
Guesswork: Robust Routing in an Uncertain World

Tom Parker* Koen Langendoen
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology, The Netherlands

*Supported by the Dutch Organisation for Applied Scientific Research (TNO)
E-mail: {T.E.V.Parker, K.G.Langendoen}@ewi.tudelft.nl

Abstract

Guesswork is an adaptive, probabilistic routing algo-
rithm for wireless ad-hoc sensor networks, using local
knowledge of best guess next-hop nodes to efficiently imple-
ment source-to-sink routing. Guesswork is partially based
on the existing ETX and ExOR routing methodologies, but
extends both in new ways to create a unified robust method
for sink information distribution and source data transmis-
sion. It is designed to work efficiently in a wide variety of
application scenarios, being able to cope with low quality
links as well as both static and mobile networks.

1 Introduction
Most routing protocols have a number of significant

problems when applied to Wireless Sensor Networks. The
major trade-off is between adaptability to changing net-
work conditions and maintenance overhead, but this trade-
off illustrates clearly the issues with WSNs vs. conventional
wired networks (limited power, limited memory storage,
limited processing, etc).
Of these, the most critical focus is on power usage. Ev-

erything a WSN needs to do uses power - sending mes-
sages, listening for/receiving messages, doing processing,
reading from sensors - and the power resources (i.e. bat-
teries) are generally scarce. WSN protocols must therefore
be designed to use the minimum amount of power possible,
in order to increase network lifetime as much as possible.
Therefore, any power usage must be carefully considered,
and non-essential or redundant effort should be removed
wherever possible.
Given this restriction, adapting to changing network

conditions is very difficult, as this often requires the re-
dissemination of routing information for a sink or other crit-
ical node across a significant proportion of a network. The
overhead required to keep standard routing information up-
to-date when the actual amount of data being transferred

across said network is taken into consideration is often un-
acceptable.
This paper introduces Guesswork - an adaptive routing

algorithm, using a series of extended variants of the ExOR
protocol [1], in combination with the ETX routing met-
ric [4], in order to reliably distribute sink information, keep
source-to-sink routes up-to-date and provide message pass-
ing along these routes, with a minimum amount of overhead
even in networks with low or variable quality links.
We firstly introduce the main framework of the Guess-

work protocol, then our extensions to ExOR, and show how
these can be integrated easily with a variety of existing
MAC protocols, then present simulation results for Guess-
work and other routing protocols on top of a variety of MAC
protocols.

2 Existing work

In this section we will look at ETX and ExOR - two tech-
nologies that will be used later on for our routing protocol.

2.1 ETX

Most routing metrics have cut off levels - a link is consid-
ered to be arbitrarily good or bad. For most realistic scenar-
ios, this is often not the case [5]. Sometimes we will have a
lot of good links, and then we can discard more, sometimes
we will have a very bad connection to the sink node, but we
still need to be able to communicate.
Expected Transmission (ETX) count [4] provides an im-

proved metric for routing decisions, based on the expected
number of transmissions via a particular next-hop node to
reach a particular destination node. This allows for adapt-
ing to the complete variety of node link conditions [20] -
everything from perfect links to dealing with broken and
partial links.

0-7803-9466-6/05/$20.00 ©2005 IEEE MASS 2005

Figure 1. Not all links are equal

A partial link for example will increase the ETX value
for a path because it is not always totally reliable, and bro-
ken links can be handled by significantly increasing the
ETX value of a node that cannot find its next-hop neigh-
bour, as a node with no next-hop neighbour can thought of
as a node with a with a very high ETX value to the destina-
tion node.
For example, we may also have cases like Figure 1,

where a shortest-hop algorithm would pick Route 2. But,
this has a higher ETX and therefore a higher average trans-
mission count than Route 1, despite the fact that it requires
less hops.
ETX also allows for dealing with heterogeneous net-

works with gateway nodes (nodes with a faster link over
another network to the sink, and usually an external source
of power) - these can simply declare their ETX cost to be
very small, as their faster link and external power means
they represent a much better route to the sink.

