Foxtrot: phase space data representation for
correlation-aware aggregation

Tom Parker* Koen Langendoen
{T.E V. Parker, K G Langendoen}@udelft.nl
Faculty of Electrical Engineering, Mathematics, and Corap@&cience
Delft University of Technology, The Netherlands
(*Supported by the Dutch Organisation for Applied Scientesearch (TNO))

Abstract— Most existing work in aggregation and query- techniques is somewhat limited. An exploration of exist-
ing for sensor network data has focused on the use of stan-ing work in this area is in Section II. Unfortunately, exist-
dard statistical operations (average, median, efc) to redte jng statistical aggregation work is not correlation aware:
the quantity of transmitted data within a network. These 4| gata points are automatically considered as inputs
operations have been carried out without considering the for the aggregation mechanism, without consideration to
nature of the actual data in the network. In this paper, o

the nature of the data. Additionally, rare events (e.g. a

we show how aggregation without correlation awareness . i \
will result in variable (often high) levels of error in the single sensor with different data) are not considered

end results, and reformulate the nature of the aggregation Statistically significant, whereas for WSN applications
problem in terms of information loss v.s. packet rate a single sensor reading may well be important, e.g. only
reduction. one sensor is attached to a tree that is on fire. Discarding
We instead propose Foxtrot - using phase space datathe bulk of unimportant data (e.g. limiting data from the
representation combined with novel aggregation methods |arge areas of a forest that are not on fire) whilst keeping
to limit errors to application-specific ranges. Foxtrot re- o \,seful information should be a focus for WSNS.
Suces data rates without ;lgnlflcant |nfor.mat|on loss. We Location data is also vital for WSNs (“Which tree is on
emonstrate that Foxtrot is able to achieve these goals, . .) .
both using simulation methods and a TinyOS implemen- fire?"), and when correlation awareness is cc_)nS|dered,
tation. we must also check where multiple data points were
measured in order to determine whether they can be
aggregated.
|. INTRODUCTION Given all of these problems, new approaches are
Whatever the nature of the application, Wireless Serequired. In this paper, we show the faults of existing
sor Networks (WSNs) generate data. With increasiraggregation techniques, propose the use of phase space
numbers of nodes, the volume of data becomes evepresentation to incorporate all data sources in a single
greater. Therefore, one of the fundamental problems fdgew, demonstrate novel aggregation techniques that se-
these networks is managing the outputted data. Givieatively merge phase space data such that information
the energy and space limitations of WSNs, movinigss is limited, and show this can be all achieved in a
increasing quantities of data to a sink node/end-udeily-distributed manner on speed-, memory- and energy-
computer where the data can be stored and analysed Vitlited node hardware.
reduce the operational lifespan of such a network. It can
be concluded that reducing the amount of data that is Il. EXISTING WORK
transmitted is a required goal in order to achieve usableMuch work has already been done in both aggregation,
network lifetimes. This goal, however, conflicts wittand in querying mechanisms for WSNs that indirectly
the purpose of these networks: to gather informationse aggregation techniques (e.g. SQL-like techniques -
One approach to resolving these conflicting issues is tikee TinyDB [6], TAG [5] and STREAM [2]) for whole
use of aggregation technigues to remove redundantnatwork queries). Given that one of the major purposes
unimportant data and only transmit useful informationof statistical techniques is reducing large bodies of data
A simplistic approach would involve the use of standown to a limited set of more usable values, it seems an
dard statistical techniques to combine many data poimtsvious choice for aggregation techniques.
into a smaller set. However, given that only incomplete Averaging is a popular choice [5], [6] (partly because
information is available at any given node, the choice of the Central Limit Theorem [10]), as this can reduce

