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Abstract— Most current work in Wireless Sensor Net-
works deals with applications running on static networks,
along with some localisation requirements, but without
any motion detection hardware. However, many of these
applications require some level of motion detection, if only
to notice the cases when a network ceases to be statically
located and starts to have moving nodes. As most of the
currently used application scenarios rely on the assumption
that motion will not happen, if a node does move it will cause
significant amounts of damage to any protocols relying on
this static assumption e.g. routing, localisation, aggregation,
etc.

In this paper we look at methods for detecting moving
nodes, using only RSSI data, including an anchor-less solu-
tion to ensure that we can always detect motion. Our methods
are intended to work in co-operation with existing static
network localisation algorithms.

I. I NTRODUCTION

Many possible applications have now been thought of
for Wireless Sensor Networks (WSNs), and a significant
number of them rely on location information in order to
perform their designated function. This is mainly because
the main purpose of a WSN is information gathering, and
gathered data is only useful if you know what it applies
to. For example, the data “the temperature has gone up
by 10 degrees” is not very useful, but the information
“the temperature has gone up by 10 degrees in room 3C”
is a lot more interesting. Location information gives us
a context, which allows us to actually use our gathered
data. For example, monitoring room temperature can be
used to control when to switch air-conditioning systems on
and off. When detailed location information is present, it
might even be possible to personalise working conditions
within a shared office (i.e. individual settings per cubicle).
Location information is important in many domains, hence
various approaches have been proposed, of which some
were even constructed and deployed on a large scale
(e.g. GPS).

The range of viable localisation techniques depends
heavily on what node hardware is available. At one end
of the scale, if every node has accelerometers, GPS, and
an array of accurate ultrasound sensors, then localisation
is quite simple. Alternately, nodes can have no hardware
designed for motion detection or localisation at all, and
only RSSI data from a radio to give limited ranging
information. Unfortunately, most node hardware is of the
latter type. Of course, more hardware can always be added
to a node, but cost factors (both in monetary price/node
and energy costs) will tend to reduce the likelihood of fully
equipped nodes. Within the WSN community, specialised
localisation algorithms have been developed that address
the problems associated with little to no infrastructure

(i.e. access to GPS satellites) and limited resources leading
to incomplete and inaccurate information. A survey of
initial approaches is presented in [4]; recent work in-
cludes [1], [8], [12], [13] and [15]. This work however
generally deals with static networks, and detecting when
a network is no longer static with minimal additional
hardware requirements would be of considerable use.

With WSN localisation, nodes with additional hardware
are referred to as “anchor” nodes i.e. they have a reliable
source of information about their location. Many localisa-
tion techniques rely on anchors, and on the assumption
that anchor nodes are uniformly distributed among a
uniform distribution of non-anchor nodes. Given the small
percentage (<10% in most scenarios currently postulated)
of anchors within a large collection of non-anchors, and
the aim that sensor networks are eventually intended to
be easy to distribute for non-computer scientists, this
assumption can not be relied on for many application
scenarios. As we cannot rely on the existance of anchor
nodes, we need to be able to detect motion even without
anchors.

Another major problem within WSN localisation tech-
niques is acquiring accurate range information between
pairs of sensor nodes. This can be done in a variety of
ways, ranging from simple techniques like Radio Signal
Strength Indication (RSSI), time of flight data for various
sensor types (e.g. ultrasound), to more complex ideas
like time of flight difference (which measures the differ-
ence between two incoming signals travelling at different
speeds). In each case, there is generally some error in the
ranging information, which motion detection algorithms
must be aware of and be able to work with.

In this paper we focus on two forms of scenario -
what can be done with just basic nodes (no localisation
hardware; just RSSI); and what can be done with minimal
quantities of additional hardware on a limited set of nodes
(anchor nodes). With only basic nodes we are limited as
to what we can do, but some information can still be
gathered. In the situation with a limited set of anchor
nodes, we still may well have the same problem as with
just basic nodes, as with low percentages of anchor nodes,
a given basic node may well have no communication with
anchor nodes. One solution to the lack of additional anchor
nodes is that the anchors may well be mobile ([9], [15]),
and so even if a basic node has no current communication
with anchor nodes, gathering some information before
communication is established with anchor nodes may help
determine earlier location data.

