
Dwarf: Delay-aWAre Robust Forwarding for
Energy-Constrained Wireless Sensor Networks

Mario Strasser1, Andreas Meier1, Koen Langendoen2, and Philipp Blum3

1 ETH Zurich, Switzerland (equally contributing authors)
2 Delft University of Technology, The Netherlands

3 Siemens Building Technologies, Switzerland

Abstract. With the field of wireless sensor networks rapidly maturing,
the focus shifts from “easy” deployments, like remote monitoring, to more
difficult domains where applications impose strict, real-time constraints
on performance. One such class of applications is safety critical systems,
like fire and burglar alarms, where events detected by sensor nodes have
to be reported reliably and timely to a sink node. A complicating factor is
that systems must operate for years without manual intervention, which
puts very strong demands on the energy efficiency of protocols running
on current sensor-node platforms.

Since we are not aware of a solution that meets all requirements of
safety-critical systems, i.e. provides reliable data delivery and low la-
tency and low energy consumption, we present Dwarf, an energy-efficient,
robust and dependable forwarding algorithm. The core idea is to use
unicast-based partial flooding along with a delay-aware node selection
strategy. Our analysis and extensive simulations of real-world scenarios
show that Dwarf tolerates large fractions of link and node failures, yet
is energy efficient enough to allow for an operational lifetime of several
years.

1 Introduction

The state of the art in Wireless Sensor Networks (WSN) is rapidly changing.
From the Smart Dust vision in 1999 [4], through the early Great Duck Island
experiment with first-generation hardware in 2002 [9], to a host of (pilot) de-
ployments in operation today [1,11,17]. Although the application domains vary,
these deployments typically fall into the class of remote monitoring, where rather
soft constraints on performance (e.g., latency, throughput, and lifetime) allow
for straightforward engineering solutions. The experience gained with these pi-
lots is being incorporated into a second-generation software that is better tuned,
more robust, and offers the potential for enlarging the scope to more demanding
applications.

Using WSN technology for implementing safety-critical applications such as
fire and burglar alarm systems is a big challenge because of the real-time con-
straints imposed by their users. Typically, alarms detected by sensor nodes have
to be reported reliably and within a few seconds to at least one sink node, even in

J. Aspnes et al. (Eds.): DCOSS 2007, LNCS 4549, pp. 64–81, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 65

case that some of the nodes and communication links fail. Additionally, safety-
critical applications are required to observe the status of the network and report
node failures within a specified time. A complicating factor is that maintenance
costs have to be very low to make an application economically feasible. This re-
quires energy-efficient operation of the sensor network, because batteries should
not be replaced more often than once every two to three years.

With current generation sensor node hardware built out of COTS compo-
nents, the radio consumes the most power, and the above lifetime requirement
translates into a duty cycle of well below 1%. This, in turn, limits the data
rate to about 1 message per second and leaves little room for re-transmissions
in a multi-hop scenario. Multi-path routing proposed for ad-hoc networks is an
alternative way of handling link and node failures, but solutions either compro-
mise on latency or rely on broadcast for efficiency. A broadcast-based approach,
however, is consuming way too much energy as it implies that nodes listen to
all neighboring traffic including regular status-update messages for monitoring
system integrity. Furthermore, broadcast causes channel contention problems
and introduces synchronization overhead. The need to avoid broadcast is also a
reason that standard data gathering algorithms for WSN networks, like TAG [8]
and Synopsis Diffusion [12], cannot be used.

To jointly address the three fundamental requirements associated with safety-
critical applications (reliable data delivery, low latency, low energy consumption)
we advocate an integrated approach that cuts across the individual MAC, rout-
ing, and transport layers, to arrive at a working solution for commodity sensor
nodes in use today. To this end, we present Dwarf, a Delay-aWAre Robust For-
warding algorithm that is based on the following observations and assumptions:

a) One of the most robust, yet simple forwarding algorithms is flooding because
it ensures that a message will eventually reach its destination as long as the
network remains connected.

b) Traditional flooding is very expensive (with regard to energy consumption
and transfer costs) and does not consider the message delivery time at all.

c) Nodes duty-cycle their radio to increase network lifetime and spend most
of their time in sleep mode. Also, to minimize overheads and reduce pro-
tocol complexity, nodes do not synchronize globally (as in TDMA-based
systems [5,7]) and wake up independently of each other.

d) The node-to-sink notification time is determined by the, relatively long, sleep
periods of the destination nodes along the path. What is more, the transfer
time of a message is much smaller than the time between two wake-ups
(10ms vs. 1000ms in our alarm-system scenario, see Section 3).

The fundamental idea of Dwarf is to perform a unicast-based partial flooding
towards the sink in combination with a (greedy) delay-aware node selection strat-
egy to overcome the drawbacks mentioned above. More precisely, the number of
neighbors k to which an alarm is forwarded determines the degree of introduced
redundancy, thus making the algorithm more robust at the expense of an in-
crease in the number of messages and the associated complexity in handling

66 M. Strasser et al.

peak loads (e.g., collisions). The selection of the destination nodes according to
their wake-up time and relative position aims at reducing the overall alarm no-
tification time. That is, neighbors that wake up first and are closer to a sink are
favored over nodes that wake up later or are not on the shortest path towards
the sink. In order to maintain system integrity, status messages are exchanged
between neighboring nodes on a regular basis. This enables to detect (tempo-
rary) link failures as well as (permanent) node failures, which must be reported
to the sink so operators can take appropriate action (e.g., replace batteries). The
status messages are also used to account for clock drifts in individual nodes and
keep an up-to-date view on neighboring nodes’ wake-up times.

Summarized, the main contributions of this paper are threefold:

1. It presents a novel, integrated algorithm (Dwarf) for the robust and timely
delivery of alarm messages at the sink node in a energy-constrained multi-
hop sensor network.