any number of data points down to just an averagédso, Q-Digest gives us no location awareness; in the
value plus a count of the elements merged (the courtnperature example, we would be unable to locate the
is required to aid merging of multiple averages at lat@roblematic sensor without using other techniques.
nodes). This has several major advantages - it is fully Other statistical techniques are mostly limited by their
distributed; the end result is always very small (anequirements for needing most of the data to be merged
the same size) regardless of how many data poiritsone location, combined with the issue of merging
were initially available; processing and space costs arailtiple subsets that have been previously merged. Fur-
minimal; and an average value for a region is a commaimer work in this area could possibly reduce these two
example query to be asked of a sensor network. Overgltpblems, but we would still need to find a technique that
it is a very easy (and common) question to answejives useful answers, and that is a much harder problem.
and one that many aggregation protocols have optimisedVe conclude that a newer approach, focused on the
towards. usefulness of the end result to the users of the applica-
The one question that these systems fail to ask is:tisn, is required for an improved aggregation technique.
the answer useful? Take the common example of “wha¥¥e also conclude that the major goal of aggregation
the average temperature on this floor?”, and using it @sa trade-off between information loss and packet data
part of a feedback loop to keep the temperature at 2fte reduction, and that any aggregation technique that
degrees celsius. Imagine that there are 5 sensors oattempts to discard packets without considering what
floor of a building and the answer is 22 degrees. Thevel of information loss this will cause is fundamentally
common assumption would be that most of the sensdiswed.
have a temperature of about 22 degrees, and so the
system would drop the temperature by 2 degrees. But ||| PHASE SPACE DATA REPRESENTATION
then a report comes in of a room at 18 degrees. What . .
actually happened is that 4 of the sensors were at odn order to c_onS|der hQW to create a _technlq_ue
degrees, and the 5th sensor had been placed neart"f'lf?é would combine correlation awareness with location

output vents of a computer which rose the temperatL,?BOWIedge' we turned to phase space representations of

around that node to 30 degrees. The averaging algoritHfif data. Phase space [11] uses an abstredzhensional
ce to represent all of the possible states of a system.

without any correlation awareness, merged all the valu%%ah tf in th ’
into a single value that says nothing about the actUafC degree of freedom in the space represents a dif-

nature of the true temperature values, and thus too mJEFFNt data value. Our initial approach to this focused
information was discarded. on single sensor values, plus their associated location

There are in fact only two interesting scenarios f(5jrata. We later realised that the same techniques could not

averaging: a) all data values are approximately simil3f!y P& used to combine multiple sensor values, but to
(or at least vary around a common centre), in which ca@l&?o mcorpprate other data sources. In total, we identified
a sampling of a subset of the nodes would get as go%iee possible sources of data:
an answer as averaging, but with less network traffic; or Raw sensor values (e.g. humidity or temperature)
b) data values vary widely (as in the example), resultings Internal node data sources (e.g. location data)
in a result that bears no resemblance to the actual datas Functions of other data sources (e.g. rate of change)
Alternately, we could use the median of a set of valudde state of a node at a particular instant in time can
instead. However, for an accurate median we need l# represented by a point in phase space defined by the
the original data points at a single point. Q-Digest [8]alues of all of the sources of data being used. Most
attempted to reduce this problem by only transmittingpplications would normally only be interested in a small
a subset of the candidate data values, and providingmber of sensors, plus 2 dimensions for location data,
a method to merge candidate sets together. This gdud the capability for extra data sources is automatically
a reasonable approximation to the median (as well agailable. Irregardless of what data is being used, the data
other statistical values) while reducing packet rates, btan still be represented only as an abstract concept of a
ran into the same problem as averaging: is the ansveeries of values without any knowledge of which of the
useful? In the temperature example above, it would hatleee categories the original data source was. Individual
given us the 20 degree value (and probably also the 8%es may however specify certain source specific limits
degree value depending on the level of merging). Thisé® what can be done with data in that particular axis.
an improvement over averaging, but in situations with a The basic data unit is that of a point in phase space,
larger number of nodes, rare events will still be discardédit we also want to be able to merge data points into
in favour of lots of information about common eventdarger regions also within the same phase space. A

2

region in phase space represents a range of values. A [AO BOJ|

region is defined by a set of numbdnsin,,...min,} and a) "Distant" points

{maxy,...max,} for an n-dimensional space, and covers BO

all points of the form{vy,...v4} such thatvx,x € N,1 <

x < n,ming < vy < maxy. A point is defined as a zero- AO

sized region i.eyx,x € N, 1 < x<n,min, = Vx = mMaxy b) "Close" points
IV. REGION MERGING Fig. 2. Location merging examples

