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Abstract
Debugging wireless sensor networks (WSN) is a notori-

ously hard problem. WSNs share the debugging problems of
both embedded- and distributed systems. The result is that
it is very hard to get an insight into the inner workings of a
real-world WSN. We have designed the Monitored External
Global State (MEGS) tool that recreates the global state of a
WSN from debug output. With MEGS a developer can de-
fine assertions and predicates on the global state of a WSN,
rather than the state of only a single node. Using MintRoute
as a test case, we show that MEGS makes available informa-
tion that was previously exceedingly difficult to obtain.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Distributed debugging

General Terms
Reliability
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1 Introduction
Wireless sensor networks (WSN) have characteristics of

both embedded systems, and distributed systems, i.e. low
visibility and distributed state. As such, WSNs inherit de-
bugging problems from both fields. Embedded systems
make it hard to use interactive debuggers. WSN nodes usu-
ally do not allow the use of debuggers at all. Since WSNs
are not only embedded systems but also distributed systems,
using a normal debugger in most cases will not even provide
the information that the developer of the system needs to di-
agnose the problem. The information the developer needs
resides on many nodes. Moreover, the information gener-
ally consists of state variables that change over time, which
means that to get a clear picture of the WSN we need to look
at consistent snapshots of the global state of the network.
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Although it is usually possible to obtain a view of the
global state in a simulated WSN, none of the techniques cur-
rently used for debugging real-world WSNs provide a means
to easily gain access to the global state of the network due to
the distribution of the data over many nodes. The first step
after simulation is usually a trial run on a testbed. A testbed
usually allows dumping of debug information, much like the
print-style debugging that can be used on PCs. However, cre-
ating a mental picture of the operation of the network from
this debug information is extremely difficult due to the large
amount of information. When we consider debugging tech-
niques for deployed networks, we find that many of them
only consider thebehaviour of the nodes, rather than the
internal operation. Moreover, many current techniques for
debugging deployed WSNs suffer from the so-called probe
effect: inspecting the system influences the system as well
because the same wireless interface is used for running the
system and sending debug messages. Although the probe ef-
fect also impacts testbed measurements, the effect is usually
much smaller because a side-channel is used to push out the
debug output.

The main contribution of this paper is the design of the
Monitored External Global State (MEGS) tool, which lever-
ages existing debugging techniques to recreate (part of) the
global state of a WSN on an external PC. Using the recreated
state the developer of a WSN can gain insight into the opera-
tion of the WSN. MEGS also allows the developer to define
assertions and predicates on the recreated state to easily find
locations in the execution where anomalous behaviour oc-
curred.

2 Related Work
Most testing of WSN software begins with simulations.

These simulations come in many forms, from specialised
protocol simulators like MiXiM [5] to simulators generated
from the source code intended to run on the actual nodes such
as TOSSIM [6] and COOJA [8]. When using these simula-
tors, the global state of the network is already present on a
single computer, although not all simulators provide easy ac-
cess. Sometimes emulators like Avrora [11] are used instead
of, or next to, simulators. Although emulation can reach a
higher level of accuracy, they do make it harder to access the
global state of the network because a node’s memory is rep-
resented as an array of bytes rather than separate variables.

After simulation, the next step in developing WSN soft-



ware is usually to run the software on a testbed. Testbeds
like MoteLab [12] and our own PowerBench [3] normally
provide a wired interface (serial port) to the nodes of the
testbed. This interface can be used to provide debug infor-
mation to the developer, mostly in the form of printf-style
debug messages.

Once testbed experiments provide satisfactory results, the
software will be deployed, sometimes in a test deployment.
During the deployment phase there are still options for de-
bugging the network. The Deployment Support Network [2]
provides a testbed like environment by attaching a secondary
node to each or several nodes in the network. The secondary
node provides access to the serial port over a parallel wire-
less network.