2. It provides a theoretical analysis of fundamental performance guarantees
that Dwarf can achieve.

3. It shows through a set of detailed simulations that the Dwarf algorithm
meets the requirements of an alarm system taken in a real-world scenario.

The remainder of this paper is organized as follows. Section 2 discusses related
work, followed by a list of requirements and assumptions in Section 3, which
set the boundary for the actual Dwarf algorithm presented in Section 4. The
evaluation in Section 5 includes a formal analysis as well as an extensive set of
simulations. Finally, Section 6 concludes the paper.

2 Related Work

The need for energy-efficient operation is at the core of WSN research and has
received considerable attention. At the MAC layer, the excess channel capacity
can be exploited by duty-cycling the radio; at the routing layer, the redundancy
in the number of nodes can be exploited by rotating on/off duties. The latter
approach, however, is not an option in an alarm system where all nodes are
essential. WSN-specific MAC protocols generally save energy at the expense of
an increase in (multi-hop) latency, but differ in their exact trade-off [6]. The class
of Low-Power Listening protocols, such as B-MAC [13] or more sophisticated
approaches like SCP-MAC [21] and WiseMAC [2] fit best because of the low
power consumption doing idle listening and explicit control of the length of the
interval between wake-ups. SCP-MAC is based on a global synchronization of
the wake-up slots and hence introduces overhearing of the regular status-update
messages. WiseMAC on the other hand is based on asynchronous wake-up slots,
naturally minimizing message overhearing. Dwarf will be working with a slightly
enhanced version of WiseMAC that is discussed in detail in Section 3.2.

Another corner stone of WSN research is the need to handle errors in the wire-
less channel (short-term packet loss, long-term link failures) and the possibilities
of node failures. Surprisingly little research has been done on providing reli-
able end-to-end message delivery. The transport protocols that do address link

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 67

failures (e.g., ESRT [15], RMST [16], and PSFQ [18]) include techniques like re-
transmissions and path diversity to overcome the errors on individual links, but
do not provide end-to-end reliability because of the high costs and long (multi-
hop) latencies involved. At best, advanced protocols like MMSPEED [3] provide
probabilistic bounds on end-to-end delivery ratios1. Therefore, an application
should always be prepared to tolerate (residual) packet loss.

An effective, but expensive, approach to handle communication errors is to use
flooding. Quite often network-wide redundancy is not needed and partial flooding
suffices. For example, the GRAB protocol [20] uses a credit mechanism to specify
how many additional hops may be made to reach the destination, effectively
creating a “wide-path”. GRAB requires the set-up of a gradient field towards
the destination, hence, is only applicable to a few, popular destinations like the
sink(s) in an alarm system. The DFRF framework [10] generalizes this idea and
allows for easy creation of tailor-made partial-flooding protocols. Unfortunately,
DFRF does not integrate well with the MAC layer below making it difficult to
control latency and energy consumption.

An issue specific to safety-critical systems is the importance of detecting failed
nodes, which compromise the integrity of the system. A straightforward solution
is to make use of heart-beat style failure detectors where nodes periodically send
out a message notifying neighbors of their status. Wang and Kuo extend this idea
to a two-phase gossiping protocol suited for ad-hoc networks [19]. Although very
robust, information propagates slowly and at high cost. Recent work by Rost
and Balakrishnan shows that more-advanced failure detectors help in reducing
the message overhead [14], but latency remains an issue.

The lack of an integrated protocol that provides fast and robust delivery
of alarm messages in a multi-hop WSN, combined with a low-overhead failure
detector prompted us to design Dwarf.

3 Requirements and Assumptions

The design of the Dwarf forwarding and failure detection algorithms were driven,
on the one hand, by the requirements from the safety-critical application that it
should support and, on the other hand, by the functionality and configurability
that the MAC layer below provides. As always in a design process, the boundary
conditions were not crystal clear and subject to change. Hence, we had to make
some assumptions, which are also detailed in this section.

3.1 Alarm-System Scenario

The concrete application scenario for which Dwarf was designed is a distributed
indoor wireless alarm system. Each sensor node consists of a micro controller
(ATMEL ATMega128), a communication unit (CC1000 transceiver), a power
supply (2 AA batteries) and a sensor for detecting a specific alarm condition.
1 MMSPEED in fact provides QoS guarantees on reliability and latency, but ignores

energy consumption, rendering it unsuitable for our purposes.

68 M. Strasser et al.

All nodes are manually deployed at fixed locations in a building as with ordinary,
wired sensors. In addition, there is at least one mains-powered sink node that is
connected to a central control station. Domain specific regulations require that
an alarm raised by a sensor is reported at the control station (sink) within 10
seconds, which leaves little room for per-hop delays in typical office buildings
with long corridors and one control station per floor.

A second domain specific requirement is that failing nodes must be reported
within 5 minutes at the control station. Since link errors caused by environ-
mental interference are much more likely to occur than a node running out of
energy or failing for some other reason, we assume that unreachable nodes, al-
though technically still alive, must also be reported. This requires a periodic
status observation of the nodes, which must send out at least one message per 5
minutes. The control station needs to be positively informed about the aliveness
of each node, necessitating a collective, multi-hop forwarding scheme.

A failed node must be replaced, which is a costly operation due to the need
of calling in a qualified technician asserting the integrity of the complete alarm
system. Thus, it makes sense to replace the batteries of all nodes as soon as
the first one runs out of energy. However, to reduce operational costs, such a
grand replacement procedure should not occur more often than every two to
three years. This consideration requires Dwarf to minimize and to equalize the
power consumption for all sensor nodes.

3.2 MAC Protocol

A first requirement on the MAC protocol is that the effective duty-cycle must
be well below 1 %, which follows from the minimum lifetime (2 years), the
power consumption of the target radio in use (15mA) and the battery capacity
(2800mAh). A further constraint follows from the maximum end-to-end latency
of 10 s and the assumption that topologies with a depth of at least 5 hops must be
supported, together bounding the maximum wake-up interval (Tw) to at most 2 s
(careful staggering wake-up periods a la DMAC [7] would allow for even longer
intervals, but runs the risk of excessive delays in the case of link errors).