One piece of information that would be very useful is
motion information - if a node has not moved between its



initial deployment and the time it is fully localised, then
we know that all data gathered up until that point was from
a particular location. If it has moved, information on the
approximate amount of motion may help decide whether
the data can still be treated as located at a particular
point (with a particular level of location accuracy). Our
particular focus here is on allowing smarter decisions in
limited motion scenarios for localisation algorithms de-
signed for static networks, and limiting the problems that
moving non-anchor nodes can cause to stateful localisation
techniques.

II. N ON-ANCHOR NODE MOTION

If a node has been localised, and then moves without
being aware of its movement, then the node will be some-
where other than where it thinks it is. If it then broadcasts
its old location data, while being at the new location,
then other nodes in the network will have inconsistent
information. This is only a problem with non-anchor
nodes, as when anchor nodes move to a new location,
they will have new location data, and in both cases their
true and calculated locations are the same (to within a
known degree of accuracy).

In order to help formulate solutions to this problem, we
will firstly examine what can be done in networks with
anchor nodes in order to detect motion. Secondly, in the
event that a node currently has not received any anchor
information from the network, because of a current local
lack of anchors, then we need to be able to find alternate
ways to do motion detection. We need to be able to do this
because there may be data that the sensors need to gather
before anchor information is available, and so we need to
be able to work out whether they have moved since the
data was gathered. Anchor-less situations are likely in the
early stages of some mobile anchor scenarios, especially
when the placing object is far away from the locations
where the nodes are being placed.

Unfortunately, most methods for detecting movement of
nodes can not tell the difference between moving nodes
and malicious nodes (nodes that are sending bad data).
Malicious nodes are hard to deal with - with a large
enough amount of effort and/or nodes, a malicious intruder
can potentially break an entire network. However, for
most non-military sensor network scenarios, the chances
of a malicious intruder are very low, whereas motion is
likely. We are therefore going to concentrate our efforts on
detecting motion, and leave the problem of dealing with
malicious intruders for more advanced systems.

III. B OUNDING BOXES

Anchor nodes periodically broadcast their locations, and
if a node has received location data from an anchor then
it knows it is in radio contact with that anchor, and so
therefore it must be within radio range (where “radio
range” is a maximum possible value including “gray
area” [18] effects) of that anchor. Thus we can limit the
space of possible locations for that node to a circle centred
on the anchor’s location with radius equal to the radio
range. Bounding region information can therefore be used
to sanity-check information from localisation algorithms.
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Fig. 1. Bounding Boxes

For practical purposes (significant speed improvements)
we use a bounding box rather than a circle, with each
side equal to 2∗ radiorange, and the anchor in the centre
(Figure 1a). (The basic concept of bounding boxes has
previously been analysed in earlier work [9], [16]). This
results in a larger region, but we still have the guarantee
that all possible locations for the node are located within
the box, while keeping the box size to a minimum. This
currently assumes a circular radio model, but for radios
with non-circular transmission spaces, we can calculate
the minimum box that contains the entire possible trans-
mission space, and so be still able to use this methodology.

When a node receives location information from an
additional anchor, it knows that it must be within the
bounding boxes for both anchors. Therefore, we can
reduce the bounding box for the node to the intersection
of both of these boxes (Figure 1b, Algorithm 1 on the
facing page). A bounding box is defined by two points,
its Top-Left and Bottom-Right corners.