Aggregation can now be specified as merging of

multiple phase space regions into a different (generaIrIX re fixed constraints. For example. an lication m
smaller) quantity of phase space regions. We also nee € TIxed constraints. -or example, an application may

to note that some regions may not be mergeable, a?PoeC'fy that an acceptable level of data loss from a

that any processing time spent attempting to mer eemperature sensor is 1 degree. In this case, if two

unmergeable regions is effectively wasted. Therefo (;:]nts are fL:LthertEpart thantlbdegree n dthg temper:litur;e
one design aim is that if the merging fails, it shoul imension, hen they cannot e merged. Lonversely, |

fail as early as possible to reduce wasted effort. €y areé no more than 1 o!egree apart, they can a')fvays ?e
merged. This contrasts with location data, where “close

e values may create over-sized regions whereas “distant”
B points may not. See Figure 2 for examples of these two
cases. In the “distant” case we have nodes in all of the
corners of the created region, making the assumption that
the central region contains similar values a reasonable

A

O inference. In the “close” example, we have no points
in the top-left and bottom-right areas, so merging these
Fig. 1. Greedy merging of two points points would infer much more without evidence to back

up the assumption. If, on the other hand, we had data

An initial greedy approach to merging would bdrom nodes in the top-left and bottom-right areas, then
simply to merge any and all packets into a large regianeating the “close” region would be much less likely to
that contains all of them. This approach has a numbesiuse problems. Another factor that makes this form of
of problems, as demonstrated in Figure 1. Specificalstimate more reliable is the use of proper heuristics for
the approach is too greedy, and ends up describidgaling with overlapping regions, which we will look at
regions that not only contain the original points, buh Section V-B.
also large areas that are not in the original data set,
and so can provide results that differ significantly from
the original data. Additionally, greedy merging of senscﬁ
data will result in large ranges in the results e.g. for Given the two differing forms of constraint, we define
the temperature example in Section I, we would géwvo classes of data source: statically and dynamically
the range “20-30 degrees”, losing significant amounts lhited. In general, these will correspond to sensor data
information. We do however still want to be as greedy @d location data respectively, but this may vary on a
we can in the merging algorithm, as a greedier algorithper-application basis, and for the purposes of merging
will result in being able to merge greater numbers afe only need to know the class of a data source.
regions into a single region. Therefore, in order to find Statically limited data sources have the criteria that a
an algorithm that is greedy enough, but not too greediata point with a particular value from this source can be
we need to constrain how data points are merged, ameérged with any other data point that is not further away
also decide if some points can in fact not be merged (@ifference between two values) than a specific value
all. A particular set of data points are only mergeable &.g. a temperature source may say that the limit is 1
all sources are mergeable for the particular points. degree. This means that two temperatures that are more

The constraints required for sensor data and for Ithan 1 degree apart will never be merged, thus giving a
cation data differ in their requirements. For locatioguaranteed limit on the amount of information that will
data, we want to be as greedy as we can, provided discarded.
that the end region does not cover areas that were noDynamically limited sources are more complicated,
implied by the original data. For sensor data, we haead are merged as a set (i.e. all dynamic sources are

. Constraints

3

tested at the same time). They have the advantage thaichanged to use averaged values correctly). The current
they have no fixed limits as to which can be mergednplementation provides the data in the standard Foxtrot
but instead have a series of criteria to guarantee tliatmat i.e. a series of phase space regions. These can be
the created region does not expand into regions tlwmbined to provide a complete picture of the network
are not suitably defined by the original regions usedithout much effort.
Complete details of the algorithm are in Appendix I, but One issue that can come up is that it is possible
the method resolves working with the corner points @br the regions gathered by the sink node to overlap.
all the regions involved, and not expanding a region iHow an application wishes to deal with this problem
a particular direction unless there are suitable points nmay well vary. The simplest options is to provide all
that direction to indicate that it is safe to expand in thaf the possibilities for overlapping nodes e.g. a node
direction, in order to avoid overly greedy merging. = may be marked as either being between 20 and 21
degrees celsius, or being 30-31 degrees celsius. Each
V. FOXTROT measurement comes from a separate region, but because
Foxtrot takes the data representation and mergiﬁf the merging, it is unknown which answer is correct.