A 1% duty cycle and a 2 s wake-up interval allow for an active period of about
20ms, which is enough to perform a carrier sense operation taking approximately
2.5ms on a CC1000 radio [13]. Recall that Dwarf is based on partial flooding
to overcome link and node failures, and needs to contact several nodes per hop.
To avoid accumulating delays in doing so, it is essential that a MAC protocol
provides an interface which allows for querying the wake-up schedule of neigh-
boring nodes. Note further that, although most MAC protocols do not provide
such functionality, only minor modifications are required to enhance them.

To allow for easy deployment and a high resilience to errors, a MAC protocol
that requires no time synchronization between nodes is strongly preferred. This
limits the choice to the class of low-power listening protocols, in which a sender
pretends each message with a preamble that is slightly longer than Tw to ensure
that the intended receiver will sense a busy channel and listen in on the com-
plete transmission. These long preambles increase latency, but a sophisticated

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 69

protocol like WiseMAC, which learns the wake-up schedules of its neighbors,
can still use ordinary (short) preambles in most cases; the exact length of the
preamble depends on the clock drift and the time passed since the last message
was exchanged with the intended receiver. Thus, in order to use WiseMAC effec-
tively, Dwarf should ensure that neighboring nodes are periodically contacted.

3.3 Definitions

Throughout this paper, we represent the sensor network by the graph G := (V, E)
consisting of the set of sink nodes S ⊂ V , the set of sensor nodes V \ S, and
the set of edges E. All communication links are considered to be bidirectional
and two nodes u, v ∈ V can directly communicate with each other (i.e., are
neighbors) if and only if {u, v} ∈ E. Furthermore, all sensor nodes are organized
in rings according to their distance to the nearest sink; nodes with the same
distance are said to be in the same ring:

Definition 1. Let d(u, v) be the distance (i.e., the length of the shortest path)
between two nodes u and v. A node u is said to be in the i-th ring, or alternatively
to be on level l(u) = i with respect to the set of sink nodes S if and only if
min{d(u, s) : s ∈ S} = i. The set Ri := {u : u ∈ V ∧ l(u) = i} contains all nodes
on level i and the maximal level is denoted by L := max{l(u) : u ∈ V }.

Based on Definition 1, the neighbors of a node are divided into parents, peers,
and children (see Figure 1(a)):

Definition 2. We denote the set N−u := {v : {u, v} ∈ E ∧ l(v) = l(u) − 1} as
the parents of a node u, the set N0

u := {v : {u, v} ∈ E ∧ l(v) = l(u)} as its peers,
and the set N+

u := {v : {u, v} ∈ E ∧ l(v) = l(u)+ 1} as its children, respectively.

As already mentioned, we assume that all nodes but the sinks sleep most of the
time in order to save energy, and only wake up periodically. The wake-up period
of node u is denoted by Tw(u), its wake-up times by τu,i.

Definition 3. Let τu,i, u ∈ V \ S and i ∈ {0, 1, 2, . . .} be the wake-up times
of node u, such that τu,i+1 = τu,i + Tw(u) and 0 < Tw(u) < ∞. The duration
until the upcoming wake-up time relative to the current time t is denoted by
τ(u, t) := min{τu,i : τu,i > t} − t. Sink nodes are assumed to be always listening
hence, ∀s ∈ S : τ(s, u) := 0.

Finally, we set Tw := max{Tw(u) : u ∈ V \ S}, assume that there exists a
constant upper bound tm ∈ O(1) on the transmission time of any message m,
and use k to denote the (constant) upper bound on the number of neighbors to
which a message is forwarded.

4 Algorithms

In this section, we present the proposed Dwarf algorithm which consists of two
main tasks: alarm forwarding and node or link status observation.

70 M. Strasser et al.

Fig. 1. On the left, the local neighborhood of node u with parents N−
u := {a, b, c}, peers

N0
u := {d, e} and children N+

u := {f, g, h} is depicted. A corresponding forwarding
example with k = 4 and a failing transmission to node a is shown on the right.

4.1 Alarm Forwarding

When a node detects an alarm, it creates an appropriate alarm message m and
calls the function forwardAlarm() which, in turn, forwards it to min(k, |N−u | +
|N0

u|) parents and peers (see Algorithm 1). To this end, a set of parent candidates
˜N−u,m as well as a set of peer candidates ˜N0

u,m is maintained for each message.
The actual selection of the nodes to which a message is forwarded is performed by
the function getNextHop(). The function determines the parent candidate that
wakes up next and, after removing it from the candidate set, returns it as the
current destination. If there are no more parents to chose from (i.e., ˜N−u,m = ∅),
the peer that wakes up next is returned instead. Once both sets are empty, they
are reinitialized with N−u \ ̂N and N0

u \ ̂N , respectively, with ̂N being the set
of neighbors that successfully received the message (or forwarded it in the first
place). In order to keep the induced traffic as low as possible and because there
would be no additional gain otherwise, a node on level one aborts the forwarding
process as soon as it has successfully delivered the message to at least one sink.

Upon reception of an alarm message m, a node first verifies that the message
has not already been forwarded (i.e., m �∈ H). New messages are appended2 to
the message history H and forwarded in the same manner as a newly generated
alarm using the function forwardAlarm().

Should an alarm message be dropped because of a send, receive, or trans-
mission failure, it is retransmitted up to ra times, resulting in maximal k + ra

transmissions per message m. For each retransmission, however, a new destina-
tion is selected with getNextHop(), thus ensuring that retransmissions are also
forwarded in the fastest way possible.

A forwarding example for the scenario depicted in Figure 1(a) and k = 4 is
presented in Figure 1(b). After receiving an alarm message, node u forwards the

2 Of course not a whole message m has to be stored but only an unique identifier such
as the tuple (alarm originator, sequence number).