2.2 ExOR

ExOR [1] uses a “one send, many replies” idea to do lo-
calised greedy routing, providing a better utilisation of the
basic broadcast medium available to WSNs. This is based
on the idea of a set of neighbours receiving a message from
a sender node, all of the specified neighbours sending an
Ack for the message, and the best next-hop node for a par-
ticular destination (of the set that receive the message) gets
chosen, without having to do additional communication be-
yond the Data/Ack sequence already performed.
Figure 2 shows an example timeline for an ExOR packet.

The DATA segment is sent by the sender node, which in-
cludes a list of neighbours in the order of how many hops
it would take to get from that neighbour to the destination
node. The neighbours (nodes 3,2,4 and 1 in this case) reply
in the order that was specified in the DATA message. If a
neighbour node does not hear any reply messages for nodes
earlier in the order than itself, then it forwards on the mes-

Figure 2. Example ExOR packet timeline

sage. If all of the neighbours can hear each other, then this
will result in only one sending on the message. To help this
process, if a node has already heard a reply message when
it sends it’s reply message, then it replies with not it’s own
id, but the id of the best (i.e. earliest in the neighbour list)
node that it has heard a reply message from.
The use of shortest-number of hops by the originally

proposed version of ExOR (which isn’t necessarily a good
choice for routing decisions, as we discussed on the pre-
ceding page) relied on the knowledge of a local node about
its neighbours, because it required that the neighbour list of
an ExOR packet should always be in order of preference,
based on information available at the start of the ExOR se-
quence. This creates a situation which is prone to allowing
out-of-date information to be maintained for longer than it
should be and also stops a number of possible useful exten-
sions to the protocol, as this relies on locally-cached data
about neighbours vs. querying the neighbours for their cur-
rent state.

3 Guesswork

In the original ETX specification [4], De Couto et
al. used probe packets to determine what the ETX cost for a
link would be. This is expensive, with an unacceptably high
overhead cost for low transmission rate scenarios i.e. most
WSN applications. Additionally, because the probe packets
are generally a lot smaller than actual data packets, probe
packets do not necessarily provide an accurate picture of
how good a link is for data packets.
Guesswork is a technique for creating and adapting ETX

values for destination sinks over time using information
from the data sent over a network, and so be able to adapt
to changing network scenarios. These ETX values are then
used to for routing decisions. Guesswork also utilises the
extended ExOR variants that we will present later in this
paper.

3.1 Initialisation

In order to formulate a good solution to the source sink
routing problem, first we need to look at our discovery pro-
cess for the sink nodes themselves. One way is that all
nodes are automatically told about all of the sink nodes at

startup i.e. by hard-coding the sink node information into
our nodes. This is however inflexible, assumes that we al-
ready have the sink information at the time of system de-
ployment, and is generally unsuited for ad-hoc WSN sce-
narios.
A better solution is to do initial flooding of the sink in-

formation to the network. If we have a reliable broadcast
mechanism then we can reduce the flooding to a single in-
stance per sink. When a new node starts up, it can request
the sink information known to its neighbours. A possible
extension to this is the inclusion of query information within
the sink broadcast (i.e. what kind of data a particular sink is
interested in), but for now we are only considering the sit-
uation where all sinks want all the information. With this
initial sink sources flood, we can discover the initialisa-
tion ETX values (one per source node) for a sink.
This information may not be perfectly accurate (asym-

metric links will cause problems for example), but it repre-
sents a reasonable first approximation to the correct current
ETX for a sink.

3.2 Message Transmission

Guesswork relies on the existence of a reliable proto-
col to implement source-to-sink transmission once an ETX
value for a particular sink is known by a source node. Pack-
ets being transmitted with Guesswork also contain a TX
count so far for the packet.

3.3 Adaption

Nodes have an initial value for the ETX value for the
sinks in the network (from the Initialisation phase), but this
will change over time as the network alters (dead nodes,
broken links, new links, etc), so we need to be able to adapt
the ETX value for a sink over time. One way this can be
done is by propagating route-update packets back to source
nodes when a successful transmission to a sink node has
differing values for the number of transmissions used vs. the
original ETX value. The route-update contains the actual
TX count that was used for the particular source sink.
Route discovery for the sink source route can be done

by the nodes on the path () that a particular source node
() uses to get to a sink node (), because all of the nodes
will have a TX count for the incoming packet from , and
so they can record this as an estimated ETX to return to .
The new ETX to for each of the nodes along the path
can also be updated, by subtracting the ETX value that the
packet had on the way in at a particular node from the total
TX value that is being reported in the route-update packet.
If we have a route-update, then we have a new ETX