. .)) %xtrot does guarantee that the correct value does not lie
concepts introduced in Sections Il and 1V, and builds g

. . outside the reported regions, but it is difficult to eliminate
an aggregation protocol. In common with any oth

: . e wrong option. A number of heuristics (“pick the
aggregation protocol that wants to do in-network aggre- g p p Cp

; : :) Smallest box”, “lower values are more likely”, etc) have
gation, Foxtrot requires a source-to-sink routing protoc . . o :
. . een tested against various application scenarios, but
that allows packets passing through a particular node, o

. .__tne best option will be application-specific. Alternately,
be altered andlor dropped depending on the ChO'CESn%’z ranges can be simply averaged. This will provide
the aggregation protocol. In fact, the easiest way f

a0aregation orotocols to do this is is for the routin%ss accurate values at the uncertain points, but the
gareg P : . , Yalues will represent a reasonable compromise between
protocol to not automatically forward incoming packet he various choices. Notably, vs. conventional averaging

but to hand them to the aggregation protocol, whi) L ’

. Foxtrot does provide information about which nodes
then may later give (some) packets back to the routin : . . .
g have uncertain values, and which are certain, which may
protocol for further forwarding.

also be of use in some applications.

A. In-network nodes L
C. Timing issues

For all in-network nodes (i.e. all nodes aside from the o)
sink) Foxtrot takes data from the data sources provided' "€ simplified protocol model detailed above does
by the application, converts them into the phase spdt@ deal with the timing issues common to all in-
data representation and then hands them off to tAgIWork aggregation protocols. The first major problem
underlying routing protocol for forwarding towards théS that periodic data measurement does not in general
sink. If packets arrive at a node, then Foxtrot will attempgSult in synchronised data. For example, if a particular
to merge them together along with any other packqupllcatlon measures data every 10 minutes, and Node

currently stored at this node, and then hand over the data can be aggregated with Node B’s data, we have
results to the routing protocol. no guarantee that the two nodes will measure data at

the same time, and therefore there could be up to a

10 minute delay between the measurements from the
B. Sink node different nodes. This means that to allow aggregation,

Sink nodes, similarly to in-network nodes, receiva node will have to delay the forwarding onwards of

packets consisting of regions in the phase space for thgacket for a much longer time than if the nodes are
application. This data should then be handed over to thgnchronised.
application (which may well then give the data to the In order to solve this problem, we implemented a
sink-connected PC, store the data for future referenggobal time synchronisation algorithm related to the
or any other action that the sink node wishes to ddglobal Schedule Algorithm [4], giving us synchronised
However, the format in which this data is provided to theross-network timers and allowing all nodes to measure
application brings up a number of issues. Applicationslues no more than 2-3ms apart. This also gives better
will probably have to be adapted to Foxtrot, but thieesults for many scientific applications, as being able to
applies to most other aggregation protocols as wdéihow that the sensor data represents a snapshot of the
(e.g. an application designed for raw data would have noonitored area over a short period of time is generally

4

more useful than a measurement spread over a largef T feage ——
Foxtrot ------

period, especially for cases where the source of the data

values is moving.

The second problem is how much a protocol shoulg
delay before sending a packet onwards, and this has beeh|
dealt with in some detail in earlier work ([1], [3], [9]).
At the moment, we are using values based on knowledge3 I
of the routing for the whole network, with a delay value«n
based on the number of hops from the current node o[
the highest hop-count child node in this part of the tree.

Notably, Foxtrot only requires a solution to the prob- ol
lem of how long to delay a packet. Our current solution 1o e e e

ror (de

. . 0
to the delay problem also requires a solution to the 20 30 40 50 60 70 80 % 100

synchronisation problem, but other solutions can also

Node Count

% 5. Scenario 3 (Division)

used with Foxtrot. Inaccurate answers will result in less

optimal results (because of later and/or less aggregation),

than correct ones, but Foxtrot will still work.

VI. RESULTS

T
Average —+—
Q-Digest ---x---
Foxtrot ------

0.8 1

o
()
T
.

I
~
T
.

Average Error (degrees)

0
20 30 40 50 60 70 80 90 100
Node Count

Fig. 3. Scenario 1 (Spread)

T
Average —+—
Q-Digest ---x---
Foxtrot ------

Average Error (degrees)

02+t I 1

0 L L L L L L L
20 30 40 50 60 70 80 90 100

Node Count

Fig. 4. Scenario 2 (Sparse)

j j j j Averaée —_—
Q-Digest ---x---
Foxtrot ------
3+ 4
7 2.5
o}
L
5]
T 2r 1
g
W
o 151 4
=
o
[
>
< 1k 4
05 d
0 1 1 1 1 1 1 1
20 30 40 50 60 70 80 90 100

Node Count

Fig. 6. Scenario 4 (Random)

We tested Foxtrot in two ways; firstly in simulation
against averaging and Q-Digest, using a generic “smart”
routing protocol; and secondly as a TinyOS implementa-
tion both in TOSSIM and on our node hardware testbed.