Sympathy [9] provides a diagnosis tool which tries to de-
termine the location of a failure by analysing the traffic com-
ing from the network, and meta information sent in separate
messages specifically for diagnosis. The Sensor Network
Troubleshooting Suite (SNTS) [4] uses a parallel snooping
network to analyse a WSN. Like Sympathy, SNTS only stud-
ies the external behaviour of the nodes, rather than looking
at the internal state of the nodes.

Marionette [13] is a system that allows calling functions
and inspecting and changing memory locations in deployed
nodes through an RPC-based system. A developer can use
this much like a debugger, although because it uses the wire-
less channel of the network it has a large impact on the op-
eration of the network. The Clairvoyant [14] tool takes the
ideas of Marionette one step further and builds a full debug-
ger using RPC. Although the authors do their best to min-
imise the probe effect, the extra network traffic, frequent re-
flashing and break-points impact the execution of the code
severly.

The approach of off-line debugging based on logs is al-
ready used in embedded systems, for example in the Zeal-
Core debugger [15]. However, these tools inspect a single
device, rather than a network of devices.

Recently, Römer et al. [10] proposed a system for dis-
tributed assertions much like MEGS, using the WSN node
radio and sniffer nodes. The authors do mention the possi-
bility of using a side channel as an option to reduce the probe
effect.

From the preceding it is clear that once the step to real
hardware is made, it becomes exceedingly difficult to obtain
access to the global state of the network. Tools like Sym-
pathy and SNTS only provide information on the behaviour
of the network. Although Marionette provides the option
to peek inside a node, it does so over the wireless network
which provides very limited bandwidth and disrupts the nor-
mal network operation (the probe-effect). Only testbeds and
DSN provide a side channel to relay information about the
internal operations of a node to the developer. We have de-
signed MEGS to use this side channel to gain insight into the
global state of the network.

3 MEGS Design
Many bugs in WSNs can only be traced when taking into

account the state of more than one node. However, it is im-
portant to note that to diagnose a problem, the entire memory
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Figure 1. Conceptual information flow for MEGS. Up-
date messages are received from the testbed and merged
into global states. Assert triggers are passed directly to
the analysis engine. The global states are then analysed
to generate output for the developer.

of all nodes is not required. To detect whether a routing pro-
tocol has created a routing cycle it is sufficient to only have
the routing information of all nodes. Furthermore it is usu-
ally instructive to look at the states preceding the unwanted
state as well, as it can give insight into what caused the un-
wanted state to occur in the first place.

Given the limited hardware in WSN nodes and the dis-
tributed nature of a WSN, it is impossible to inspect the state
of a node as one would do with a debugger. Therefore, we
have chosen to recreate the global state of the network off-
line. This means that all nodes have to provide sufficient in-
formation over the side channel to allow for the reconstruc-
tion of the (partial) global state. To put as little strain on
the nodes as possible, we require that nodes at the very least
send a debug message over the side channel when a variable
of interest is updated. By accumulating all update messages
we can faithfully recreate the global state of the network. Of
course, it is possible to send more update messages. This can
add to the robustness of the system, especially if the debug
channel is not 100% reliable.

All the messages sent over the side channel will be pro-
cessed by MEGS. For each variable of interest on the nodes,
MEGS maintains an off-line state. When an update mes-
sage is received, a new global state is created by modifying
the previous state with the information in the update mes-
sage. The new state is stamped with the time from the up-
date message. Note that the timestamp of update messages
should be generated in such a way that all messages refer to
the same clock. In most testbeds the machine receiving the
update messages will timestamp the data, providing a sin-
gle clock. Figure 1 visualises the flow of information when
using MEGS.

Once the global state of the network is available, the
global state can be used for analysis. Global performance
metrics can easily be extracted. For example, the average
value of a specific value on all nodes can be traced and plot
over time. MEGS can further track the amount of time that a
predicate over the global state is true. This can provide vital
performance data that is only available when combining the
state of many nodes.