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 71

Algorithm 1. Alarm forwarding for node u
1: var H ← ∅
2:

3: function initCandidates(m)
4: ˜N−

u,m ← N−
u \ ̂Nm

5: ˜N0
u,m ← N0

u \ ̂Nm

6: end function
7:

8: function getNextHop(m)
9: if ˜N−

u,m = ∅ and ˜N0
u,m = ∅ then

10: initCandidates(m)

11: end if
12: if ˜N−

u,m �= ∅ then

13: select v ∈ ˜N−
u,m such that

14: τ(v) = min{τ(w) : w ∈ ˜N−
u,m}

15: ˜N−
u,m ← ˜N−

u,m \ {v}
16: return v
17: else if ˜N0

u,m �= ∅ then

18: select v ∈ ˜N0
u,m such that

19: τ(v) = min{τ(w) : w ∈ ˜N0
u,m}

20: ˜N0
u,m ← ˜N0

u,m \ {v}
21: return v
22: else
23: return ⊥
24: end if
25: end function
26:

27: function forwardAlarm(m)
28: H ← H ∪ {m}
29: initCandidates(m)

30: rm ← 0
31: im ← 1
32: v ← getNextHop(m)
33: send alarm message m to node v
34: end function

35: upon acknowledgment of alarm message m
sent to w

36: if im < min(k, |N−
u | + |N0

u|) and w �∈ S
then

37: ̂Nm ← ̂Nm ∪ {w}
38: im ← im + 1
39: v ← getNextHop(m)
40: send alarm message m to node v
41: end if
42: end upon
43:

44: upon drop of alarm message m sent to w
45: if rm < ra then
46: rm ← rm + 1
47: v ← getNextHop(m)
48: send alarm message m to node v
49: else if im < min(k, |N−

u | + |N0
u|) then

50: im ← im + 1
51: v ← getNextHop(m)
52: send alarm message m to node v
53: end if
54: end upon
55:

56: upon reception of alarm message m from v
57: if m �∈ H then
58: ̂Nm ← {v}
59: forwardAlarm(m)
60: else if v �∈ ̂Nm then
61: ̂Nm ← ̂Nm ∪ {v}
62: end if
63: end upon
64:

65: upon detection of an alarm
66: create alarm message m

67: ̂Nm ← {}
68: forwardAlarm(m)
69: end upon

message to the parents b, and c as well as to peers d and e, assuming that the
transmission to parent a failed.

4.2 Node Status Observation

The purpose of the status messages is twofold: On the one hand, they are required
in order to detect node or link failures, and on the other hand, they keep the
mutual knowledge of neighboring nodes regarding their wake-up times up to
date. Therefore, nodes send a status message to a peer as well as to a parent in a
round robin fashion every interval Ts (see Algorithm 2). In the scenario depicted
in Figure 1(a), for instance, node u would first send its status message to a and
d, after interval Ts to b and e, then to c and d etc. Each status message contains a
list of nodes which are known to be up and running; or put differently, present a
node’s (limited) view of the network. Whenever a node receives a status message,
the included node status list X ′ is merged with its own list X (i.e., X := X ∪̇X ′);
the list is cleared every interval Ts once it has been sent to a parent. Should a
message to a peer (parent) be dropped, the next peer (parent) is chosen and the
message retransmitted up to rs times.

72 M. Strasser et al.

Fig. 2. Each node periodically sends a status message to first a peer and then a parent,
containing a list of all running nodes it knows about. When a node receives such a status
message it appends the mentioned nodes to its own status list. Nodes in the outer rings
send first such that the sink will eventually receive the complete status of the network.

By having the nodes in the outer rings of the network send first (see Figure 2),
node states are disseminated — and thereby gradually updated — in form of
waves towards the sink which eventually receives a complete list of all running
nodes every interval Ts

3. Therefore, the status-update interval Ts is divided into
L sub-intervals of length Tr := Ts/L, which, in turn, are halved into a peer
and a parent slot. Furthermore, each node in the i-th ring is associated with
i-th sub-interval and sends its status message to the selected peer and parent in
the corresponding peer or parent slot, respectively. By scheduling the peer slot
before the parent slot, some additional reliability is introduced as a node’s status
list is now forwarded by one of its peers as well. The exact sending time within a
slot is independently and uniform-randomly chosen by each node and, if possible,
rounded to the nearest regular wake-up time. It might be worth mentioning that,
due to the relatively large delay between two subsequent parent slots within a
wave, a loose time synchronization (i.e., in the order of seconds) is sufficient for
the proposed algorithm.

4.3 Startup

The required knowledge of a node u consists of: (i) its level l(u), (ii) its one-hop
neighbors and their levels (i.e., N−u , N0

u, and N+
u), and (iii) the starting time for

the status waves. The information regarding level and neighbors can easily be
obtained as part of an enhanced neighborhood discovery algorithm that works
as follows:

1. Initially, the level of all nodes but the sinks is set to infinite and they have
no information about their neighborhood.

2. The sinks initiate the algorithm by broadcasting their ID and level.
3. A node u which receives a message from a neighbor v with l(v) < l(u) − 1

sets its own level to l(v) + 1, updates the parent, peer, and children and
(re)broadcasts its new level.

3 If there is more than one sink, each of them receives only a partial list. However, we
assume that all sink nodes are connected with each other, either directly or via a
central control station, and thus can easily obtain all partial lists.

