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Abstract. This paper introduces Crankshaft, a MAC protocol specif-
ically targeted at dense wireless sensor networks. Crankshaft employs
node synchronisation and offset wake-up schedules to combat the main
cause of inefficiency in dense networks: overhearing by neighbouring
nodes. Further energy savings are gained by using efficient channel polling
and contention resolution techniques.

Simulations show that Crankshaft achieves high delivery ratios at low
power consumption under the common convergecast traffic pattern in
dense networks. This performance is achieved by trading broadcast band-
width for energy efficiency. Finally, tests with a TinyOS implementation
demonstrate the real-world feasibility of the protocol.

Keywords: Wireless Sensor Networks, MAC Protocol, Dense Networks.

1 Introduction

In Wireless Sensor Networks (WSNs) energy efficiency is a major considera-
tion. Sensor nodes are expected to operate for long periods of time, running of
batteries or ambient energy sources. Because the biggest consumer of energy
is the radio, many researchers have focused on creating energy efficient MAC
protocols [1,2,3,4,5,6,7].

Recent experiences with real-world deployments [8] have shown that the num-
ber of neighbours in WSNs can be higher than 15, which exceeds the 5–10 that
MAC protocol designers have typically assumed. The “smart-dust” vision of
WSNs also incorporates these dense deployments. Dense deployments have their
own specific challenges, due to the high connectivity. Below we list the most
important problems in current MAC protocols arising from dense networks:

Overhearing. Overhearing of messages destined for other nodes is a source
of energy waste in any deployment. However, in dense deployments there
are more neighbours that will overhear a message which exacerbates the
problem. Furthermore, having more neighbours also means there may be
more messages to overhear.

Communication grouping. Several protocols, like S-MAC [1] and T-MAC [2],
group communication into active parts of frames. This is done to allow the
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network to go to sleep during the inactive parts of frames. The approach
has a significant drawback: the grouping increases contention and collisions.
Collisions cause retries, which in turn increases the traffic load. Furthermore,
for adaptive protocols like T-MAC the increased traffic will keep nodes awake
longer without increasing useful energy consumption.

Over-provisioning. TDMA protocols like LMAC [6] schedule send-slots for
participating nodes. However, if a node has nothing to send, the slot goes
unused. In a dense deployment, a frame has to be split into many slots to
allow all nodes to participate in the network. Most of these slots go unused,
but as a node has to wait for its send slot before it is allowed to send, latency
increases and throughput decreases. Also, all the non-sender nodes will have
to listen for at least a short amount of time to check if the scheduled sender
is actually using the slot, and to check if they are being addressed by the
sender.

Neighbour state. Protocols that save neighbour state as for example PMAC [7]
and WiseMAC [9] do, also run into problems in dense deployments. Because
in a dense deployment each node has many neighbours, the MAC protocol will
have to either maintain a lot of state or discard some of the neighbours. Main-
taining state for over 20 neighbours is undesirable as it uses precious RAM.
However, discarding neighbour information means that communication with
certain nodes is not possible or at least severely hindered. Furthermore, the
routing protocol also maintains a neighbour list. If the neighbour list of the
routing layer contains different nodes than the neighbour list of the MAC pro-
tocol, considerable problems arise.

This paper introduces the Crankshaft MAC protocol, which is specifically
designed to perform well in dense deployments. It reduces overhearing and
communication grouping by letting nodes power-down their radios alternately,
rather than simultaneously. It does not keep per-neighbour state and receive-
slot scheduling ensures that over-provisioning is bounded. The trade-off is that
the maximum throughput is reduced, especially for broadcast traffic. For many
applications however, this trade-off is acceptable.

The rest of this paper is organised as follows: First we will present related
work. Then, in Section 3 we discuss the design of the Crankshaft protocol. In
Section 4 we discuss the setup of our simulations, followed by the simulation
results in Section 5. In Section 6 we present our results with our TinyOS imple-
mentation. Finally in Sections 7 and 8 we provide more discussion of the results
and finish with our conclusions and future work.