An additional source of bounding boxes that we can
use are from “pseudo-anchor” nodes. A pseudo-anchor
node is a non-anchor node that has a reasonable level of
confidence in its location (for example, because it has a
bounding box that is no larger than a suitable threshold),
and therefore the cost of transmitting its bounding box
is worthwhile given the likely improvements to other
nodes’ bounding boxes. The transmitted bounding box for
a pseudo-anchor node is its bounding box expanded by
radiorange in each direction (Figure 1c). This creates a
larger box than for anchor nodes, but especially in low an-
chor node density scenarios, pseudo-anchor boxes provide
another useful source of bounding box information, while
maintaining the guarantees regarding the node location
always being within the bounding box.

A. Breaking the Boxes

As a consequence of the sanity condition that a node’s
bounding box will always contain its true location, and
that any two nodes that are in communication must be



Algorithm 1 Bounding boxes
Abbreviations used here: TL = Top-Left corner of a bounding box, BR = Bottom-Right corner,
R = Maximum possible radio range between a pair of nodes, including “gray area” [18] effects.

1) Initially, the bounding box for a node is set to[(−∞,∞)× (−∞,∞)].
2) As anchor information comes in, the bounding box for this node is intersected with the existing bounding box

(see Figure 1 for examples of bounding boxes, including a diagram of this step in Figure 1b)
NewBox(T L,BR) = Max(AnchorT Ly −R,OldBoxT Ly))×

(Min(AnchorBRx +R,OldBoxBRx), Min(AnchorBRy +R,OldBoxBRy))]

within radio range of each other, bounding boxes assume
another sanity condition - that the current bounding box
of a node and another bounding box that it has received,
and therefore wishes to intersect with, will always have a
non-empty union.

Figure 2 is an exam-

Fig. 2. Motion example

ple of how motion of a
node can break bound-
ing box sanity.A1 and
A2 are the locations of
a moving nodeA be-
fore and after it moves,
and B is a stationary
node. The inner and outer boxes around the nodes repre-
sent their bounding boxes and bounding boxes expanded
by radio range, respectively. IfA talks to B when it is at
A2, andA thinks it is still located at positionA1, then there
will be an inconsistency betweenA’s bounding box and
the bounding box ofB, which means that one of the two
nodes must have moved. In a number of cases we will not
be able to detect motion (the maximum allowable motion
before we can detect motion with absolute certainity is
proportional to the size of the bounding box of a node), but
in these cases we do maintain bounding box consistency,
so we can still generate valid bounding boxes, although
with a reduced accuracy due to the size of the boxes.

When we do detect bounding box inconsistencies, we
can work to correct the problem. If a nodeN receives a
new bounding box from a neighbourM that would create
an inconsistent situation (BoxN∩BoxM =⊘), then this tells
us that either thatN or M has a problem. Both nodes then
check how many of their neighbours currently consider
them inconsistent. If two neighbours (including eitherN
or M) consider one ofN or M currently inconsistent, then
that node should recalculate its bounding box information.
This is done by discarding all current bounding box data
(i.e. returning the node to Step 1 of Algorithm 1), and
sending a control packet to all of the neighbouring nodes
saying that any currently used bounding box information
from that node should be discarded, and requesting their
current bounding boxes.

Figure 3 shows how this could work for a nodeA
moving from A1 to A2. It starts to communicate with
nodesB and C, and there is an inconsistency between
the box A1 and the boxes forB and C, so there is an
inconsistency “link” from A↔ B and from A↔ C. As
two of A’s neighbours consider it inconsistent, it resets its
bounding box data back to the startup configuration, and

sends a control packet toB andC invalidating any bound-
ing box data they have gained fromA, and requesting their
bounding boxes. This would then result in a new and valid
bounding box forA. Any localisation algorithms being run
on the node should also possibly be notified at this point
if the previously determined location for the node is now
outside the new bounding box.

In many of the

Fig. 3. Inconsistency

possible scenarios
for bounding box
inconsistency, the
problems will now
be resolved, and the
node will have a
new bounding box.
If however, this fails,
then the node should send a message to its neighbours
declaring that it currently considers them inconsistent,
and remain in an inconsistent state. The inconsistent node
should now stay in that state until there is a change in
any of its neighbours’ bounding boxes, in which case
the bounding box for this node should be re-evaluated to
check for the resumption of consistency.