value. This can now be used to update our current recorded
ETX value, using a learning function based on these two

values. This is done because a single changed route cost
doesn’t necessarily mean all transmissions to that sink will
be equally low/high. The simplest form of this is:

where the value for is some value
smaller than 1. Earlier work in similar areas [14] suggests
values in the 0.2 to 0.4 region, but more experimental test-
ing would be needed to test for suitable values for typical
applications.
An additional optimisation is the aggregation of route-

update packets, as these are only used to propagate the ETX
value back along the sending path. Instead of sending one
route-update for every message with a changed ETX, an
aggregate update consisting of an averaged ETX (with a
packet count) for a set of packets can be sent back to the
sender node. A suitable mechanism for this would be wait-
ing until no packets have been received from a sender for
seconds (10 for example) before sending the aggregate

route-update. Also note that if the aggregate ETX is very
close (e.g. <5% change) to the original source node’s ETX
for our sink, then we can simply discard the route-update
completely as no update is necessary. These measures re-
duce the number of route-update packets so that they are
only generally sent when the network is changing and dur-
ing periods of network stability they do not need to be sent
at all.

3.4 Failure Resilience

New route discovery in the event of a failure (no respond-
ing neighbouring node has a lower ETX than ours) consists
of bouncing the packet back up to the previous node along
the chain and repeating the send sequence. In this case, we
can also update the failed node’s ETX value for the destina-
tion sink by using a value for that is higher than
any other ETX value that we have already seen. Possible
values include or , but
experimental testing will also be needed to resolve better
values for this. We should now have an increased ETX (due
to the updating from the failure) and so another possible
neighbour will probably be chosen instead.
For example, if a node has a message for sink and it

chooses node as it’s next-hop neighbour, but is unable
to forward the packet, then updates it’s ETX for to a
much higher value, and bounces the message back to .
At this point, will go through the message-forwarding
mechanism again, and could potentially be chosen again,
but given that has just had it’s ETX for significantly
increased, it is likely that another node will be chosen.

4 Generalised ExOR

Guesswork relies on the existence of certain lower level
facilities - specifically, a reliable broadcast mechanism, and
a reliable way to do source-to-sink data transmission. ExOR
has some limited abilities towards these goals, but it has
limitations. In this chapter, we demonstrate a series of al-
terations to basic ExOR, broadening it’s scope and allow-
ing for a variety of “choice functions”, including the use of
ExOR as a mechanism for reliable broadcast.

4.1 Choice Functions

Generalised ExOR specifies the neighbour list in an ar-
bitrary order, and the neighbours respond with a particular
value (~1 byte of data for most choice functions). Which
value, and the resulting actions depending on that value, de-
pend on the particular effect that is required. A choice func-
tion defines how the protocol responds to ExOR messages,
including how a particular given node receiving an ExOR
message will then decide whether the message should be
forwarded onto other nodes.
Some useful possibilities include:

1. Sending the lowest hop count that this node has heard
(or its own if it has heard none so far), and forward-
ing if we have the lowest hop-count heard. This is the
original ExOR choice function.

2. Sending the lowest ETX value that this node has heard
(or its own if it has heard none so far), and forwarding
if we have the lowest ETX value heard. This is referred
to as ExOR-ETX.

3. Sending a bit-field representing the set of nodes that
this node has heard an ACK for (including its own), ex-
pressed as a series of bits in the same order as the orig-
inal transmitted set of neighbours. The original sender
can then OR together the received bit-fields and infer
the list of nodes that have received the message, thus
allowing for a reliable broadcast mechanism with re-
duced cost compared to unicasting to every neighbour.
The OR’ing together of the received bit-fields allows
the sender to get a good picture of what nodes have
received the message, even in the case of asymmetric
links. This is referred to as ExOR-Bcast.

4.1.1 Multi-hop Reliable Broadcast

ExOR-Bcast can further be improved as a method for re-
liable broadcast over multiple-hops i.e. a message flooding
scenario, by overhearing of broadcast messages from neigh-
bours. This can be used to reduce the set of neighbours that
we need to send a message to by eliminating those that we

have heard an ACK for (or have seen another ACK that con-
tains the relevant bit set for that neighbour).