2 Related Work

Many MAC protocols have been designed for WSNs. Below we present a selection
of protocols that have relevance to our new Crankshaft protocol.

One of the earliest proposals is Low Power Listening [3] (LPL). LPL uses a
simple Data/Ack scheme to ensure reliability. This is combined with efficient
channel polling to reduce the energy spent on listening for incoming messages.
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Instead of simply turning the radio on, LPL periodically checks the channel.
To ensure that messages are properly received the preamble of each message is
stretched to include an additional poll period. The B-MAC [4] protocol is an
evolution of LPL, whereby the application can tweak the poll period depending
on its bandwidth usage.

The channel polling mechanism of LPL has been further refined in the SCP-
MAC [5] protocol. It uses channel polling, but it synchronises all nodes to poll at
the same time, essentially implementing a slotting mechanism. This allows po-
tential senders to do contention resolution before the intended receiver wakes up.
Furthermore, the message preambles do not have to be stretched for a complete
poll period because the poll moment is known. Crankshaft employs a mechanism
of channel polling very similar to the SCP-MAC protocol.

Several TDMA protocols have also been developed. A good example is the
LMAC [6] protocol. Contrary to many other TDMA protocols, the LMAC pro-
tocol uses a completely distributed slot assignment mechanism. Each slot owner
sends at least a packet header in the slot the node owns. Neighbouring nodes
listen to the start of each slot, and detect which slots are free. However, for a
TDMA protocol it is required that a slot is not reused within a two-hop neigh-
bourhood. The LMAC protocol therefore includes a bitmap with all the slots
assigned to a node’s neighbours in the header. By combining the bitmaps of all
neighbours, a node can determine which slots are free within a two-hop neigh-
bourhood. Crankshaft also uses frames and slots, but schedules receivers rather
than senders. However, the mechanisms employed by LMAC to achieve synchro-
nisation, framing and slotting are used in Crankshaft.

Pattern MAC [7], or PMAC, also divides time into frames. Each frame con-
sists of two parts: the Pattern Repeat part and the Pattern Exchange part. Both
parts are divided into slots. During the Pattern Repeat part, nodes follow the
sleep/wake pattern they have advertised. Nodes also wake up when a neighbour
for which they have a packet to send has advertised it will be awake during a par-
ticular slot. Nodes advertise their chosen patterns during the Pattern Exchange
part. Each slot in the Pattern Exchange part is long enough to send a node’s pat-
tern information and nodes have to contend for these slots. To enable all nodes to
send their pattern information, the Pattern Exchange part has as many slots as
the maximum number of neighbours a node is expected to have. The sleep/wake
patterns are adapted to the traffic going through a node, to achieve maximal
energy savings. The PMAC protocol is similar to the Crankshaft protocol in that
it also schedules nodes to be awake for reception on a slot basis. However, the
PMAC protocol requires nodes to exchange and store schedules.

Although unrelated to the Crankshaft protocol, we also briefly introduce the
S-MAC and T-MAC protocols, as they have become a standard benchmark
for WSN MAC protocols. The S-MAC [1] protocol attacks the idle listening
problem by introducing a coarse duty-cycling mechanism. It divides time into
frames with an active part and a sleeping part. All communication between
nodes is performed in the active part. In a later paper [10] the S-MAC protocol
was extended with “adaptive listening”. This incarnation of the S-MAC protocol
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uses the same idea as the T-MAC [2] protocol: group all communication at the
start of the active period, and go to sleep if no more activity is sensed. This
adapts the length of the active period to the available traffic.

When employed in dense networks all the above protocols suffer from one or
more of the problems signalled in the introduction. This results in suboptimal
energy use.