Our two metrics of interest were information loss and
the number of transmitted packets. Information loss was
calculated as the average per-node difference between
the estimate provided to the sink node and the true data
value of a sensor at each node. In all cases we ran the
tests 20 times, and the data here is an average of all of
those results.

The simulations modelled a network of nodes with
temperature sensors, with a variety of different floating
point values for the temperature readings. All tests were
done in an area of 30m by 30m, with a 14m radio
range. Radio links were assumed to be bi-directional and
perfect. Q-Digest was run with the temperature values
placed into 0.1 degree “bins” (in order to generate the
integer values required by Q-Digest from our floating
point temperature data), and Foxtrot set the maximum

allowed temperature merging range to 1 degree. Oaweraging here to resolve ambiguities, and this gives us
“smart” routing protocol used flooding from the sink tdiigher errors than we might be able to achieve with more
generate shortest-hop routes. Routing overhead packeghly tuned methods.

were ignored for the purposes of packet counts.

We tested four scenarios for the dispersal of the 35 , S : , S Digestverane ——
temperature values: X Fowo Gpread sconane < -
1) Spread : Near-identical values, all nodes at values "}~~~ o K (Rancom s <5 -]
between 30 and 31 degrees P - I
2) Sparse: 4% (1 in 25 nodes) of the nodes at betweén 1 e Coe
20 and 21 degrees, all others at 30 to 31 degre%. 2 m

3) Division: Nodes on the left hand side are betweef
20 and 21 degrees, and nodes on the right hagd"™®|
side are between 30 and 31, with 50% of the totq'ﬁ N
number allocated to each group.
4) Random: Random spread, all nodes between 2005
and 31 degrees
The Spread and Sparse scenarios (Figures 3 and 4),°20 3 40 s e 70 8 s 100
are not particularly interesting, but do show thatin _ Hode Count
the situations where conventional techniques are able fgy (- racketcounts
achieve low error values, Foxtrot is able to achieve iden-

ical ¢ Digest d e badlv b The trade off is that Foxtrot requires more packets to
ucal performance. Q-. Igest does quite badly becaugg sent, as it is not necessarily able to always merge
it provides complete information for a series of value

El data, which is shown in Figure 7. This graph shows

between 30-31 that we end up having to average to o1 rage packets sent per node, in order so we can

%r:;;isglr:nj;?afor any given node because of the lack r%]:)re easily see trends in the data. Firstly, Q-Digest and

The Division scenarios (Figure 5) provides us Witﬁverage both have exactly the same packet rate - 1 packet

, . \ﬁer node, as they merge everything. Foxtrot's packet rate
more useful results - Foxtrot’s error values remain loW,_ . . . :
vﬁrles substantially depending on the scenario, because

but the error rates for averaging and Q-Digest have b%e amount of unmergeable data in the network varies
risen sharply. Similarly to Spread and Sparse, Q-Digest)

. .) or the Random scenario, the packet rate is fairly similar
provides two different series of values for the overall P y

. . : . 0 the values for no merging, with only a reduction of
network in this scenario, one at approximately 20 de- , o

: ~7%. For scenarios 1-3 (Spread, Sparse, Division), the
grees, and a second at 30 degrees, reflecting an accurat

. acef(et rate reduction is more substantial, with an average
picture of the network. However, due to the completpe g

. . . of a 23% reduction in overall packet transmissions.
lack of location information, we are again forced to use

a weighted average of the two series to derive estimates,,

T T T
Foxtrot (Spread scenario) —+—

of the sensor data values, and so Q-Digest’s performance Foutor(Sparse scena) —c—
lom scenario,

is similar to averaging. The difference here is that both .|
averaging and Q-Digest give inaccurate results, but with
Q-Digest an end user would at least be aware of tre,,|
situation. With Foxtrot, we get two sets of values plusz
location information, allowing accurate estimates of the ;| .-
data values, and maintaining the low error rates shown
in the first two scenarios. g 5
Foxtrot does not perform quite as well in the Random
scenario (Figure 6), but this is the least likely of the ;4

scenarios to actually occur, given the correlation that °
tends to exist within multiple nearby readings for most o s s 1 1 1 1 1