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 73

Algorithm 2. Status message exchange for node u
1: var next parent ← 0
2: var next peer ← 0
3: var X ← {u}
4: var tu ← uniform randomly out of [0, Tr)
5: start peer timer for Δt = tu + (L− l(u))Tr

6: start parent timer for Δt = tu +((L−l(u))+
1
2)Tr

7:

8: function nextNodeToProbe

9: if use parent = true then
10: if next parent < |N−

u | − 1 then
11: next parent ← next parent + 1
12: else
13: next parent ← 0
14: end if
15: return N−

u [next parent]
16: else
17: if next peer < |N0

u| − 1 then
18: next peer ← next peer + 1
19: else
20: next peer ← 0
21: end if
22: return N0

u[next peer]
23: end if
24: end function
25:

26: upon timeout of peer timer
27: use parent ← false

28: rm ← 0
29: v ← nextNodeToProbe()
30: create status message m
31: send status message m to node v
32: start peer timer for Δt = Ts

33: end upon
34:

35: upon timeout of parent timer
36: use parent ← true
37: rm ← 0
38: v ← nextNodeToProbe()
39: create status message m
40: send status message m to node v
41: X ← {u}
42: start parent timer for Δt = Ts

43: end upon
44:

45: upon drop of status message m
46: if rm < rs then
47: rm ← rm + 1
48: v ← nextNodeToProbe()
49: send message m to node v
50: end if
51: end upon
52:

53: upon reception of status message m
54: merge received status X′ with X
55: end upon

An accurate propagation of the starting time of the status waves could be
achieved by flooding a relative starting time which is gradually updated by
subtracting the (approximated) transfer times.

5 Evaluation

In this section, we provide an analytical evaluation of the proposed algorithms
and present findings of simulations for scenarios derived from real-world data.

5.1 Analytical

In the following, we present proofs for the maximal number of link and node
failures that can be tolerated, show an upper bound on the required hop count,
and prove that the proposed destination selection algorithm is only a constant
factor worse than the optimal solution.

Theorem 1. The proposed alarm forwarding algorithm (Algorithm 1) can tol-
erate up to tl := min(k, δ) − 1 link failures with δ = min{|N−u | + |N0

u| : u ∈ V }
and k being the number of forwarding destinations.

Proof. Let us assume that u is the first node on level i > 0 to receive or create
an alarm which cannot be forwarded to a node on level i − 1. Consequently, all
links to u’s parents must be broken. In addition, for ≥ min(k, |N0

u|) of u’s peers
either the links from u to them or from them to their parents must be broken.

74 M. Strasser et al.

Per definition, each node has at least one parent. Thus, in total ≥ |N−u | +
min(k, |N0

u|) ≥ min(k, δ) > tl links must be down, contradicting the assumption
that there are at most tl link failures. The threshold is tight for k ≥ δ as a node
u with |N−u | + |N0

u| = δ, which exists per definition, can be isolated from all its
parents and peers if we allow ≥ δ = tl + 1 link failures.

Theorem 2. If at most tl links fail (see Theorem 1), an alarm initiated by node
u on level l(u) will reach the nearest sink after at most l(u)+min(tl, l(u)) ≤ 2l(u)
hops.

Proof. In order to extend the number of required hops by one, the links to all
parents of a node v must be broken. However, as a message is forwarded to
min(k, |N0

v |) peers, at least min(k, |N0
v |) − (tl − |N−v |) = min(k + |N−v |, |N0

v | +
|N−v |) − tl ≥ min(k, δ) − tl = 1 of them are able to forward it to one of their
parents. As a result, the number of required hops can be extended by only one
for each level and requires that at least one link is down. The maximal number
of additional hops is thus min(tl, l(u)).

Definition 4. For a node u, we denote by |NZ
u | the maximal number of peers

such that: (i) for each peer there exists a path to a node on level l(u) − 1 that
is not a parent of u; (ii) on each path, all but the last node are on level l(u);
and (iii) all paths are mutually node-disjoint. More precisely, |NZ

u | = max{|a| |
a ⊆ N0

u ∧ ∀v ∈ a : ∃ path (v, v1, v2, v3, . . . , vm) such that ∀vi, 1 ≤ i < m : vi ∈
Rl(u) and vm ∈ Rl(u)−1 \ N−u ∧ ∀v, w ∈ a, v �= w : ∀i, j : vi �= wj}
Theorem 3. The proposed alarm forwarding algorithm (Algorithm 1) can tol-
erate up to tp := min(k, γ)− 1 node failures with γ = min{|N−u |+ |NZ

u | : u ∈ V }
and k being the number of forwarding destinations.

Proof. Let us assume that u is the first node on level i > 0 to receive or create
an alarm which cannot be forwarded to a node on level i − 1. Consequently, all
parents of u must have failed. In addition, for ≥ min(k, |NZ

u |) of u’s peers, they,
a node on the corresponding node disjoint path, or the corresponding node in the
next level must have failed. Thus, in total ≥ |N−u | + min(k, |NZ

u |) ≥ min(k, γ) >
tp nodes must be down, contradicting the assumption that there are at most tp
node failures. The threshold is tight for k ≥ γ as a node u with |N−u |+ |NZ

u | = γ,
which exists per definition, can be isolated from all nodes in the next level if we
allow ≥ γ = tp + 1 node failures.

Theorem 4. If at most tp nodes fail (see Theorem 3), an alarm initiated by
node u on level l(u) will reach the nearest sink after at most l(u)+βtp hops with
β = max{|N+

u | : u ∈ V }.
Proof. Given that at most tp nodes fail, there exists a path (u, u1, u2, u3, . . . , um)
which connects a node u with a node um in the next lower level. A node v that
fails has at most |N+

v | children and thus can prevent at most |N+
v | nodes on

level i from forwarding an alarm to level i − 1. Consequently, after at least |N+
v |

hops in the same level a node with a different parent is reached. As a result,
each failed node v can extend the number of required hops by at most |N+

v | ≤ β
and the maximal number of additional hops is bounded by βtp.

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 75

20 40 60 80 100 120
10

20

30

40

 Sink

Network Topology [m] (one of two Floors)

1 2 3 4 5 6
0

10

20

30

#N
od

es

#Hops

0 5 10 15 20
0

5

10

15

#Neighbors

#N
od

es

Fig. 3. 80 sensor nodes are positioned according to a real world, but wired deployment;
connectivity is based on measured path-loss coefficients

Theorem 5. The presented (greedy) destination selection algorithm selects a
route that is at most 1 + Tw

tm
∈ O(1) times slower than the optimal route.