3 Crankshaft

Having signalled the problems MAC protocols face in dense wireless-networks,
we designed the Crankshaft protocol. The basic principle of the protocol is that
nodes are only awake to receive messages at fixed offsets from the start of a
frame. This is analogous to an internal combustion engine where the moment
a piston fires is a fixed offset from the start of the rotation of the crankshaft.
Allowing different nodes to wake up for reception at different offsets from the
start of the frame means that there are fewer nodes overhearing messages and
spreads out the communication between unrelated receivers. Below we detail the
working of the Crankshaft protocol.

The Crankshaft protocol divides time into frames, and each frame is divided
into slots. There are two types of slots in the Crankshaft protocol: broadcast
slots and unicast slots. During a broadcast slot all nodes wake up to listen for
an incoming message. Any node that has a broadcast message to send contends
with all other nodes to send that message. A frame starts with all the unicast
slots, followed by the broadcast slots.

Each node also listens for one unicast slot every frame. During that slot a
neighbouring node can send a message to that node, provided it wins the con-
tention. The slot a node listens to is determined by the node’s MAC address.
Therefore, a node wanting to send a message knows precisely in which slot the
destination wakes up. Crankshaft uses a Data/Ack sequence for unicast mes-
sages, and the slot length is such that it is long enough for the contention period,
maximum-length data message and acknowledgement message. If the sender does
not receive an acknowledgement, the protocol is set to retry each message three
times in subsequent frames. However, to reduce contention when retrying the
transmission the node will only retry in the next frame with a probability of
70%. Otherwise it will wait for another frame.

Special provisions are made for base-station or sink nodes. Sink nodes will
listen to all unicast slots. The rationale for this is that the sink is the destination
for most traffic in the network and therefore requires more receive bandwidth.
Furthermore, the sink is typically connected to either a much larger battery or
mains power, which will allow it to spend more energy. To allow other nodes to
determine whether a neighbour is a sink node, sink nodes use specially reserved
addresses. For example, in TinyOS node 0 is always considered a sink node.

Although many complicated methods of slot assignment are possible (e.g.
Time Division Hashing [11]), we have chosen to use a simple mechanism to limit
the amount of processing power required. Each frame has n unicast slots, and
the slot assignment is performed by calculating MAC address modulo n. Using
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a static slot assignment like this may result in two neighbours being assigned
the same slot. To allow such neighbours to communicate, nodes are allowed to
act as senders in their own receive slot. A node that acts as a sender in its own
receive slot will revert to receive mode if it loses contention.

Poll Receiving Preamble Message Acknowledgement

Sender A

Sender B

Receiver Poll

Receiver

Contention Window Message Exchange Window

Fig. 1. Contention and message exchange in the Crankshaft protocol

Clearly, using frames requires that nodes are synchronised. Synchronisation
can be achieved both through a reference node (i.e., the base-station or sink
node), or through a distributed algorithm like GSA [12]. This synchronisation
can also be used to achieve increased energy savings. Nodes need not wake up
for an entire slot, but only for a small amount of time at a fixed offset to the
start of the slot (see Figure 1). The period between the start of the slot and
the moment the listening node turns on its radio is used to resolve contention.
A node that wants to send a message in a particular slot chooses a moment in
the contention window. The sending node listens for a short amount of time just
prior to its chosen moment to detect other nodes contending for the same slot. If
no other nodes are sending, the sending node starts sending a preamble to notify
other nodes of its intention to send. Shortly after the receiving node is known to
wake up, the sending node transmits the start symbol and the actual message.
This is similar to the channel polling mechanism in the SCP-MAC protocol [5].
Note that during the contention window only the contending senders are awake,
and only the winner of the contention is awake for more than a short poll. This
results in very energy efficient contention resolution.

To improve contention resolution, the Crankshaft protocol also employs the
Sift distribution [13] for choosing the moment to start sending. The Sift distri-
bution is essentially a truncated geometric distribution, which results in fewer
collisions than using a uniform distribution. Using Sift also reduces the average
amount of time between the start of sending and the wake up moment of the
receiver, saving even more energy.
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The header for Crankshaft packets consists of a one byte length field, two
byte to and from addresses, a one byte message type field, three bytes of clock
synchronisation information, and two CRC bytes. For broadcast messages, the
type field is set to broadcast and the to address is omitted. In our simulations,
the synchronisation information contains the number of hops to the reference
node, and the current (estimated) clock at the reference node.