One problem here is thatB and C may have previ-
ously integratedA’s information into their bounding box
configurations, and ifA’s information is later found to
be invalid, thenB and C need to be able to work out
what parts of their bounding boxes are due toA and what
are due to other nodes. In order to counter this, each
node can keep a record of the bounding box for each
other node, in order to be able to rebuild an accurate
bounding box when one node’s information is found to
be invalid. If a node resets its bounding box information
due to detected inaccuracies, then the node also discards
the list of bounding boxes that it had stored as well.
To deal with mobile situations where there are many
various sources of anchor information, and the storage
of every other recieved node would be impractical, then
only a limited set (N most recent recieved boxes) are
stored, in addition to the calculated box for the node
in question. Discarding some recieved boxes after they
have been used to improve the local box does reduce our
capability to handle inconsistent boxes due to motion, but
given the limited storage available to WSN nodes, this is
a reasonable trade-off.
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Fig. 4. Bounding box testing

B. Results

We performed a series of experiments, testing how
much motion was necessary before bounding box incon-
sistencies were noticed. The nodes were scattered in a
200 x 200 box, with radio range set to 14. We varied the
number of nodes to get different levels of average connec-
tivity in the network, as well as designating a percentage
of the nodes as anchor nodes. For each simulation run, we
allowed the box sizes to stabilise, and then started to move
one of the nodes in a random direction. Each experiment
was run 20 times, with varying random seeds for each
configuration, and the results given here are an average of
the 20 sets for each configuration.

The graph in Figure 4 shows the minimum motion
necessary before inconsistency checking notices motion.
The minimum motion necessary for detection reduces with
higher connectivity networks, as well as with increasing
anchor percentages. For most scenarios, the amount of
motion necessary does not in general exceedradio range.
Additionally, all of the experiments reported a zero false-
positive rate i.e. no node reported as moving was in fact
stationary.

IV. A NCHOR-FREE MASS-SPRING MOTION DETECTION

For the problematic case where we have not yet received
any information from anchors, localisation becomes much
more difficult. We can however use anchor-free local-
isation to build a local co-ordinate system, which can
be used to detect moving non-anchor nodes and record
their relative motion. The motion information can later be
translated from the local co-ordinate system to a global
system once anchor information is available.

For motion detection to be possible however, we need
a way to build local co-ordinate systems in the absence
of accurate range information. We cannot build bounding
boxes due to the lack of anchors to initialise the algorithm,
and so we turn to mass-spring models (Appendix A) for
the node locations instead. Mass-spring models require
more calculations than bounding boxes, but in the absence
of anchors, mass-spring models are still a viable option.

A. Motion detection

This is a simplified overview of our motion detection
algorithm. For full details see the appendices. The node

that is running this algorithm is referred to as the “root”
node. In order to do motion detection, we first need a
method to build local co-ordinate systems:

1) Gather range data (estimated values and variances
from the radio model) from the root node to its
neighbours, and also query the root’s neighbours for
range data to their neighbours, giving us a topological
map for all of the root’s 1- and 2-hop neighbours.
We can then place the root node, and one of the root
node’s neighbours (Appendix C).

2) Working from these initial two nodes, we can now
start to find initial locations for the other nodes.
We can place all nodes that have two neighbours
in the already placed set of nodes, using those two
neighbours (A andB, referred to as the “parent” nodes
of our new node) and the ranges between them to
place our new nodeC (Appendix D). In some cases,
we will have chosen parent nodes that are unsuitable
for placing C, and in these cases the algorithm will
fail the sanity tests specified in Appendix A. If this
is the case, we then proceed to check other possible
parent node pairs for suitability as per Appendices D
and E.

3) The locations for the nodes are now further refined
(Appendix F). Refinement is necessary because our
initial configuration does not take into account all of
the links (Appendix B) between nodes when we are
placing them.