Figure 3. Multi-hop broadcast example

For example, see Figure 3. is a node that has sent
an initial ExOR-Bcast to and . then proceeds to do
ExOR-Bcast to and . If overhears any of the replies
from or , it can determine if they have heard the broad-
cast, and so therefore it may not be necessary for to do
ExOR-Bcast at all, or it can at least reduce the set of neigh-
bours that it needs to send the message to.

4.1.2 ExOR-ETX

With ExOR-ETX, if two nodes have the same ETX value
(which is a quite likely scenario, especially in cases with
reliable links) and both receive a ExOR-ETX message, they
will both by default decide to forward on the message, re-
sulting in duplication. This may occur many times, result-
ing in an significant increase in the number of messages sent
in the attempt to successfully deliver one message. In a
number of likely scenarios this is not so much of a prob-
lem, as in many cases with equally good next-hop nodes
they will both be travelling a similar path to the sink, and so
the two routes will likely overlap later on and the duplicate
message can be filtered out at that point.
However, a better solution to the duplication problem is

to change the metric field for ExOR-ETX, reserving one bit
(usually the high bit) for use as a “sender” bit. A node sets
this bit to indicate that it has taken responsibility for making
sure that the message is sent, not that it will necessarily send
the message. If a node has decided it is to be a sender,
and it sees no other replies with a sender bit, then it sends
out the message. If however a node sees another message
with a sender bit and an equal ETX, then it must make a
decision whether it is a sender or not. This decision is based
on an arbitrary, but fixed (for a particular network) function
for any given network, that will always be able to decide a
single sender node. The current implementation uses node
ids, and the node with the highest id is the sender.

4.2 Inverted ExOR

One problem with the ExOR methodology is what we
call the “neighbour bootstrap” problem. When a network
has very little traffic, then it may be the case that a node
does not receive any messages from its neighbours, or only
from a subset of them, and that the node needs to be able
to send messages to the neighbours that are being quiet and
not announcing their presence. Communicating with these
nodes is difficult due to the fact that ExOR requires neigh-
bour knowledge for the scheduling of the ACK messages.
To combat this problem, we provide another variant on

ExOR using an inverted neighbour list i.e. the neighbours
that are in the list in the ExOR message should not respond.
For a bootstrap scenario with no currently known neigh-
bours, the list may well be empty. The message specifies
instead a time period (specified as the number of control
packet intervals) after the message has been sent, in which
nodes not in the list should respond. Each node that re-
sponds picks a random interval within the specified time
period to respond (using slotted aloha [16] with the trans-
mission time of a control packet as the interval).
With this random choice, the likelihood of collisions in-

creases significantly, but the focus of this method is acquir-
ing information from some neighbours, in order to reduce
the problem of having sparse neighbour information. In the
case that we have not received information from enough
neighbours, then the message can be repeated, adding the
successful neighbours from earlier stages to the “do not
send” list each time.
An additional constraint on the design of the control

function that can reduce the collision rate is only having
neighbours that have something useful to say responding
(as opposed to the “everyone should respond” models used
for standard ExOR) e.g. in a message routing scenario, only
nodes that have a good route to the sink should respond.

5 Implementation

So far, we have specified what we want to do, and some
high-level details of how we will implement these choices,
but another important factor to consider is that in mostWSN
systems there are existing other protocols that we must in-
teract with.
Most existing WSN routing protocols [2, 9, 10] come in

two forms: weak and strong binding to the MAC layer -
those that just treat the MAC as a black box that will send
packets, and those that rely heavily on one particular MAC.
The former methodology is unsuitable for ExOR use as the
uncertain delay between one packet transmission and the
next (due to MACs doing things like sleeping [3, 18] and
letting other possible parts of an application use the radio),
and the latter would reduce the flexibility of ExOR to in-

teract with a variety of protocol stacks (which is a problem
given the heterogeneity of current WSN systems).