MEGS can also check assertions that use variables from
multiple nodes. Usually, the assertions should be triggered
when a certain point in the execution of a node is reached.
The node should therefore send a debug message indicating
that it has reached such a point. When MEGS receives such a
message the assertion will be checked. The aforementioned



...
parent = chooseParent();
global_assert(!routingCycle());
...

Figure 2. Example of a simple global assert statement in
a WSN routing algorithm.

example of a routing cycle in a routing algorithm is a good
example of an undesirable state that a developer might want
to detect using an assert statement. Figure 2 shows the exam-
ple as pseudo code. However, this example also highlights a
problem with classic assert statements: a routing cycle may
be acceptable for a short amount of time when route updates
propagate through the network. Therefore, MEGS should
also be able to checktimed assertions.

Timed assertions are of the form:expression1 →
{within t} expression2. The meaning associated is that once
expression1 becomes true, within the time indicated byt
expression2 should be true at least once. The timed asser-
tion is not a new concept. The UPPAAL [1] model checker
already provides timed assertions, although not explicitly
named as such. In the routing cycle example the timed asser-
tion allows bounding the time a routing cycle exists.

4 Implementation
We have created a proof-of-concept implementation of

MEGS. Our implementation covers the state collector and
analysis & asserts engine. The implementation consists of a
Java program that needs implementations of two classes to
adapt MEGS to the specific WSN software under develop-
ment. These classes implement the off-line representationof
the state of a node, and the specific analysis for the WSN
software. The analysis is supported by several utility func-
tions and classes that make it easy to plot data and to create
assertions and predicates.

In our current implementation the developer of the WSN
software still has to do some manual work that could con-
ceivably be done by a compiler front-end. First of all, the
developer of the WSN software still has to manually send
each update of each variable of interest over the side chan-
nel. A compiler front-end could be created that allows mark-
ing the variables of interest and automatically generates the
code for sending the update messages at each update site in
the code. Second, the compiler front-end could translate as-
sertions in the code to assert trigger messages. Currently,the
developer still has to write a statement that sends out a de-
bug message indicating that a particular assertion needs tobe
checked instead of the actual assertion. The example in Fig-
ure 2 would get a statement likedebug assert(1); instead
of theglobal assert function call.

Besides providing support on the WSN software side,
the compiler front-end can create most of the required
Java classes as well. For example, the required node-
representation class can be generated from the set of marked
variables. Also, the assertions embedded in the WSN soft-
ware can be used to generate (part of) the analysis class.

We have not implemented this automation as part of our
proof-of-concept implementation. However, using tools like
CIL [7], building such a compiler front-end is made rela-
tively easy. For TinyOS one could also integrate this func-
tionality with the existing NesC compiler.

import engine.*;

public class MintNode extends Node {
// Parent value when no valid parent was found
public final int noValidParent = 0xFFFF;

private int parent = noValidParent;

public MintNode(int id, SystemStatus system) {
super(id, system);

}

public String toString() {
return number + ": parent=" + getParent();

}

public void setParent(int parent) {
this.parent = parent;

}

public int getParent() {
return parent;

}
}

Figure 3. Implementation of the external representation
of selected MintRoute state.

MEGS does not depend on a specific testbed infrastruc-
ture. In fact, we can even use the output from simulators.
We have currently implemented two interfaces: one for use
with the TOSSIM simulator and one for use with our Power-
Bench testbed. Each of these interfaces is a class in MEGS,
and by creating more classes MEGS can be readily adapted
to other simulators and testbeds. The only functionality it
should provide is a translation from the simulation or testbed
specific output to the internal representation for update mes-
sages and assert triggers.

5 Test Case
In order to test and develop MEGS, we chose software

that was readily available and builds up a global state. We
chose the standard TinyOS 1.x routing algorithm MintRoute.
MintRoute attempts to build a spanning tree over the net-
work, rooted at the sink, to collect data from the network. To
this end each node chooses a so-called parent node, to which
it will forward all messages destined for the sink node. Ob-
viously, routing cycles are undesirable as this would cause
messages to continuously loop without making progress to-
wards the sink. As our first test case we added an assertion to
the parent choosing function, that will fail if a routing cycle
is created.