Now that we can build a local co-ordinate system, motion
detection is possible by comparing a local co-ordinate
system generated at one moment in time (LCS1) by a node,
to another generated system by the same node at a later
point in time (LCS2). We require at least 2 nodes common
to both systems (which may or may not be neighbours),
in order to be able to use this information, otherwise we
cannot work out which way the node moved.

For each pair of

Old Root node location (I)

Possible new Root node location
(a value of K)

Bounding box of K values

Inaccurate outlying value for K

Fig. 5. Calculating values for K

nodes common to
both co-ordinate
systems (A and B),
and using theLCS1

system co-ordinates
for A, B and our
root node (marked
as I), as well as
range data from
LCS2 for our root

node relative toA and B we can calculate the set of
possibilities for the location of theLCS2 root in LCS1

(Appendix G, Figure 5).
We now have a set of up to 4 possible locations forK

which are checked against the measuredRK,A and RK,B

values. The values that have correct ranges (at most two
of them, by standard geometrical theory regarding the
intersection of two circles [17]) are valid locations forK,
and we choose the closest to the existing root node, as the
movement between separate invocations of this algorithm
should be minimal.



Each of the validK locations represents a “motion
vector” (MV ) for our root node. We can calculate values
for MV using the locations ofK as the vector between
I and K, as in the event of no changes,K = I, and I
is at (0,0) by the definition ofI being the origin of the
local co-ordinate system. The average of the values for
MV is the assumed motion, and the maximumK values
in each direction gives us a bounding box whose area is
proportional to the inaccuracy in ourK measurement.

B. Results

We performed a series of experiments to test anchor-
free mass-spring motion detection, starting from a ran-
domly generated set of “true” node locations, using 226
nodes in a 100x100m area, with a radio range of 14m,
giving an average connectivity of approximately 12.

Experimental tests [11] have shown that the change
in the error between consecutive measurements for the
range between a pair of static nodes, will be significantly
smaller than the error between the measured ranges and
the true range. This is because many of the sources of
range inaccuracy (reflections, batteries running down, low-
quality radios, etc) should be relatively stable between
one range measurement and the next. We therefore setup
our experiments to mimic this, by taking the topology
and ranging information from the “true” locations, and
adding some gaussian distributed noise to the ranging
data (mean equal to the “true” range, variance at different
levels for different experiments). This “noisy” ranging
information was then used to generate a local co-ordinate
system (Appendices C-F). We then moved the root node
by a random amount (uniformly random direction, dis-
tance depending on the experiment). For all the links not
connected to the root node, we changed their “noisy”
ranges by a small random value (mean equal to the original
“noisy” range, variance at different levels for different
experiments), and for the links connected to the root node,
we re-generated new “noisy” ranges according to the true
ranges for the new root node location (noise generated
with the same parameters as the first local co-ordinate
system). This second set of “noisy” data was then used
to generate another local co-ordinate system, and the two
were compared as per Appendix G.

For all of the experiments, the results are specified as
percentages of the radio range, and are averages of 20
runs of a particular set of parameters, using a different
random seed each time. Figures 6, 7 and 8 show the
results with inaccuracy for the non-moved links set to
0%, 5% and 10% of the original variance. The 6 lines
on each of the graphs represent a variety of movements
of the root node between the first and second sets of data.
At 10% and 20% motion, neither altering the original
error nor the second measurement inaccuracy significantly
changes the results, and the percieved motion is reasonably
accurate (±3%). However with greater motion (>20%), the
percieved motion becomes increasingly inaccurate. Note
that this is the motion between successive tests of the
motion detector, and so if we run the algorithm frequently

 0

 10

 20

 30

 40

 50

 0  5  10  15  20  25  30P
er

ci
ev

ed
 lo

ca
tio

n 
ch

an
ge

 (
pe

rc
en

ta
ge

 o
f r

ad
io

 r
an

ge
)

Range error variance (percentage of radio range)

0% change
10% change
20% change
30% change
40% change
50% change

Fig. 6. 0% inter-measurement inaccuracy
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enough (depending on the average rate of motion of the
root node) these more difficult cases can be avoided.