Although not implemented in our simulations or real-world implementation,
the Crankshaft protocol can use address filtering to reduce overhearing. A node
would then simply turn of its radio after receiving the to address if the message
is for another node.

4 Simulation Setup

To evaluate the Crankshaft protocol we created an implementation in our OM-
NeT++ [14] based simulator called MiXiM. The simulator contains a model of
the EYES wireless sensor node, which includes an RFM TR1001 radio. The radio
model is an SNR-based model, on top of a simple path-loss propagation model.
For timing the nodes use a 32KHz crystal, and the nodes are powered by two
1.5V AA batteries supplying 3 V.

For our experiments we use the layout of a real-world potato-field experi-
ment [8]. This setup includes 96 nodes on a field of approximately 90×50 meters.
The simulated nodes have a radio range of 25 meters, which is similar to the
radio range in the real-world experiment. The base station is situated near a
corner. Average connectivity in the network is approximately 17.3.

In our simulations we have included five protocols: Low Power Listening
(LPL), T-MAC, LMAC, SCP-MAC*, and of course Crankshaft. The SCP-MAC*
protocol is our variation of the SCP-MAC protocol. Instead of using two con-
tention periods, one of which the receiver overhears, it uses the Sift distribu-
tion for a single contention period before the receiver wakes up. This way the
SCP-MAC protocol can easily be implemented as a variation of the Crankshaft
protocol, where each slot is a receive and broadcast slot at the same time, and
acknowledgements are disabled.

We have focused our simulations on traffic patterns we consider most impor-
tant for wireless sensor networks: convergecast and broadcast flood. The con-
vergecast pattern is the pattern used in most monitoring applications. All nodes
periodically send data to a sink node, which then processes the data or stores
the data for further processing. Broadcast floods are typically found in routing
protocols and in distributing queries over the network.

Table 1 lists the simulation parameters. Each simulation lasts 200 seconds of
simulated time and the results are the average of 20 runs with different random
seeds. Routing is done using a static routing table. Therefore there is no routing
traffic exchanged during the simulation.
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Table 1. Simulation parameters

General
Message payload 25 bytes

Radio
Effective data rate 61 kbps
Preamble + start byte 433 μs
Transmit 12 mA
Receive 3.8 mA
Sleep 0.7 μA

LPL
Sample period 300 μs

T-MAC
Frame length 610 ms
Contention window 9.15 ms
Packet header 8 bytes
Maximum data length 250 bytes
Activity timeout 15 ms

LMAC
Maximum data length 64 bytes
Slots per frame 80
Packet header 20 bytes

SCP-MAC* and Crankshaft
Contention window 9.15 ms
Poll length 300 μs
Maximum data length 64 bytes
Sift nodes parameter 512
Packet header (max.) 11 bytes

Crankshaft specific
Unicast slots 8
Broadcast slots 2

5 Simulation Results

Below we present our simulation results. In Section 5.1 we present the results for
the convergecast pattern followed by the results for the broadcast flood pattern
in Section 5.2. In Section 5.3 we revisit the convergecast pattern results and
show how the latency of the Crankshaft protocol can be improved.

5.1 Convergecast

Figure 2 shows the results of our convergecast experiments. It is clear that the
LPL protocol has the highest delivery ratio (top graph) except for high message
rates, but at the expense of consuming a lot of energy (middle graph). The high
energy consumption is due to the the high connectivity which causes many nodes
to overhear each transmission. As nodes using LPL can send their message any
time, i.e. they do not have to wait for a slot or frame to start, the latency remains
low until the network is saturated (bottom graph).

