motelab-z, and Motelab-sky), and in simulation
(TOSSIM). Before getting to the main question
of the paper “do experimental results hold across
testbeds?” we first report on the consistency of
results (over time) within a single testbed.

A. Testbed results

Figure 4 shows a second plot of the goodput
results achieved with MintRoute on the MistLab
testbed. This run was performed straight after
the first one presented in Figure 3. Although the
gooodputs obtained by these back-to-back runs are
pretty similar, MintRoute did set up two different
spanning trees. Small changes in message ordering
and loss, cause MintRoute to derive different link
qualities, occasionally resulting in the selection of
another parent.

392

multihop/Mistlab —

0.8 - .

= 06 A
3
]
3

S o4l |

0.2 t ﬂ E

0 200 400 600 800 1000 1200 1400 1600 1800

time [s]
Fig. 6. Surge/MultiHop (36 nodes, 2006-02-15 20:01:01).

During the course of execution MintRoute adapts
the spanning tree when link qualities diverge too
much. In our case the increased load that Surge
injects into the network causes an increase in the
number of collisions, hence, link quality degrades
forcing MintRoute to adapt the tree. This effect
is shown in Figure 5, where the average tree
depth increases when the message rate goes up in
subsequent active periods. A consequence of the
larger tree depth is that leaf nodes have less chance
of seeing their messages delivered at the sink,
because of the (significant) chance of messages
getting lost at each additional hop. That explains
why the average hop count of the messages received
at the sink drops. At the highest message rate, the
hop count has dropped to nearly one, showing that
only the direct neighbors succeed in delivering data
at the sink.

Intuition says that MintRoute, taking link quality
into account, should do better than MultiHop basing
its route selection solely on hop counts. Figure 6
shows the goodput for Surge with MultiHop routing
on the MistLab testbed one hour later than the
MintRoute experiment from Figure 4. MultiHop
does remarkably well and achieves a comparable
goodput profile as MintRoute. This is confirmed
by the route quality metric shown in Figure 7;
the links selected by MultiHop are generally as
good, or as bad, as those of MintRoute. We cannot
fully account for this unexpected result, but we
believe it is caused by the binary distribution of
link qualities for low-cost radios. Most links are
either good (success rate > 85 %) or really bad

' mintrohte =
Ml = multihop —
0.8 I
2 06} _
©
3
o
o
3
& o4t
0.2
3000 2000 1000 600 400 200 100 50
Message interval [ms]
Fig. 7. Route quality comparison (cf. Fig. 4 and Fig. 6).

(success rate < 15%) according to [7], which
deprives MultiHop from the possibility of selecting
an incorrect link, since route updates simply do not
make it across bad links.

Both MintRoute and MultiHop are capable of se-
lecting good links, which explains the high goodput
numbers given the relatively low raw link quality,
which is on average 0.77 for the MistLab testbed
(Table III). Statistical analysis of the goodput num-
bers for each inter-message interval for all runs
over the 2 months period of experiments shows that
the MistLab testbed is quite stable. For example,
MultiHop’s average goodput for a 3 second interval
is 0.90 with a standard deviation of just 0.040
(4.5 %), and MintRoute’s goodput is 0.82 £+ 6.4 %
on average. For brevity we do not show individual
results from the two MoteLab testbeds, but the
repeatability on these testbeds was generally much
lower than for MistLab. For MoteLab equipped
with Tmote Sky nodes, the number of active nodes
varied too much to perform a sound analysis, but for
the micaz nodes we observed standard deviations of
20 % and more.

B. Comparison

Overall, counter to intuition, MultiHop outper-
forms MintRoute by a small margin on the MistLab
testbed. To see if this result carries over to the
other testbeds, we have computed for each testbed,
routing protocol, and Surge interval the peak good-
put averaged over all measurements taken on that
testbed. Thus we do not try to account for different
configurations within a testbed, simply because it

393

was not feasible to collect enough data on each
configuration with a single run of Surge lasting
30 minutes. Figure 8 shows the resulting goodput
profiles for the three testbeds, as well as for the
TOSSIM simulator.

The goodput numbers for the Motelab-z testbed
drop off much slower than for Mistlab when in-
creasing the load, which is a consequence of the
difference in radio speed (0.76 vs. 3.1 KB/s) of
the two testbeds. MultiHop and MintRoute achieve
about equal performance on both testbeds, but the
variability is much higher for Motelab-z. This is
difficult to explain from the testbed characteristics,
which are quite stable (except for the last week
of deployment when the number of nodes rapidly
declined, but analysis without that last week’s data
yields similar goodputs and standard deviations).