The curves in all cases are relatively flat - a first guess
at expected results for these experiments would assume
an upwards curve in perceived motion as the error be-
tween true and measured distances increases. However, the
motion detection algorithm that we are using here works
with the differences between two measured distances, and
as the errors for each of the two measured distances are
similar, increasing the error from true distances does not
significantly alter the algorithm’s results.

Increasing the change in the error between the two
measured distances does not change the results that much
either, and this also applies with additional tests that we
have done for higher values of the error change. The error
values that we have used here are similar to values shown



in experimental testing [11].

V. RELATED WORK

Galystan et al. [3] did some earlier work using bounding
boxes, with additional optimisations attempted in the
area of “negative information” i.e. if two nodes can not
communicate with each other, they are assumed to be
out of range with each other. Bounding boxes have the
assumption that a node is certain to be somewhere within
them, but given the significant likelihood of bad links (two
nodes that are in radio range but cannot communicate)
in the real world due to a variety of possible problems
(e.g. objects in the way), this will cease to be the case
if we use negative information. Results from Zhao and
Govindan [18], and from Zhou et al. [19] indicate that
even without such obstacles, bad links still occur in a
significant percentage of cases.

Capkun et al. [2] created an algorithm to create local
coordinate systems, and a method for translating from one
system to another. They then proceeded to attempt to use a
network of co-operating nodes to build a Network Coordi-
nate system (a form of local co-ordinate system where all
of the nodes in a network use the same local co-ordinate
system), using a Location Reference Group (LRG) of
semi-stable (i.e. minimal movement) nodes as a centre for
the topology. We have used an LRG-like system here, but
using information from a local neighbourhood rather than
the entire network. Network Coordinate systems result in a
significantly increased amount of traffic required to setup
and maintain the system over local coordinate systems,
and that cost rises with the size of the network. The
benefits gained via the use of this are minimal, and in most
mobile anchor scenarios the situation where you have no
anchor information is for a limited time only, and so cross-
network protocols that could utilise a network coordinate
system (e.g. node→sink message routing) would be better
off storing data locally and waiting for anchor information
before transmitting.

Priyantha et al. [10], as well as Shang and Ruml [14]
also looked at anchor-free localisation, but using global
rather than local knowledge, with the accompanying in-
creases in network traffic and storage required for that
class of solution.

Krumm and Horvitz [7] did some earlier work with mo-
tion detection using RSSI. Their method used smoothed
histograms of varying signal strength from APs in an
802.11 network to determine whether a particular node
was moving. The motion detection algorithm did not
explicitly use location data, but the requirement for the
APs to be static allows them to use them as reference
points. Our work here requires that a subset of the nodes
being measured are relatively static (such that comparisms
between the different local co-ordinate systems can be
made), but without requiring that the static nodes remain
permenantly static. If we had permenantly static infras-
tructure nodes (e.g. an urban 802.11 network), other more
efficient algorithms would be possible, but this cannot be
guaranteed for WSNs.

VI. CONCLUSIONS ANDFUTURE WORK

We have shown here that even in difficult localisation
scenarios (such as anchor-less scenarios), where only very
limited information can be used, that motion can be
detected without knowing exactly where you are, and
all of this can be done without additional hardware. If
however we have location information from an existing
localisation method, then we have also shown how we
can also detect motion using more simple methods.

Getting rid of the errors in range measurements is hard
to do, but that is the price of gathering data from the real
world. With mass-spring anchor-free approaches, we have
shown that it is possible to work around these errors, and
derive good motion information. Mass-spring approaches
are somewhat more computationally expensive, but given
the significant improvements in the motion information,
and that this enables motion detection without requiring
anchors, we believe that this is worth it. Mass-spring
approaches also have the advantage of being able to more
rapidly detect motion, but at the cost of introducing the
chance of false positives, as opposed to the zero false
positives approach of bounding box methodologies.