The delivery ratio of the SCP-MAC* protocol is clearly adversely affected
by the lack of acknowledgement messages for low message rates. Even for low
message rates SCP-MAC* does not achieve perfect delivery. However, the lack
of acknowledgements also means that there are fewer messages to send. For high
messages rates the lack of acknowledgements is beneficial. For protocols using
acknowledgements the increasing collisions at high message rates will induce
more retransmissions, which in turn increase the network load. This effect can
be seen in that the SCP-MAC* curve does not drop like the LPL and Crankshaft
curves do. SCP-MAC*’s energy consumption is much better than LPL, but for
high message rates increases quickly as well.
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Fig. 2. Performance under convergecast traffic: delivery ratio (top), energy consump-
tion (middle) and latency (bottom)
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Compared to the LPL protocol, Crankshaft’s delivery ratio starts to drop
at lower message rates. This is caused by limiting the per-node receive band-
width through selecting only one receive slot per frame. For low message rates
Crankshaft does manage perfect delivery. The bandwidth limitation does mean
that for medium and high message rates the Crankshaft protocol cannot achieve
the high delivery ratios of LPL and SCP-MAC*.

The Crankshaft protocol is very energy efficient. It consumes a factor of 3.5
less energy than SCP-MAC*. There are two factors which contribute to the
energy efficiency: firstly, because only a subset of the nodes is awake in each slot
overhearing is reduced. Secondly, contention is reduced. When using SCP-MAC*
and node A wants to send to node B and node C wants to send to node D, and A
and C are within communications range, nodes A and C contend for the right
to send. However, when using Crankshaft nodes B and D generally wake up in
different slots, automatically resolving the contention between nodes A and C.

LMAC suffers from the need to assign a contention-free slot to all nodes in
the network. To allow such an assignment to exist 80 slots are required. Even at
low message rates the LMAC protocol does not achieve a perfect delivery ratio.
Network congestion caused by low per-node bandwidth prevents this. The en-
ergy consumption remains nearly constant, because the LMAC protocol already
saturates at low message rates. The small increase in energy consumption is due
to more messages that are sent one hop, only to be discarded because of full
message queues at the receiver. The large number of slots also induces a high
message latency for the LMAC protocol.

Finally, T-MAC is unable to cope with the flood of messages directed towards
the sink node. The aggressive sleep policy is causing nodes to go to sleep too
often, which hinders throughput. Although latency seems low for high message
rates, this is caused by only the nodes near the sink being able to reach the sink.
The aggressive sleep policy does provide low energy consumption, even though
the T-MAC protocol suffers from communication grouping and overhearing.

Of all the protocols compared, SCP-MAC* has the lowest latency. Again this
is caused by the lack of acknowledgements and retries. Messages are not kept
in queues waiting for retransmissions of other messages, which means latency is
kept down. Crankshaft’s latency rises quickly as the delivery ratio drops. This is
partly caused by messages having to wait in queues due to congestion, and partly
caused by messages having to wait a full frame (150ms) when contention is lost.
However, Crankshaft’s latency can be improved, as we will show in Section 5.3.

5.2 Broadcast Flood

With our second experiment we investigate the performance under broadcast
flood traffic. In this experiment the sink node initiates the floods. The delivery
ratio is calculated as the total of unique flood messages received by all nodes,
divided by the total of unique messages that should have been received by all
nodes. To allow nodes to determine the uniqueness of a message, each message
contains a serial number. Nodes compare the serial number in the message with
the highest serial number received so far. If the serial number in the message is
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lower or equal, the message is discarded. Note that this may result in messages
not previously received being discarded, if a message with a higher serial number
has already been delivered. For this to happen, collisions or link errors must have
resulted in the failed reception of a lower numbered message first.
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Fig. 3. Performance under broadcast-flood traffic: delivery ratio (top), energy con-
sumption (bottom)

Figure 3 shows the delivery ratio (top) and energy consumption (bottom)
for all protocols under the broadcast flood traffic pattern. LPL outperforms all
other protocols in terms of delivery ratio for high message rates, but at the
expense of high energy consumption. Again, because it does not use any slotting
or framing it can quickly move messages through the network. Although it uses
much energy, the energy is mostly put to good use.