5.1 Partial Binding

As a compromise, we propose instead a partial binding
to whichever MAC protocol is used. At some levels this is
similar to some of the ideas proposed by B-MAC [13], but
we assume the existence of a minimal MAC layer below
our protocol to implement things like scheduling of mes-
sage times and possibly sleeping during quiet times. B-
MAC could be used to implement this minimal MAC layer.
Our bindings specify certain additional facilities above and
beyond what a MAC protocol would normally provide, but
these should be fairly simple to implement (certainly vs.
creating a new transmission method in an existing MAC
protocol).
These facilities are then used to implement ExOR above

the MAC layer, as opposed to implementing it in every sep-
arate MAC. There is one requirement of the lower-layer
MAC - that it is possible to allocate contiguous blocks of
time that can be used for both sending and receiving by a
node. This is possible for all contention-based MACs, and
for some TDMA-based MACs (but not all of them).
Our extensions are split into two groups: commands and

events, in a similar way to the nesC [6] language that is used
by TinyOS. The full details are specified in Table 1 on the
next page.

5.2 Building ExOR

Using our MAC extensions, we can now build gener-
alised ExOR as follows. In all cases, we assume that at
startup we call PacketTime() with the payload length of a
reply packet (1 byte for most choice functions) to get the
value .
For all types of node, on a BroadcastReceive() event,

where the incoming packet is from a Receiving node, then
apply the control function as appropriate for the ExOR vari-
ant in question, and return 0.
ExOR Sending node:

1. Call PacketTime() with the length of the message to
get

2. Call ClaimMAC() with Time equal to
.

3. Call BroadcastNow() with the message that we want to
send.

4. On EndTimer(), perform whatever cleanup operations
are associated with the used choice function (e.g. for
ExOR-Bcast, record which neighbours we now have
additionally managed to send the message to).

Command Description
ClaimMAC(Time) ClaimMAC attempts to reserve Time milliseconds for the guaranteed use by this part of the

program. This time is guaranteed to be not used by any other sub-program on this node
(including MAC-level control packets), and the MAC will be listening for the entire period.
Carrier-sense or equivalent operations will be performed beforehand to help ensure the reser-
vation of this time

BroadcastNow(Packet) Sends the Packet right now, with no waiting of any sort. Only works if the MAC is currently
reserved, and the specified amount of time has not run out.

EndClaim() Finish a block of time allocated to this program module before the previously specified end-
ing time i.e. because we’ve done everything we want to do.

PacketTime(Length) PacketTime returns an estimate of how a long a Packet of payload Length bytes would take
to send, with all of the MAC and lower-layer headers added. Carrier-sense and other similar
delays are ignored, and only the time needed to send the bytes is returned.

GetNeighbours() GetNeighbours returns a list of the known neighbours of this node. Note that it is acceptable
for a MAC to always return a zero-length list, as the list should always be assumed to be not
necessarily complete, but is merely an aid to help/initialise higher-level neighbour-discovery
protocols.

Event Description
BroadcastReceive(Packet) BroadcastReceive is fired whenever a Packet is received. Implementations of the handler for

this event should return the number of additional milliseconds that the MAC layer should
be reserved for this application (in a similar way as the guaranteed time for ClaimMAC, but
this only succeeds if no other sub-section has current control of the MAC). Some protocols
(ExOR for example) may want to set an additional timer during this routine for when they
are to send a reply.

EndTimer() EndTimer is fired to notify a node that its previously reserved time has ended.

Table 1. MAC Extensions

ExOR Receiving node:

1. On a BroadcastReceive() event, where the incoming
packet is a message from a Sending node, then record
the sender node id
a) If invert is switched off for the message, and we
are in the neighbour list, then set to be our index in
the neighbour list.
b) If invert is switched on for the message, and we are
not in the neighbour list pick a random value between
and as , where is the maximum number of slots

for the reply packet.
c) If neither a) nor b) apply, return 0.

If then
set a ’reply packet’ timer for ms

else
send a reply to the sender with BroadcastNow()