To determine if a routing cycle has been created, we need
to know the parents the different nodes in the network have
chosen. This is all the state we need to test the assertion.
Figure 3 shows the implementation of the node-state class
for our test. It mainly consists of get and set routines for the
state variable, and a function that creates a printable version
of the state.

Given the node-state class, all that is required on the PC
side is glue code and an implementation of the assertion.
This is implemented in a second class, part of which is shown
in Figure 4. What is left out from the figure is the code for
printing the state of the entire network, the actual routingcy-
cle detection algorithm and a few pieces of administration



import engine.*;

public class MintRouteSystem extends SystemStatus {
...
public MintRouteSystem() {

assertlist.put(1,
"New parent has created a routing cycle");

}

protected void updateStatus(Node node, StatusEvent e) {
MintNode n = (MintNode) node;
if(e.getName().equals("PARENT")) {

n.recordActivity(e.getTime());
n.setParent(e.getValue());

}
}

private boolean routingCycle(MintNode n) { ... }

public boolean checkAssert(Node node, int assertNum)
throws AssertSkippedException {

MintNode n = (MintNode) node;

if (assertNum == 1)
return !routingCycle(n);

}
...

}

Figure 4. Assertion and state update code for the
MintRoute routing cycle assertion.

Time: 218.275 Nodes: 24
...
5: parent=4
6: parent=8
7: parent=6
8: parent=6
9: parent=18
...

Assert FAILED: 8 - 218.275 : New parent has created a
routing cycle

Figure 5. Example output from MEGS, where a routing
cycle has been detected, caused by node 8 choosing one of
its children as its new parent.

code, which allow for more customisation and flexibility in
the checking of assertions.

Finally the MintRoute source code needs to be modified.
At each point in the code where the parent may change the
(possibly) new parent choice is sent over the side channel.
Furthermore, whenever a new parent is chosen, the assertion
needs to be triggered. This could be done simply by letting
the state update code trigger the assertion every time a parent
value is changed. However, for the purposes of this example
the assertion is triggered by the node itself.

We tested this setup on our testbed and our experiments
show that MintRoute did occasionally create a routing cycle.
Figure 5 shows an example output for the failed assertion.
The output shows the state of the network at the moment the
assertion failed. The full state of the network is printed with
each state update, to aid the developer in tracing the bug.

It should be noted though that the routing cycles did not
last. As the routing information was updated, the routing
cycle was resolved and normal operation continued. By us-
ing a timed assertion situations like this where unwanted be-
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Figure 6. Effects of a failing sink node between times
100s and 250s on average hop count to the sink node as
perceived by the nodes, and the average number of par-
ent switches.

haviour is acceptable for limited periods of time can be ex-
pressed such that only the persistent behaviour will trigger
an assertion.

Another option is to get insight in the behaviour of the
software under development is the use of a global predicate.
The predicate is evaluated each time part of the state is up-
dated, and the percentage of time that it evaluated to true is
printed at the end of the run. For the MintRoute test case
we have used the routing cycle check to ensure that routing
cycles are only present a fraction of the time.

MEGS can do more than check assertions. It can also
generate data for plotting. As an example we have instru-
mented MintRoute to also send the hop count to the sink as
perceived by the nodes in the network over the side chan-
nel. Using this information the average hop count over all
nodes was calculated at each point a node provided updated
information. Furthermore, we counted the number of times
a node switched to another node a parent in the routing tree.
Figure 6 shows a plot created from this data.

In the experiment from which Figure 6 was created the
sink node was turned off at 100 seconds into the experiment
until 150 seconds later it was turned on again. The figure
gives information about the time that MintRoute needs to
adapt to changes in the network. Figures such as this one
can be helpful in getting an insight of the performance of the
protocol. Of course graphs like this can also be generated
from the debug logs directly, but the reusable infrastructure
provided by MEGS makes it much easier.