The T-MAC curve shows a remarkable artifact. As the amount of traffic in
the network increases, so does the delivery ratio. The cause is again T-MAC’s
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aggressive sleep policy. In low traffic conditions, most of the network is asleep
after the sink initiated the broadcast flood. Although all nodes that heard the
sink’s broadcast repeat the message, the sleeping part of the network does not
receive most of these. Depending on the collisions and back-off, parts of the
network may not receive any of these messages at all. Increasing the traffic
load will keep more nodes awake for more time, increasing the number of nodes
receiving re-sends. However, it also increases the chance of messages arriving out
of order, thereby causing nodes to disregard previously unseen messages arriving
later.

LMAC’s performance is not hampered by the 80 slots in this scenario, because
all nodes need to send the same number of messages. Therefore, there is little
over-provisioning. Protocols like LPL and SCP-MAC* can support more simul-
taneous transmissions than LMAC, because they do not require all nodes in a
two-hop neighbourhood to remain quiet. Of course this leads to collisions, but
because every message is sent multiple times, although by different nodes, this
is not a problem. If a node does not receive the first transmission, it probably
receives a second or third. Hence, the LPL and SCP-MAC* protocols outperform
LMAC.

The Crankshaft protocol shares the SCP-MAC* characteristics in the broad-
cast case. However, because only two out of every 10 slots are broadcast slots
Crankshaft can cope with roughly one sixth of the traffic that SCP-MAC* can.
It only uses approximately one sixth of the energy as well. Crankshaft’s broad-
cast flood performance can be tuned to the amount of broadcast flood traffic is
expected, by increasing the number of broadcast slots. Of course the broadcast
performance is then traded for unicast performance, as unicast traffic will receive
a smaller share of the available time.

5.3 Crankshaft Latency

The average message latency for the Crankshaft protocol under convergecast
traffic increases quickly as the number of messages per node per second exceeds
0.15. However, the design of the Crankshaft protocol leaves an option to improve
the latency. Recall that the cause of the quickly increasing latency is that a node
that loses contention or does not receive an acknowledgement has to wait for an
entire frame to retry. Given that a dense network provides many alternate paths
to the sink, a node that loses contention or does not receive an acknowledgement
could also try to send its message to another next hop.

Of course the routing layer has to cooperate with the Crankshaft protocol
to make this work. To this end the interface between the routing layer and the
MAC protocol is augmented. First of all, the routing layer can query Crankshaft
about which of a list of neighbours wakes up first. Secondly, Crankshaft will
return a message that it could not deliver in the first try to the routing layer.
That is, it will not block and try at some later moment as most MAC layers do.
The routing layer will then decide if and to whom to retry sending the message.
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Figure 4 shows the latency (bottom) for the Crankshaft protocol with the low-
latency option, marked Crankshaft LL. For reference the results for the regular
Crankshaft protocol and the SCP-MAC* protocol are repeated.
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Fig. 4. Crankshaft energy consumption (top) and latency (bottom) with low-latency
option

Even for Crankshaft’s low-latency version, average latency starts to increase
noticeably at approximately 0.15 messages per node per second. The latency
is however reduced to approximately 37% of the regular Crankshaft protocol’s
latency. The increase at 0.15 is almost entirely due to a small group of 15 nodes
that are in the corner opposite the sink. These nodes do not have many next hop
neighbours. As the network load increases these nodes are having increasingly
more difficulty in sending their messages to the next hop. Average latency for the
messages for these nodes increases to some eight seconds and more. From 0.25
through 0.35 messages per node per second the increase in latency stops. On this
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interval the number of messages that arrive at the sink from the 15 distant nodes
decreases in such a way that it compensates for the increased latency. Most of
the other 80 nodes still have average per message latencies in the range of 0–0.7
seconds. Using the regular Crankshaft protocol, approximately half of the nodes
already have average per message latencies (much) larger than one second. For
message rates larger than 0.35 the other 80 nodes are also seriously affected by
the increasing network load. This is reflected by the increasing latency.