Proof. If there are no link failures, an alarm m initiated by node u on level l(u)
will reach the nearest sink in time tb = l(u)tm in the best case and in time
tw = l(u)(Tw + tm) in the worst case. Thus, if the algorithm prefers parent v
over w because τ(v, t0) = T < τ(w, t0) = T + ε we get a worst case ratio of

c =
T + (l(u) − 1)(Tw + tm)

T + ε + (l(u) − 1)tm
≤ Tw + tm

tm
= 1 +

Tw

tm

5.2 Simulation

To evaluate Dwarf under appropriate and realistic conditions, we conducted
a set of measurements in an existing (wired) real-world alarm system located
in a large historic public building comprising 80 sensor nodes and one central
control station (sink). In particular, the complete 80x80 path-loss matrix was
recorded, capturing the link quality between any pair of nodes. In addition, we
enhanced GloMoSim such that it can be directed to work with this recorded
data. During simulation, a signal-to-interference-plus-noise-rate (SINR) model
is used to compute the bit-error rate for each transmission individually. The
packet-error rates are then calculated based on the packet length not assuming
any bit-error correction. Figure 3 shows the topology and some basic charac-
teristics in the case without interference; links are shown if the bit-error rate
is below 0.1%. The realistic channel model is complemented with the original
GloMoSim implementation of the WiseMAC protocol, enhanced by its authors
to include an API for querying the wake-up times of contacted neighbors. This
functionality was needed to implement Dwarf’s parent selection for rapid alarm
forwarding.

In the remainder of this section, we present the results of our simulations with
respect to alarm notification time, message complexity, energy consumption, and
robustness against link failures.

76 M. Strasser et al.

0 500 1000 1500 2000
0

0.5

1

1.5

2

La
te

nc
y

[s
]

Wake−up Period [ms]

k = 1
k = 2
k = 5

(a) Average latency

0 500 1000 1500 2000
0

2

4

6

8

10

La
te

nc
y

[s
]

Wake−up Period [ms]

k = 1
k = 2
k = 5

(b) 99-quantile latency

0 2 4 6 8 10
0

10

20

30
 Average: 0.935s

Latency of alarms [s]

(c) Tw = 1s, k = 2

0 2 4 6 8 10
0

10

20

30
 Average: 1.29s

Latency of alarms [s]

(d) Tw = 1.5s, k = 2

Fig. 4. Fire-alarm performance without link failures

Alarm Notification Time. Figure 4(b) presents the 99-quantile of the la-
tency for different Tw and k in a first experiment without any node and link
failures. Note that, since no absolute guarantees can be given in any wireless
system, we report the worst case latency of all simulations except the 1% patho-
logical cases. The first observation that can be made is that the maximum
(6-hop) notification delay increases linearly with Tw due to the wake-up pe-
riod dominating the actual message transfer time (Tw � tm). In addition to
the 99-quantile, the latency distribution of all alarm messages for k = 2 and
Tw = {1s, 1.5s} is depicted in Figures 5.2 and 5.2. This latency distribution
shows that the average (3-hop) latency is just 0.94s for Tw = 1s and 1.29s for
Tw = 1.5s, which is even smaller than the nodes’ wake-up time. This is a con-
sequence of Dwarf’s forwarding scheme that selects the next hop according to
its level and wake-up time. The average hop delay is therefore much smaller
than Tw. In contrast to the 99-quantile, the average latency increases less than
linear with Tw. This behavior can be explained by the fact that an always lis-
tening sink has a much bigger impact on the average latency than on the 99-
quantile. Since the outliers become more distinct with an increasing wake-up
time, we will use Tw = 1s from now on as the default setting for the remaining
experiments.

Figure 4(b) also shows the impact of the parameter k. One can observe that
the smaller k, the more outliers occur. This is especially severe for k = 1 where
such a distinct outlier can be noticed at Tw = 1.8s. Choosing k > 1 prevents
them to occur, since a local jam can be bypassed on another route. Even though
k = 5 seems to be more stable in terms of small outliers, k = 2 already delivers
the messages well within the required 10s.

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 77

Table 1. The number of messages Dwarf injects into the network as a function of
trigger level and k. For comparison, a network-wide flood generates 479 messages.

Level k=1 k=2 k=3 k=4 k=5
1 1.00 1.00 1.00 1.00 1.00
2 2.00 4.23 7.51 11.46 19.84
3 3.01 9.25 18.30 27.19 35.81
4 4.02 15.97 26.73 35.51 40.95
5 5.03 22.69 34.56 43.20 48.40
6 6.07 30.68 42.14 49.23 53.29

Message Complexity. The parameter k has not only an impact on the latency
but also on the number of propagated alarm messages. Table 1 shows the average
number of totally generated messages per alarm, depending on k and the level
on which the alarm was triggered. For k = 1 the number of messages is just
slightly larger than the level, showing that messages can usually be forwarded
to parents. For k = 2 the number of messages increases in the order of 2level

up to the 4th level. For k = 5, on the other hand, the increase in the number
of messages is far below 5level, mainly because messages are not sent backwards
to children and due to the topology of real deployments that enforce frequent
unifications of alarm messages routed on different paths. As a result, increasing
k from 2 to 5 for a level-6 alarm will not even double the number of generated
messages. Furthermore, an alarm is considered to be a very rare event, allowing
a certain message overhead in order to ensure robust operation.