Return

2. If our ’reply packet’ timer goes off, then send a reply
using BroadcastNow() to the recorded sender.

Figure 4. ExOR time line example

5.3 Building Guesswork

Guesswork (as we discussed in section 3 on page 2) re-
quires a reliable broadcast mechanism, and a method for re-
liably transmitting messages using ETX. We have now pro-
vided these, with ExOR-Bcast and ExOR-ETX, but there

are a few remaining details of the Guesswork use of these
algorithms to be mentioned.
Namely, the choice of how many neighbours to have in

a neighbour list. For ExOR-Bcast, the answer is generally
fixed - in our implementation, we stick to a maximum of 5
neighbours - more would make information spread faster,
but as longer messages tend to have a greater probability of
failure (due to interference from other nodes, and effects
like the “hidden terminal” problem) this appears to be a
good value. Also, because we actually want to talk to every-
one in ExOR-Bcast, talking to too many neighbours is less
of an issue. Additionally, as ExOR-Bcast is generally only
used by Guesswork during application setup, optimisations
to this will have a minimal effect.
However, the choice of neighbours used by ExOR-ETX

is more important - partly because this variant is more often
used, and partly because ExOR-ETX only actually wants
to talk to one neighbour and the others are only for redun-
dancy. As excessive redundancy is overhead, a good value
for this is application specific, but as we would like the al-
gorithm to work with a variety of applications, a method for
automatically deciding on this value is useful. One option
is using the following algorithm:

1. Each node starts with a neighbour count value (e.g. 5),
which is used to determine how many neighbours are
used in ExOR-ETX

2. A node keeps track of the last known ETX value for
each of it’s neighbours, and every time an ExOR-ETX
sequence is executed, it checks which node its cached
values for the neighbour ETXs would have chosen
vs. the actual winning node.

3. Every time the node guesses correctly, it decrements
the neighbour count value (down to a minimum of
2) and every time it gets it incorrect, it increments
the neighbour count (possibly up to a maximum value
e.g. 10)

The idea behind this is that if a node can correctly guess the
correct node to send to next, then the network is probably
moving towards a stable configuration with stable links. If a
node guesses incorrectly, then it is probably worth expand-
ing the neighbour list to check against other nodes. The
neighbour list in ExOR-ETX effectively represents a “can-
didate node” and a list of backup options. Therefore, giving
more backup options in a unstable situation, and less in a
stable scenario is a good idea. The limit of 2 neighbours
as a minimum ensures that there is always a backup neigh-
bour, and avoids the node collapsing towards the fixed route
scenarios that Guesswork intends to avoid.
For the purposes of the simulation testing, we created a

fixed-length neighbour list and did not implement this ex-
tension.

6 Results

We proceeded to test Guesswork against other routing
algorithms, in combiantion with a series of different MAC
protocols. The simulation framework is based upon Posi-
tif [11], but extended and altered to work with routing pro-
tocols rather than localization protocols. TheMAC protocol
implementation is taken from our existing work on MAC
protocols [3], which has been extended to interface with
Positif to create a unified simulation framework.

Parameter
Protocol Name Value
Aodv “Hello” messages Disabled
Gossip Fanout 2 for 1st 5 hops

1 afterwards
TTL 20 hops

Guesswork Neighbour list size 5 (fixed, no adaption)
SMac Frame length 1000ms

Timeout 100ms
TMac Frame length 610ms

Timeout 15ms

Table 2. Protocol parameters

In each case, we have a simple routing test, consisting
of a source transmitting a packet every 10 seconds, until it
has sent a total of 20 packets, and sending towards a sin-
gle sink. We tested 3 different MAC protocols SMac [17],
TMac [3], and a “simple, no carrier-sense”MAC (to provide
a baseline comparison). The other routing algorithms be-
ing compared against are AODV [12] and Gossip (random
walking with limited fanout). The AODV implementation
was ported from the existing implementation for the Glo-
MoSim [19] simulator. Given their lack of a sink-discovery
mechanism, both AODV and Gossip were informed of the
address of the sink at the start of each test.
56 nodes are present in each test, in a 50x50 area, with

maximum radio range set at 14. The per-link reliability is
set at 80% for all tests i.e. a random 20% of all packets sent
by the nodes are randomly discarded, in order to simulate
imperfect links. Note that 80% per-link reliability is a level
that would be considered “good” by most algorithms that
classify links as good/bad.
Each simulation is run for 300s before termination, and

each result is the average of 20 runs of the particular combi-
nation of routing protocol and MAC protocol. The other pa-
rameters for the protocols are given in Table 2, but a couple
are worth discussing further - Aodv has the “Hello” mes-
sages disabled, because they resulted in far too much over-
head for our simple WSN example, and Gossip reduces it’s
fanout to 1 after 5 hops as otherwise it ends up reducing to
simple flooding and having far too large overheads.