As can be seen from the top graph in Figure 4, Crankshaft’s energy consump-
tion does not change for message rates below 0.35 messages per node per second.
At higher rates the energy consumption does increase significantly, to 2.7 times
the energy consumption without the low-latency option at a rate of 0.8 mes-
sages per node per second. The congestion in the network is causing increasing
numbers of retransmissions, which consume much energy. The delivery ratio is
affected very little by the low-latency option. For message rates between 0.15
and 0.5, at most 7 percentage points are gained, while at 0.8 approximately 10
percentage points are lost.

6 TinyOS Implementation

To demonstrate the real world feasibility of the Crankshaft protocol, we have
created an implementation of Crankshaft for the TinyOS operating system. We
have tested our implementation by running a convergecast scenario on our 26
node testbed consisting of mica2 clones named TNOdes. The nodes in our testbed
can all hear one another, but not all pairs of nodes have good links. We have
created a static routing table in which 12 of the 26 nodes use other nodes to for-
ward messages to the sink. All nodes, with the exception of the sink, repeatedly
send messages to the sink at fixed intervals. For comparison, we have included
our implementations of T-MAC and LMAC, and the default MAC protocol for
mica2 nodes, i.e. BMAC.

Table 2 shows the parameters for the experiment and the protocols. We have
strived to make the parameters match those of our simulations as closely as
possible, but the hardware used does dictate many of the protocol timings. Also,
the physical layers in our TinyOS framework include extra header fields, and
the time synchronisation fields take five bytes instead of three. Therefore the
packet headers are longer than in simulation. Furthermore, the BMAC protocol
as implemented in TinyOS does not provide for retries, where the simulated
LPL protocol does. The Crankshaft protocol is implemented without the use of
the Sift distribution. A standard uniform distribution is used instead for ease of
implementation.

The experiments only show the results of a single run, due to time constraints.
Therefore it is not possible to draw firm conclusions from these results. However,
the results do provide an indication of the performance.

Figure 5 shows our results. The first thing to note is that even for low mes-
sage rates, none of the protocols achieves perfect delivery. This is due to the use of
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Table 2. Real-world experiment parameters

Experiment
Time per message rate 5 min
Message payload 10 bytes
Maximum data length 29 bytes
(all protocols)

Radio
Effective data rate 19 kbps
Preamble + start byte 2.1 ms

T-MAC
Frame length 610 ms
Contention window 5.8 ms
Packet header 18 bytes
Activity timeout 18 ms

LMAC
Slots per frame 32
Packet header 24 bytes

Crankshaft
Contention window 5.8 ms
Poll length 4 ms
Packet header 18 bytes
Unicast slots 8
Broadcast slots 2

BMAC
Sample period 20 ms

non-perfect radio links. The LMAC protocol copes best, because only one node
will try to send in each slot, ensuring the best possible link quality.

The LMAC protocol also shows the same sudden drop in delivery ratio as our
simulation results. Again this is due to the bandwidth limitations imposed by the
TDMA structure of the protocol. The T-MAC protocol shows erratic behaviour
for low message rates. This is probably due to the aggressive sleep strategy used
in the T-MAC protocol. As in the simulations, the T-MAC protocol shows it
does not deal well with high load situations.

The Crankshaft protocol and the BMAC protocol show similar performance.
For low message rates, the use of retries in the Crankshaft protocol means its
delivery ratio is higher than BMAC’s. For high message rates the difference
between Crankshaft and BMAC is too small to draw any conclusions.

7 Discussion

The simulations results show that the Crankshaft protocol can provide good
convergecast performance at low energy consumption in dense networks. Latency
can be a problem in the unoptimised protocol. However, by spending a little
more energy latency can be kept down if the routing layer is modified as well.
Furthermore, message rates of more than 0.5 messages per node per second are
infrequent in monitoring applications.