Energy Consumption. There are two main sources of energy consumption:
First, the radio must be turned on regularly in order to check for a possible
alarm message and second, sending and receiving status messages. The en-
ergy consumption of the former increases linearly with the wake-up frequency
1/Tw, while the latter depends on the total number of sent messages. This
number, in turn, heavily depends on the update interval Ts, which was cho-
sen to be 150 seconds in order to ensure that node failures are reported in time
(2Ts ≤ 5min). Figure 5(a) depicts this partitioning of the maximal energy con-
sumption for the usual idle state where no alarms are generated. It shows that
the energy consumption of status messages is constant for Tw � 500ms, but
significantly increases for shorter wake-up times due to a more frequent over-
hearing of status messages. As already mentioned, the targeted duty cycle is
required to be below 1%, which can be achieved with Tw � 500ms. However,
having a wake-up time of about 1s provides some additional flexibility and ac-
counts for additional maintenance tasks as well as network initialization. Finally,
Figure 5(b) shows that Dwarf provides the desired equalized energy consump-
tion of all nodes; the maximum duty cycle is only about 25% higher than the
average.

78 M. Strasser et al.
D

ut
y

C
yc

le

Wake Up Period [ms]
100 500 1000 1500 2000
0

0.01

0.02

0.03
Status messages
Carrier Sense

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Duty Cycle (%)

N
um

be
r

of
 N

od
es

 Average: 0.51%

Fig. 5. Worst-case energy consumption for status message exchange and carrier sense.
As shown on the right, the node’s energy consumption well-balanced.

Robustness Analysis. So far we considered a benign communication environ-
ment without any failing links. In order to analyze Dwarf’s performance in a
harsher environment, we added random but static link failures while ensuring
that the network remains connected. Furthermore, we triggered the alarm mes-
sages synchronous to the link failures, in order to avoid that Dwarf adapts to the
limited communication environment, and, as discussed before, chose Tw being
equal to 1s.

Figure 6(b) presents the 99-quantile of the latency with up to 40% link failures
and different k’s. Setting k = 1 clearly does not provide a lot of robustness. This
can also be seen in Figure 6(c) showing the fraction of messages that are not
delivered at all. For instance, there is a single alarm that is not reported with
only 7.5% link failures. This can happen if the communication of a node towards
the sink is blocked and no redundant messages are sent. In contrast to the failure-
less case in Figure 4, having k = 2 or k = 5 makes a difference in the alarm
performance. Especially the 99-quantile shows fewer outliers with bigger k’s. The
unreported alarms, on the other hand, show a similar trend for different k ≥ 2.
The explanation for this is that each k > 2 provides enough redundancy to find
a way to the sink, except when the way towards the sink is completely blocked
at the alarm-triggering node (i.e., neither parents nor peers are available).

Figure 6(d) shows the distribution of the latency for 30% link failures with
Tw = 1s and k = 2. Compared to the case without link failures (cf. Figure 4), the
alarms take about 50% longer to reach the sink, but still get there on time, except
for one outlier. We determined that such outliers are caused by the increase in
the number of status messages in response to the link failures, which effectively
blocks the channel for alarm messages. There is little we can do about this
because ongoing transmissions cannot be aborted.

The impact of link failures on the average latency is shown in Figure 6(a).
The main observation that can be made is that k = 2 shows a better average
performance than k = 1, since alarm messages are bypassed on other routes.

Not only the alarm messages are affected by link failures, but also the sta-
tus messages. Their performance in combination with link failures is shown in
Figure 7. By design, Dwarf does not report any false negatives that is, Dwarf
never reports nodes being alive which actually have failed. In contrast, the num-
ber of false positives (alive nodes reported missing) suffers severely from the

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 79

0 5 10 15 20 25 30 35 40
0

1

2

3

Number of Link Failures (%)

La
te

nc
y

[s
]

k=1
k=2
k=5

(a) Average latency with link failures

0 5 10 15 20 25 30 35 40
0

5

10

15

20

Number of Link Failures (%)

La
te

nc
y

[s
]

k=1
k=2
k=5

(b) 99-quantile latency with link failures.
The lines end when more than 1% of the
messages are not reported

0 5 10 15 20 25 30 35 40
0

5

10

15

Number of Link Failures (%)

U
nr

ep
or

te
d

A
la

rm
s

(%
) k=1

k=2
k=5

(c) Unreported alarm messages

0 2 4 6 8 10 12
0

20

40

60

80

100
 Average: 1.47s

Latency [s]

N
um

be
r

of
 A

la
rm

s

(d) Latency distribution for 30% link fail-
ures and k = 2

Fig. 6. Fire-alarm performance with link failures, based on 400 triggered alarm mes-
sages per sample point.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

Number of Link Failures (%)

F
al

se
 S

ta
tu

s
R

ep
or

t (
%

)

False positives − 5min
False positives − 10min
False negatives

Fig. 7. Status message performance with link failures

bad communication environment as shown in Figure 7. The performance can
be increased significantly, however, when the reporting time for node failures is
increased and the results of several status monitoring intervals can be combined,
as shown in Figure 7 for a doubled reporting time of 10min. Alternatively, Ts

could be decreased, resulting in increased power consumption.

6 Conclusions

In this paper we presented Dwarf, an energy-efficient, robust and dependable
forwarding algorithm for the accurate notification of alarm messages in safety-
critical WSN applications. The fundamental idea of Dwarf is to perform a
unicast-based partial flooding in combination with a (greedy) delay-aware node
selection strategy. Our evaluation, based on a real-world scenario, shows that

80 M. Strasser et al.

alarm messages are dependably reported at the sink, even if a substantial number
of links in the network fail. On average alarms are delivered over multiple hops
in less than a node’s wake-up time Tw. For a Tw in the order of 1s, over 99% of
the alarm messages are reported well within the required 10s, even if 30% of the
links fail. The effective duty-cycle is always below 1%, yielding an operational
lifetime of several years. Finally, Dwarf manages to reliably report failed nodes
within the target interval of 5 minutes. Under poor conditions, i.e. when many
links fail, alarm and status messages actually interfere showing that application
scenarios should always be regarded as a whole. We firmly believe that alarm re-
porting, failure detection, and duty-cycling should be addressed in an integrated
way, as Dwarf does.