En
er

gy
 u

se
d

(jo
ul

es
)

0
18
36
54
72
90

108
126
144
162
180

Ao
dv

/S
M

ac
Ao

dv
/S

im
p

Ao
dv

/T
M

ac
G

os
s/

SM
ac

G
os

s/
Si

m
p

G
os

s/
TM

ac
G

ue
s/

SM
ac

G
ue

s/
Si

m
p

G
ue

s/
TM

ac

Figure 5. Energy cost

%
 R

el
ia

bi
lity

0
10
20
30
40
50
60
70
80
90

100

Ao
dv

/S
M

ac
Ao

dv
/S

im
p

Ao
dv

/T
M

ac
G

os
s/

SM
ac

G
os

s/
Si

m
p

G
os

s/
TM

ac
G

ue
s/

SM
ac

G
ue

s/
Si

m
p

G
ue

s/
TM

ac

Figure 6. Reliability

We looked at two different evaluation metrics for the
results: reliability (how many of the source messages get
to the sink) and cost (power used for transmission and re-
ception over all of the nodes in the experiment, using the
listed costs for a typical node transceiver [15]). The pro-
duced graphs for these metrics have been altered in a few
small ways for improved readability - some of the protocol

names have been shortened (“Gossip” has become “Goss”,
“Guesswork” became “Guess” and the simple MAC is de-
scribed as “Simp”) and the “simple” power measurements
have been clipped (due to its lack of power management,
the simple MAC uses approximately an order of magnitude
more power than the other protocols, and so displaying it
fully would reduce the amount of usable information on the
other protocols).
A number of interesting results immediately appear from

the graphs. Firstly, looking at Figure 5, we can see that
the overall cost of the messages is dominated by the choice
of MAC protocol - comparing differing routing protocols
with the same MAC protocol shows a slightly higher cost
for Guesswork and a slightly lower cost for AODV, but the
difference is not significant. These results are consistent
with current theory regarding such factors as idle listening
(as noted in [7]), and show that despite the additional over-
head of the multiple ACKs in Guesswork, it still represents
a viable alternative.
The advantage of Guesswork becomes immediately ap-

parent when we turn to Figure 6. Given that AODV depends
on the reliability of a link at route discovery time, it per-
forms badly when faced with links that are “reasonable”,
and may not always succeed. 80% is a high enough per-
link reliability to provide links that can be used for routing,
but low enough to cause enough failures to make otherwise
viable connections be often discarded. Using the “Simple”
MAC (with it’s lack of carrier sense, and so hence much
greater packet drop rate) reduces AODV to unusable lev-
els. Gossip, with it’s simpler methodology, is able to get
some results (the redundancy from fanout is a significant
factor there), but only with a reliability of 40-45%. Guess-
work, on the other hand, is able to react to even low relia-
bility levels and work around these problems, with end-to-
end reliability at 85%+, climbing to 95%+ with the carrier-
sense capable MACs. We have performed additional testing
with Guesswork at lower reliability levels, and were able to
maintain successful sink-source routing with link reliability
levels down to ~30%, without alterating Guesswork in any
way.

7 Conclusions

We have created a routing algorithm that performs reli-
able routing over significantly unreliable links, and without
significant additional energy costs vs. existing routing pro-
tocols. The Guesswork algorithm, despite it’s reliance on
a packet sequence not normally supported by MAC proto-
cols (ExOR), has also been shown to be able to integrate
successfully with a range of MAC protocols.
To further the goal of integration with existing proto-

col stacks, and to facilitate additional testing, Guesswork
is currently being implemented for TinyOS [8], and will be

released to the wider community at a future date. Support
for the partial binding extensions has already been released
as part of the T-MAC implementation available at contrib/t-
mac/ in the TinyOS CVS repository.
We would also like to explore ways of implementing

Guesswork on top of TDMA protocols (which have very
limited support at this point). More work also needs to
be done with testing against both fixed/reliable networks
and mobile networks, as the current testing is against what
is a fairly realistic middle ground for WSN applications,
but testing how well Guesswork performs vs. protocols de-
signed for a particular niche in the search space of possible
routing problems is of interest, as Guesswork is designed
to work well (high reliability and low cost) in a variety of
scenarios.