The trade-off is that broadcast bandwidth is significantly reduced. This means
that to use the Crankshaft protocol effectively, broadcast flooding must be min-
imised. Flooding is used mostly for two purposes in WSNs: collecting routing
information and pushing queries into the network. For the former purpose broad-
cast flooding is required to operate correctly. The latter can be achieved by
more bandwidth efficient broadcasting schemes, especially in dense networks.
This would eliminate the need for high broadcast throughput. Also, sustained
flood rates of more than one flood per second are probably excessive.
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Fig. 5. Delivery ratio for convergecast with TinyOS implementation

A point to consider with respect to the implementation of the Crankshaft pro-
tocol is the recent trend towards packet-based radios. To implement Crankshaft
variable preamble lengths are required. Packet radios in general do not pro-
vide sufficient flexibility to implement this directly. However, the creators of the
WiseMAC protocol [9] already provide a solution: repeatedly sending the packet
for the required duration. Although this may seem wasteful, one has to consider
that sending is the infrequent operation. Letting the sender spend more energy
to allow multiple (overhearing) receivers to save energy is usually more energy
efficient on balance.

The Crankshaft protocol can also be tuned to the specific application and
network density. By increasing the number of unicast slots the consumed energy
can be brought down further, although maximum bandwidth will be decreased
and latency will go up. By decreasing the number of unicast slots, the maximum
per node bandwidth can be increased and the latency decreased, at the expense
of more energy consumption and more collisions. Similar considerations hold for
the number of broadcast slots.

7.1 Variations

The Crankshaft protocol design allows for some variations in the slot assignment
mechanism. For example, we have tested using meta frames consisting of four
frames. Each of the four frames would use a different assignment calculation, in
our case different parts of the MAC address.

As nodes are usually numbered sequentially, simply using the higher bits of
the MAC addresses would not give enough variation. Therefore the calculations
were more complex than simple modulo calculation. We also disallowed sending
in a node’s receive slot, because there always is at least one of the four frames
in which the slot assignment for two neighbours differs.
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Although this assignment scheme resulted in a small performance increase,
we felt the difference did not compensate for the added code complexity and
processing requirements.

Other options we tested are Time Division Hashing [11], and using broadcast
slots for unicast if two neighbours share a slot assignment. None of these options
gave a significant performance benefit, so they are not included in the results.

8 Conclusions and Future Work

In this paper we have presented Crankshaft, a MAC protocol for dense wireless
sensor networks. It employs receive slot scheduling to reduce overhearing and
bases the schedule on MAC addresses to obviate the need to keep neighbour state.
We have shown through simulation and real-world experiments that Crankshaft
can provide good delivery ratios in convergecast scenarios with respect to Low
Power Listening, T-MAC, LMAC and SCP-MAC*. Simulations also show that
Crankshaft manages to do so while consuming very little energy.

Further simulations show that the Crankshaft protocol cannot provide good
broadcast flood delivery. However, Crankshaft’s energy consumption does not
suffer from broadcast flooding either. Most applications only require sporadic
flooding, for which Crankshaft provides adequate performance.

We conclude that the Crankshaft protocol is suitable for long-lived monitoring
applications, where energy efficiency is key. The Crankshaft protocol can pro-
vide the required delivery ratios for convergecast traffic at extremely low energy
consumption.

The Crankshaft protocol as proposed has a very rigid structure. This limits
the applicability of the protocol. For future work we intend to look at adaptive
scheduling of extra receive slots to facilitate more application types and mitigate
bottlenecks that can occur near sink nodes and elsewhere in the network. Another
research item is improving the broadcast capabilities of the Crankshaft protocol.

A final research direction for the Crankshaft protocol is leveraging multi-
channel radios. In principle this is as simple as assigning nodes a channel as well
as a time within a frame.
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