. . 20 30 40 50 60 70 80 90 100
physical values used by sensor nodes. Despite the low Node Count

likelihood of this scenario, Foxtrot is still able to gefig. 8. Reduction in packets for sink neighbours

much lower error values than other methods. In fact,

one of the major sources of Foxtrot error is due to Different packet transmissions are not all the same in
the ambiguity issues described in Section V-B. We usereal-world sensor network, and spreading packet load

6

over the entire network as opposed to having most application-specific boundaries, may well help to per-
the load near to the sink will also help to save poweuade future projects to use aggregation without fearing
used by those transmissions due to to less contention &émel loss of experimental data.

reduced idle listening time. Figure 8 shows the reduction

in the number of transmitted packets vs. non-aggregatgdr ture Work

scenarios for nodes within one hop of the sink node. In . . . Lo
goxtrot is a first generation attempt at limited informa-

Spread, Sparse and Division, we achieved an avera% | i q hi ired
reduction of 34% (with values up to 54% for somé N 10Ss aggregation, and more research 1S required on

scenarios). Notably, Spread and Sparse get exactly {HS topic of creating aggregation protocols with similar

same results as each other for this test. The Randgmgs tto tthe |d|((ejas|d|sgussed in dtho:S' paper. b f
scenario had a 8.8% reduction. oxtrot could also be expanded in a number of ways.

To test that Foxtrot would work with actual nodeThe dynamic sources merging algorithm is relatively

. L . .~ conservative, and further exploration of the trade-off
hardware, as opposed to just in simulation environ- ! . .
. : etween accuracy and greediness for merging may find

ments, we also implemented Foxtrot for TinyOS. : .
) . etter candidates. Our use of phase space regions could
used Guesswork [7] to provide routing, but any other

reliable sink-to-source routing algorithm would be glso be expanded to cover other polytopes, which would

viable candidate. The resulting program for our mica@IOW the specifying of larger regions with less of the

derived nodes added up to a total of 44222 bytes %rfeedlness ISSUES.

ROM. Getting exact values for the Foxtrot modules on The notion of c_or_relatlon (whether multiple regions
: e) are mergeable) within Foxtrot could also be used with
their own is difficult, but the simple test program for the . . " -
) . .Some routing protocols to provide additional optimisa-
routing protocol takes up 38330 bytes in total, so a size o L .
. . . ions, specifically when a locally held region is entirely

for Foxtrot in the region of 6Kbytes is not unreasonabI%,nclosed by a region transmitted by another node. In this
and as that would be only 4.6% of the total program y g y '

space of 128Kbytes, we can conclude that Foxtrot wiif>e: 't. is possible to discard the local region as trans

- . mitting it would not change the end results, thus further
not cause too many problems for application designers. . . .
: - . rftaducmg required packet transmission rates. Correlation
in terms of finding enough space on their nodes. Resulls

from TOSSIM indicate that the TinyOS implementatiortl:OUIOI also be used to "hint” to the routing protocol that

- S . ending a packet via a particular node would result in
behaves similarly to our earlier simulation data, and earl gap b

testing with on node hardware indicate that this sti#éCket merging (and thereforg reduced overall packgts
needed to be sent) and so this would be a good choice
holds true for when run on real hardware.

for the next hop node.

VIlI. CONCLUSIONS REFERENCES

We have shown here that existing aggregation techi] ABDELZAHER, T., HE, T., AND STANKovIC, J. Feedback
niques are much more lossy than earlier estimates may Congo'_ of daté:j aélgftegftiggozl sensor networks Conference
have thought, and that the error rates from these protp, Bane & D V\?Ian)M(;)(':Ominuous queries over data
cols may vary widely over the lifetime of a network. To" "~ streams.SIGMOD Rec. 30, 3 (2001), 109—120.
combat these problems, we proposed Foxtrot, a limitel#] KRISHNAMACHARI, B., ESTRIN, D., AND WICKER, S. B. The
information loss aggregation protocol. Foxtrot aggre- impact of data aggregation in wireless sensor networks. In

. L . . ICDCSW ’'02: 22nd International Conference on Distributed
gates sensor data without significant information 0SS, coyting Systems (Washington, DC, USA, 2002), IEEE Com-
and without losing location information. This increase puter Society, pp. 575-578.
in information comes at a cost in additional packef4] L. Y-,I YEI, W-a AND HlEIDEMéNN, J. IEnergy aegg |ater}cy