References

[1] Sanjit Biswas and Robert Morris. Opportunistic routing in
multi-hop wireless networks. SIGCOMMComput. Commun.
Rev., 34(1):69–74, 2004.

[2] David Braginsky and Deborah Estrin. Rumor routing algo-
rthim for sensor networks. In WSNA ’02: Proceedings of
the 1st ACM international workshop on Wireless sensor net-
works and applications, pages 22–31, New York, NY, USA,
2002. ACM Press.

[3] T. van Dam and K. Langendoen. An adaptive energy-
efficient MAC protocol for wireless sensor networks. In 1st
ACM Conf. on Embedded Networked Sensor Systems (Sen-
Sys 2003), pages 171–180, Los Angeles, CA, November
2003.

[4] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and
Robert Morris. A high-throughput path metric for multi-
hop wireless routing. In Proceedings of the 9th ACM Inter-
national Conference on Mobile Computing and Networking
(MobiCom ’03), San Diego, California, September 2003.

[5] Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Cham-
bers, and Robert Morris. Performance of multihop wireless
networks: Shortest path is not enough. In Proceedings of
the First Workshop on Hot Topics in Networks (HotNets-I),
Princeton, New Jersey, October 2002. ACM SIGCOMM.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: a holistic approach to net-
worked embedded systems, 2003.

[7] J. Hill and D. Culler. Mica: a wireless platform for deeply
embedded networks. IEEE Micro, 22(6):12–24, November
2002.

[8] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David
Culler, and Kristofer Pister. System architecture directions
for networked sensors. SIGARCH Comput. Archit. News,
28(5):93–104, 2000.

[9] Chalermek Intanagonwiwat, Ramesh Govindan, and Debo-
rah Estrin. Directed diffusion: a scalable and robust commu-
nication paradigm for sensor networks. InMobile Computing
and Networking, pages 56–67, 2000.

[10] Brad Karp and H. T. Kung. GPSR: greedy perimeter state-
less routing for wireless networks. InMobile Computing and
Networking, pages 243–254, 2000.

[11] K. Langendoen and N. Reijers. Distributed localization in
wireless sensor networks: A quantitative comparison. Com-
puter Networks, special issue on Wireless Sensor Networks,
(43):500–518, 2003.

[12] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-
demand distance vector routing. In 2nd IEEE Workshop on
Mobile Computing Systems and Applications, WMCSA ’99,
February 25-26, 1999, New Orleans, Lousiana, USA, pages
90–100. IEEE, IEEE, February 1999.

[13] Joseph Polastre, Jason Hill, and David Culler. Versatile low
power media access for wireless sensor networks. In 2nd
ACM Conf. on Embedded Networked Sensor Systems (Sen-
Sys 2004), pages 95–107, Baltimore, MD, USA, 2004.

[14] Lili Qiu, Yang Richard Yang, Yin Zhang, and Haiyong Xie.
On self adaptive routing in dynamic environments - an eval-
uation and design using a simple, probabilistic scheme. In
Proceedings of the 12th IEEE International Conference on
Network Protocols (ICNP ’04), pages 12–23. IEEE Com-
puter Society, 2004.

[15] RFM. TR1001 868.35 MHz Hybrid Tranceiver.
[16] Lawrence G. Roberts. Aloha packet system with and with-

out slots and capture. SIGCOMM Comput. Commun. Rev.,
5(2):28–42, 1975.

[17] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient
MAC protocol for wireless sensor networks. In 21st Confer-
ence of the IEEE Computer and Communications Societies
(INFOCOM), volume 3, pages 1567–1576, June 2002.

[18] Wei Ye, John Heidemann, and Deborah Estrin. Medium ac-
cess control with coordinated, adaptive sleeping for wireless
sensor networks. ACM/IEEE Transactions on Networking,
12(3):493–506, June 2004. A preprint of this paper was
available as ISI-TR-2003-567.

[19] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim:
a library for parallel simulation of large-scale wireless net-
works. InWorkshop on Parallel and Distributed Simulation,
pages 154–161, 1998.

[20] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A.
Stankovic. Impact of radio irregularity on wireless sensor
networks. In MobiSYS ’04: Proceedings of the 2nd inter-
national conference on Mobile systems, applications, and
services, pages 125–138, New York, NY, USA, 2004. ACM
Press.