The results for Motelab-sky are quite puzzling.
For low message rates MintRoute performs very
bad (goodput < 50 %) and loses to MultiHop. For
high rates, however, MintRoute wins by a factor
of two. What we gathered from the log files is
that MintRoute for some, yet unknown reason is
very slow in setting up an initial spanning tree.
Once the tree is in place, it outperforms MultiHop
by selecting links of higher qualities. The large
standard deviations for Motelab-sky are most likely
caused by the volatile configuration of the testbed
(see Figure 1). What we do not understand is why
MultiHop performance drops off much faster than
for Motelab-z, which used the same radio chip.
Additional research is needed to clarify this issue.

Finally, the results from the TOSSIM simulator
differ dramatically from those observed on the
physical testbeds. The low goodput numbers cannot
be explained by a difference in radio speed (on the
contrary, the RFM radio is a factor 1.7 faster than
MistLab’s CC1000 radio). The fundamental issue is
the propagation model used (signal strength being
inversely proportional to distance in free space),
which bears little resemblance with reality (gray
area effect). This is reflected in the raw link quality
being much lower than for the real testbeds (see
Table III) causing application-level performance to
degrade. This can probably be accounted for, but
the fact that TOSSIM is the only testbed having
MintRoute outperform MultiHop for low loads can
not.

0.8 -

06 [

Goodput

04

02 -

0.8 -

0.6 |

Goodput

04 -

02 -

0.8 -

0.6 -

Goodput

04 r

0.2

0.8 |

0.6 -

Goodput

04 -

02 r

Fig. 8. Surge performance across testbeds with error bars (std.dev.).

394

T T T
mintroute E=—2

{, Mistlab multihop ———

mfﬁm

3000 2000 1000 600 400 200 100 50
Message interval [ms]

" mintroute ===
multihop C——

% % % imeabz

3000 2000 1000 600 400 200 100 50
Message interval [ms]

T T T
mintroute =3

Motelab-sky multihop ———

3000 2000 1000 600 400 200 100 50
Message interval [ms]

T T T
mintroute =2

TOSSIM multihop —

@[Mhmm

3000 2000 1000 400 200 100 50
Message interval [ms]

V. DISCUSSION

The most important observation from the Surge
comparison experiment is that the three testbed
profiles share little resemblance, which was to be
expected, but nevertheless points out that experi-
mental results obtained on a single testbed are very
difficult to generalize. Depending on your testbed
of choice MultiHop outperforms MintRoute, or vice
versa. In the case of Motelab-sky, the outcome even
depends on the Surge interval due to MintRoute
failing to set up an initial routing tree quickly. We
have observed MintRoute misbehave before [3], so
we are not surprised to see it happen again. The
point, however, is that only Motelab-sky triggered
this behavior stressing the incompatibility between
testbeds. Our experiences with TOSSIM show that
using the default lossy radio model, which does not
match reality, leads to different behavior at the ap-
plication level. Finding a suitable radio model will
be crucial for getting simulators to yield reliable
results.

Despite our efforts in logging communication
parameters at various levels in the protocol stack, in
order to obtain a better insight in what is going on
below, we frequently failed to understand Surge’s
performance results and could not determine who
was to blame (i.e the testbed characteristics, or the
routing layer?). For protocol development in gen-
eral, it would be very nice if we could factor out the
hardware differences as well as the environmental
factors. This is not a trivial task and more work is
needed in this area.

VI. CONCLUSIONS

With the shift from simulation-based research to
realistic testbeds and pilot deployments of wireless
sensor networks, this paper has addressed the issue
of how well results translate from one platform to
the other. We have taken an experimental approach
and run a modified prototypical monitoring applica-
tion (Surge), in combination with two routing pro-
tocols (MultiHop and MintRoute), on two publicly
available testbeds (MistLab and MoteLab).

To account for hardware and environmental dif-
ferences we characterize testbeds by four parame-
ters (which vary over time): #nodes, connectivity,
link capacity, and link quality. Application and
routing performance is captured by another set of

four parameters: goodput, hop count, tree depth,
and route quality. To see how application and
protocol stack respond to network load, the message
injection rate was increased to the point of collapse.

Running the two flavors of Surge (MultiHop and
MintRoute) on the testbeds at different times during
a two month period of experiments has revealed
that generally MultiHop outperforms MintRoute,
but given the “right” set of conditions the reverse
can be observed as well. The results for the popular
TOSSIM simulator included for reference, showed
that its default lossy radio model yields incom-
patible performance numbers with those from the
physical testbeds.