In the future, we hope to expand on our work here to
attempt to further improve the motion information that
can be gathered, by integrating more accurate models of
various ranging sensors, and also testing to see whether
a combined model from several sensors may improve ac-
curacy. Additionally, we would like to explore integrating
together data from both mass-spring models and bounding
box methods.
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APPENDIX

When we refer to radio range in this appendix, we
are using the maximum possible radio range between a
pair of nodes, including any “gray area” [18] effects. The
techniques here have been influenced by [5].

A. Mass-spring model

In our mass-spring model, the range between a pair of
nodes is modelled as a spring, with a known relaxation
state and a spring constant. For a pair of nodesA and
B, with a range∼ N(m,v), the relaxation state is equal
to m and the spring constant isv multiplied by a scaling
constantk. The energyUA,B of the spring between a pair
of nodes is given by

UA,B =
|RA,B−m|

kv
(1)B. Links

A link between a pair of nodes is defined as one of two
possibilities, either

1) A and B can communicate directly i.e.A and B have
a known value for the measured radio range between
them.A is therefore a neighbour ofB and vice versa.

2) RA,B < radio range, but A and B are not connected
using the previous rule. In this case the link distance is
defined as the radio range, and theUA,B result is scaled
by the probability of a broken link (i.e.Ubrokenlink

A,B =
UA,B∗BrokenLinkProbability) as given from experi-
mental data. Values for the broken link probability
will be approximately in the 0.1-0.2 range.A and B
in this case are not neighbours, but they are linked.

A link creates a “force” that pushes the node towards
a more accurate location. For a given nodeA, we can
calculate the forceFA on that node using

FA = ∑
B

FA,B =−∑
B

ˆ(A→ B)UA,B (2)

where ˆA→ B is the unit vector fromA to B andA andB
are linked.

C. Reference node placement

In order to define a local co-ordinate system, we need
reference points. The root node is declared as being
located at(0,0), and we also require a second “reference”
node to define the x-axis for this system.

We need a node that is highly connected to the root
node’s immediate neighbours, in order to reduce the
amount of calculations we need to do later on. Therefore,
the selected reference node will be one of the 1-hop
neighbours of the root node, and we select it using the
following rules in order

1) Highest number of root-transitive links (i.e. for a
given node, the number of its neighbours that are also
neighbours of the root node).

2) Highest number of neighbours.
3) If we still have >1 possible nodes, pick one randomly

(lowest node id is a suggested method).

We now also declare this selected neighbour as being
initially located at(m,0) wherem is the measured distance
to the neighbour. As this always makesURoot,Neighbour = 0,
this is currently a minimum energy configuration of the
positioned nodes.

Once we have the reference node and root node placed,
we then move onto the other nodes.
D. Initial placement

For a nodeC with already placed neighbour nodesA
and B, and A and B are neighbours of one another, we
may be able to calculate an inital location. Using the
measured values for all of the inter-node distances, we
start by calculating∠BAC from the law of cosines.

v =
R2

A,C+R2
A,B−R2

B,C
2RA,CRA,B

, ∠BAC = cos−1(v)
Sanity assumption:|v| ≤ 1

Using a lineD, parallel to the x-axis but throughA, we
then calculate the angle of ˆA→ B to D

n = Ax−Bx
RA,B

, z = sin−1(n) wherez is the angle of
ˆA→ B to D

Sanity assumption:|n| ≤ 1

We can now calculate two possible values ofθ (= angle
of ˆA→C to D), usingθ = z±∠BAC. We then have two
possibilities forC’s co-ordinates using the two values of
θ andC = (Ax + RA,Ccos(θ),AY + RA,Csin(θ)). These are
shown on Figure 9 asC and C′. We choose the initial
location of a node with the minimum amount of force (as
defined in B) given the current set of placed nodes.

In some cases we will fail the sanity assumptions, and
have to test with other pairs of neighbour nodes. Once
we have placed all of the nodes that have a valid pair of
placed neighbours, we then work on the remaining nodes.