P : control in low duty cycle MAC protocols. IrfProceedings o
transmlss_lons_ VS. more Io_ssy aggregation protocols, but the | EEE Wireless Communications and Networking Conference
the resulting information is much more reliable due to (new Orleans, LA, USA, March 2005).
continuously lower error rates. [5] MADDEN, S., FRANKLIN, M. J., HELLERSTEIN, J. M., AND
Foxtrot points the way towards a new generation of HONG, W. TAG: a tiny aggregation service for ad-hoc sensor
.. . networks. S GOPS Oper. Syst. Rev. 36, Sl (2002), 131-146.
sensor software, where application users will hopefull){e] MADDEN. S. R.. RANKLIN. M. J. HELLERSTEIN. J. M.
be willing to use aggregation techniques. Currently, anp Hong, W. TinyDB: an acquisitional query processing
many scientific application users have been cautious system for sensor network&CM Trans. Database Syst. 30, 1
; ; _ (2005), 122-173.
a_b99t the _use of a.lggregatlon pI’Ot(?COIS, glven the po?7] PARKER, T., AND LANGENDOEN, K. Guesswork: Robust
sibility of information loss. Techniques like Foxtrot, "~ Rrouting in an Uncertain World. I2nd IEEE International

with its focus on information loss reduction within Conference on Mobile Ad-hoc and Sensor Systems (Nov. 2005).

(8]

(9]

[10]

(11]

SHRIVASTAVA, N., BURAGOHAIN, C., AGRAWAL, D., AND
SuRl, S. Medians and beyond: new aggregation techniques
for sensor networks. InSenSys '04: Proceedings of the
2nd international conference on Embedded networked sensor
systems (New York, NY, USA, 2004), ACM Press, pp. 239—
249.

SoLis, I., AND OBRACZKA, K. The impact of timing in data
aggregation for sensor networks. ImProc. of the IEEE Inter-
national Conference on Communications (ICC), 2004 (2004).
WIKIPEDIA. Central limit theorem — Wikipedia, The Free
Encyclopedia, 2006. [Online; accessed 6-December-2006].
WIKIPEDIA. Phase space — Wikipedia, The Free Encyclope-
dia, 2006. [Online; accessed 6-December-2006].

APPENDIX |
DYNAMICALLY LIMITED SOURCES MERGING

Reference point

K (step 3c)
Current direction
(step 3)
1]
i N
D | Test Directions
' (step 3a)
‘f :A/

Expansion box
(step 1)

O«

Fig. 9. Dynamically limited sources merging example in 2-D

To merge a set of regions defined by dynamically
limited sources (see also Figure 9):

1) Define a initial zero-sized box in the centre of all

the original regions, callet’.

2) N\ = set of all corners of the regions.
3) For each dynamically limited sourag, perform

steps a to e twice, firstly for the positive direc-
tion, and secondly for the negative direction. The
current direction is specified a8

a) The set of test directions is defined as as the
cartesian produdt x ... x Ay, such thatg =
{Apos, Angg} (pOsitive and negative) for all of
the dynamic source8g andf3 # a.

Initialise a result variablé to the maximum
possible value ofi if Y'is positive, otherwise
to the minimum possible value.

For each test directioAg, check if there ex-
ists a point inA\ that satisfies each direction in
Ag for W. For example, given a test direction
{Xpos}, the point must have ar co-ordinate
greater than or equal to the largestco-
ordinate of¥. Similarly, for {Xng}, the point
would need to have ar co-ordinate smaller
than or equal to the smallestco-ordinate of
Y. If we have one or more points that satisfy

b)

8

4)

5)

6)

this criterion; then ifY is positive, setA to
the minimum of all of theilx values, else set
A to the maximum of all of theio values.

If we were unable to find one of the test
values in step ¢), quit as these regions are
not mergeable.

If Y'is positive, set the maximum value for

Y to A, else set the minimum value forW

to A.

If we have completed step 3 without quitting, then
Y is a merged form of the original regions.

For each original region, check it agairgt If

W completely covers the original region, we can
discard the original region. Alternately may
partially cover the original region. W completely
covers the original region on every dynamically
limited source aside from one, remove the part of
the original region that is withit. Otherwise, we
cannot do anything with the original region.

If we were unable to completely cover any regions
in step 5, then we have generated an extra region,
and so the original regions were not mergeable.
Otherwise, return the revised set of regions, in-
cluding .

d)

e)