In summary, comparing results from different
testbeds is much like comparing apples and or-
anges, and simulation results should be taken with
a grain of salt as well.

VII. ACKNOWLEDGEMENTS

We would like to thank the people from MoteLab
(Matt Welsh and Geoff Werner-Allen) and MistLab
(Kyle Jamieson) for generously providing access to
their testbeds and helping out in getting software
and logging to run properly and putting up with
the frustrations from remote debugging with a 6
hour time difference. We also would like to thank
Gertjan Halkes for helping out with interpreting
testbed results during the experiments, and filling
in the blanks at the very last moment.

REFERENCES

[1] P. De, A. Raniwala, S. Sharma, and T.-C. Chiueh,
“Design considerations for a multihop wireless net-
work testbed,” IEEE Communications Magazine, vol. 43,
no. 10, pp. 102-109, Oct. 2005.

[2] M. Hempstead, M. Welsh, and D. Brooks, “TinyBench:
The case for a standardized benchmark suite for TinyOS
based wireless sensor network devices,” in 29th IEEE Int.
Conf. on Local Computer Networks, Tampa, FL, Nov.
2004, pp. 585-586.

[3] K. Langendoen, A. Baggio, and O. Visser, “Murphy
loves potatoes: Experiences from a pilot sensor net-
work deployment in precision agriculture,” in [/4th Int.
Workshop on Parallel and Distributed Real-Time Systems
(WPDRTS), Rhodes, Greece, Apr. 2006.

[4] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM:
Accurate and scalable simulation of entire TinyOS ap-
plications,” in Ist ACM Conf. on Embedded Networked
Sensor Systems (SenSys 2003), Los Angeles, CA, Nov.
2003, pp. 126-137.

395

[5] Q. Luo, H. Wu, W. Xue, and B. He, “Benchmark-
ing in-network sensor query processing,” The Hong
Kong University of Science and Technology, Tech. Rep.
HKUST-CS05-09, June 2005.

[6] U. Malesci and S. Madden, “A measurement-based
analysis of the interaction between network layers in
TinyOS,” in 3rd European Workshop on Sensor Networks
(EWSN’06), Zurich, Switzerland, Feb. 2006, pp. 292-309.

[7]1 N. Reijers, G. Halkes, and K. Langendoen, “Link layer
measurements in sensor networks,” in Ist IEEE Conf. on
Mobile Ad-hoc and Sensor Systems (MASS 2004), Fort
Lauderdale, FL, Oct. 2004.

[8] N. Vaidya, J. Bernhard, V. Veeravalli, P. Kumar, and
R. Iyer, “Illinois wireless wind tunnel: A testbed for ex-
perimental evaluation of wireless networks,” in Workshop
on Experimental Approaches to Wireless Network Design
and Analysis (E-WIND’05), Philadelphia, PA, Aug. 2005,
pp. 64-69.

[9] G. Werner-Allen, P. Swieskowski, and M. Welsh, ‘“Mote-
Lab: A wireless sensor network testbed,” in Special Track
on Platform Tools and Design Methods for Network
Embedded Sensors (SPOTS) associated with IPSN’05,
Los Angeles, CA, Apr. 2005.

[10] A. Willig and R. Mitschke, “Results of bit error mea-
surements with sensor nodes and casuistic consequences
for design of energy-efficient error control schemes,” in
3rd European Workshop on Sensor Networks (EWSN’06),
Zurich, Switzerland, Feb. 2006, pp. 310-325.

[11] A. Woo, T. Tong, and D. Culler, “Taming the under-
lying challenges of reliable multihop routing in sensor
networks,” in Ist ACM Conf. on Embedded Networked
Sensor Systems (SenSys 2003), Los Angeles, CA, Nov.
2003, pp. 14-27.

[12] J. Zhao and R. Govindan, “Understanding packet delivery
performance in dense wireless sensor networks,” in /st
ACM Conf. on Embedded Networked Sensor Systems
(SenSys 2003), Los Angeles, CA, Nov. 2003, pp. 1-13.

[13] “Mistlab website,” http://mistlab.csail.mit.edu/.

396

	Binder11MHWMN06.pdf
	Binder11MHWMN06.pdf
	MHWMN8AN.pdf
	INTRODUCTION
	MOTIVATION AND BACKGROUND
	PATH EFFECTIVENESS
	HANDOFF SCHEME
	A. Overview
	B. Connection Selection Scheme
	C. Proactive Handoff Scheme

	SIMULATION AND ANALYSIS
	A. Simulation Configuration
	B. Simulation Results

	CONCLUSION