6 Discussion
Of course, working with real hardware brings with it a lot

of difficulties. In developing MEGS, we found that testbed
hardware does not always provide the desired clock accu-
racy. At several points in the hardware and software stack
buffering is performed. For example, the serial port to USB
converters used in our and many other testbeds have an in-
ternal buffer. This results in several messages from one node
getting stamped with the same time, even though there is
time between the generation of the messages. When more
than one node is generating messages at approximately the
same time, this buffering may cause the exact ordering of the
events to be lost. Although we did not encounter any prob-
lems due to this artifact in our test case, this will prove to
be a problem when using MEGS for testing MAC protocols
which perform actions on separate nodes simultaneously.



Our implementation of MEGS provides a rudimentary
means to detect these ordering problems by matching up
send and receive events from the nodes and ensuring that the
send event was stamped with an earlier time than the asso-
ciated receive event. This does require extra effort from the
developer of the WSN software, as he has to instrument the
software to generate side-channel messages on receiving and
sending wireless transmissions. However, when an ordering
problem is detected it is extremely difficult to reorder the
messages in such a way that the correct timing can be guar-
anteed for all messages. The only true solution is to reduce
the buffering in both hardware and software.

A related problem is that the timestamping of the mes-
sages may not be performed by a single machine. In some
testbeds, including our own, different sets of nodes are con-
nected to different debug-gathering computers. In the ex-
treme case each node is connected to a different device, as
is the case in DSN. This means that to obtain correct times-
tamps these computers must be synchronised. The synchro-
nisation may not be perfect, which will cause slightly incor-
rect timestamps. As long as messages from different nodes
are spread enough in time this is not problematic, but when
dealing with time critical protocols such as MAC protocols
the imperfect synchronisation may limit MEGS’s usefulness.

Because MEGS can be used with any process that pro-
duces timestamped update messages, MEGS can also be
used with simulators and emulators. These platforms do
not suffer from the buffering and time synchronisation is-
sues that real hardware suffers from. Although most simula-
tors already allow access to the global state of the simulated
network, there is value in using MEGS in these situations
as well. Because the assertions developed for the simulation
must also hold when running the software on real hardware,
it is beneficial to use the same infrastructure to verify the
correct working of the software in both.

As we have described in Section 4, a compiler front-end
can be created to automatically generate code to send the
values of interest over the side channel. It should be noted
though that this is not always easy. In the MintRoute exam-
ple, the parent value is not a single integer value. It is in fact
found through a pointer into the routing table. Hence, the
parent value is actually an expression that needs to be evalu-
ated each time the pointer into the routing table is changed.
Implementing a compiler front-end that can provide this flex-
ibility is non-trivial.

7 Conclusions
We have developed MEGS, a tool which collects incre-

mental state update messages from a WSN and recreates the
global state of the network on a separate PC. MEGS lever-
ages existing debugging tools to give developers more in-
sight into the inner workings of their WSN software. Instead
of manually looking through debug logs to build a mental im-
age of the state of the network, developers can use the auto-
matically recreated global state that MEGS provides. Using
the recreated global state, MEGS can check assertions that
involve the state ofall nodes in the network. Besides provid-
ing assertion checking of classic assertions, MEGS also pro-
vides checking of timed assertions where detection of one

state must lead to the detection of a following state within
a specified amount of time. Furthermore, MEGS provides
means to gain insight into the performance of WSN software
by allowing evaluation of predicates over the global state and
allowing easy plotting of data derived from the global state.

We have shown through a test case that MEGS can be
helpful in detecting anomalous states of a WSN. Although
detecting these states through standard debug messages is
possible, MEGS provides an infrastructure to easily create
many checks, even those that involve the state of all nodes in
the network.
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