Possible enhancements that are left for future work are to also consider the
children of a weakly connected node (with a certain probability) and to change
the number of forwarding destinations k (dynamically) per node, depending on
either a node’s local view of the network or the history of a message. Furthermore,
the link-quality between nodes has been assumed to be static but is likely to
vary on a long-term basis. This would require Dwarf to adapt its ring structure
accordingly in order to ensure that only good-quality links are being used.

Acknowledgments

The work presented in this paper was supported by CTI grant number 8222.1
and the National Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported by the Swiss Na-
tional Science Foundation under grant number 5005-67322. We would like to
thank Bernhard Imfeld from Siemens Building Technologies for providing us
with the real-world scenarios and Amre El-Hoiydi for adapting WiseMAC.

References

1. Culler, D., Estrin, D., Srivastava, M. (eds.): Special issue IEEE Computer on Wire-
less Sensor Networks (August 2004)

2. El-Hoiydi, A., Decotignie, J.-D.: WiseMAC: An ultra low power MAC protocol
for multi-hop wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.)
ALGOSENSORS 2004. LNCS, vol. 3121, pp. 18–31. Springer, Heidelberg (2004)

3. Felemban, E., Lee, C.-G., Ekici, E.: MMSPEED: Multipath Multi-SPEED protocol
for QoS guarantee of reliability and timeliness in wireless sensor networks. IEEE
Trans. on Mobile Computing 5(6), 738–754 (2006)

4. Kahn, J., Katz, R., Pister, K.: Next Century Challenges: Mobile Networking for
Smart Dust. In: 5th ACM/IEEE Conf. on Mobile Computing and Networks (Mo-
biCom ’99), Seatle, WA pp. 271–278(August 1999)

5. Keshavarzian, A., Lee, H., Venkatraman, L.: Wakeup scheduling in wireless sensor
networks. In: 7th ACM symposium on Mobile ad hoc networking and computing
(MobiHoc) , Florence, Italy pp. 322–333 (2006)

6. Langendoen, K., Halkes, G.: Energy-efficient medium access control. In: Zurawski,
R. (ed.) Embedded Systems Handbook, pp. 34.1–34.29 CRC press, Boca Raton,
USA (2005)

Delay-aWAre Robust Forwarding for Energy-Constrained WSNs 81

7. Lu, G., Krishnamachari, B., Raghavendra, C.: An adaptive energy-efficient and
low-latency MAC for data gathering in sensor networks. In: Algorithms for Wire-
less, Mobile, Ad Hoc and Sensor Networks (WMAN), Santa Fe, NM, (April 2004)

8. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TAG: a tiny aggregation ser-
vice for ad-hoc sensor networks. ACM SIGOPS Operating Systems Review, vol.
36(SI) pp. 131–146 (2002)

9. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sen-
sor networks for habitat monitoring. In: ACM Workshop on Wireless Sensor Net-
works and Application (WSNA), Atlanta, GA pp. 88–97 (September 2002)

10. Maroti, M.: Directed flood-routing framework for wireless sensor networks. In: 5th
ACM/IFIP/USENIX Conf. on Middleware, pp. 99–114 (2004)

11. Marrón, P.J., Voigt, T., Rohner, C., Ahlgren, B. (eds.): 2nd ACM Workshop on
Real-World Wireless Sensor Networks (REALWSN), Uppsala, Sweden (June 2006)

12. Nath, S., Gibbons, P., Seshan, S., Anderson, Z.: Synopsis diffusion for robust ag-
gregation in sensor networks. In: 2nd ACM Conf. on Embedded Networked Sensor
Systems, Baltimore, MD pp. 250–262 (November 2004)

13. Polastre, J., Hill, J., Culler, D.: Versatile low power media access for wireless sensor
networks. In: 2nd ACM Conf. on Embedded Networked Sensor Systems, Baltimore,
MD pp. 95–107 (November 2004)

14. Rost, S., Balakrishnan, H.: Memento: A health monitoring system for wireless
sensor networks. In: IEEE SECON, Reston, VA (September 2006)

15. Sankarasubramaniam, Y., Akan, O., Akyildiz, I.: ESRT: Event-to-sink reliable
transport in wireless sensor networks. In: 4th ACM Symposium on Mobile Ad
Hoc Networking & Computing (MobiHoc), pp. 177–188 (June 2003)

16. Stann, F., Heidemann, J.: RMST: Reliable data transport in sensor networks. In:
First IEEE Workshop on Sensor Net Protocols and Applications, Anchorage, AK,
pp. 102–112 (April 2003)

17. Voigt, T., Rohner, C. (eds.): Workshop on Real-World Wireless Sensor Networks
(REALWSN), Stockholm, Sweden, (June 2005)

18. Wan, C.-Y., Campbell, A., Krishnamurthy, L.: PSFQ: A reliable transport protocol
for wireless sensor networks. In: ACM Workshop on Wireless Sensor Networks and
Application (WSNA), Atlanta, GA pp. 1–11 (September 2002)

19. Wang, S.-C., Kuo, S.-Y.: Communication strategies for heartbeat-style failure de-
tectors in wireless ad hoc networks. In: Conf. od Dependable Systems and Net-
works, San Francisco, CA, pp. 361–370 (June 2003)

20. Ye, F., Zhong, G., Lu, S., Zhang, L.: GRAdient Broadcast: A robust data delivery
protocol for large scale sensor networks. Wireless Networks 11(3), 285–298 (2005)

21. Ye, W., Silva, F., Heidemann, J.: Ultra-low duty cycle mac with scheduled chan-
nel polling. In: 4th ACM Conf. on Embedded Networked Sensor Systems (SenSys
2006), Boulder, CO pp. 321–334 (November 2006)

	Introduction
	Related Work
	Requirements and Assumptions
	Alarm-System Scenario
	MAC Protocol
	Definitions

	Algorithms
	Alarm Forwarding
	Node Status Observation
	Startup

	Evaluation
	Analytical
	Simulation

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