E. Placing remaining nodes

If we have remaining unplaced 1-hop neighbours of the
root that do not have 2 neighbours in the set of already
placed nodes, then we can repeat the process for selecting
a reference node (C, but using only non-positioned nodes
as possibilities), and place this newly selected neighbour

at (−∑placed
p px

n ,−∑placed
p py

n ) i.e. an averaged location directly



opposite the current set of placed nodes, which is the
most likely location for this remaining unplaced node. We
now return to the process of placing additional nodes that
have two neighbours in the “already placed” set, and if
necessary keep repeating this sequence of processes until
all the 1-hop neighbour nodes are placed.

After placing

Fig. 9. Placing C

all of the 1-hop
neighbours, if we still
have unplaced 2-hop
nodes with 2 placed
neighbours, but for
all possible pairs of
placed neighboursA and B, A and B are not neighbours
of each other, then we use the calculated locations for
a pair of neighbours to work out the distance between
them. The calculated distance is then used temporarily
for the placement steps in Appendix D. This is less
accurate, but will still give us a reasonable first guess for
the location of a node.

If there are still unplaced 2-hop nodes, without at least
2 placed neighbours then these 2-hop nodes must have 1
placed 1-hop neighbour (by the definition of a 2-hop node
as being connected to a 1-hop node, all of which have now
been placed), then we place the 2-hop neighbour at

(
px

1(r1+r2)
r1

,
py

1(r1+r2)
r1

) wherer{1,2} is the root→1-
hop and 1-hop→2-hop measured ranges respec-
tively, and p{x,y}1 is the x- and y-coordinates of
the 1-hop neighbour.

Placing the 2-hop neighbour further along the line of the 1-
hop neighbour provides a reasonably likely initial position,
without the need for extensive calculations on the full set
of placed nodes.

F. Topology optimsation

The total energy of the system in a particular configu-
ration is

Energy = ∑A,B UA,B A,B ∈ placed nodes
and there exists a link betweenA andB

An optimal topology for a mass-spring system is when the
total energy of the system reaches a pre-defined minimum
value (ideally zero, but in practice this will often not be
possible to achieve). We may not be in this state after the
inital placing, as we did not take all of the link information
into consideration initially. We therefore need to further
refine our location data.

The location of each nodeA is refined, firstly for the
1-hop neighbours, then the 2-hop neighbours. For 2-hop
networks, this makes sure that a node’s parents will always
be evaluated before the node itself.A is refined as follows:

1) If A has an ancestor node (parent, parent of parents,
etc) that switched to its alternate location during this
round of the algorithm, then recalculateA’s location
and alternate location according to the previously
specified initial placing algorithm (D).

2) Otherwise

a) CalculateA’s current forceFA, with Equation 2.

b) If A has an alternate location, which is a valid
location given the communication links to this
node i.e. all direct links toA are within radio range
of the alternate location, calculate the force for the
alternate location as well, and if the magnitude of
that force is smaller,A is moved to the alternate
location.

c) UpdateA’s current estimated location
A← A+FAT
where T is an arbitrary constant controlling the
rate of convergence.

These steps are repeated until a minimum energy state is
reached, or until the reduction in energy from one state
to the next drops below a pre-defined limit (or the energy
increases!). One possibility for improving the speed and
accuracy of this process is to choose a value forT that
is proportional toEnergy, allowing for rapid reductions
initially, reducing the motion as we progress towards the
minimum energy state. Other techniques such as simulated
annealing [6] could also be applied to select suitable
values forT .
G. Motion detection

Using anchor-free co-ordinate systems, motion detec-
tion is possible by comparing a generated local co-ordinate
system at one moment in time (LCS1) to another generated
system by the same node at a later point in time (LCS2).

For each pair of nodes which we will designateA and
B, using theLCS1 system co-ordinates forA,B and our
root node (marked asI), as well as range data fromLCS2

for our root node relative toA and B, we can calculate
the possibilities for the location of theLCS2 root in LCS1

(designated asK) using

(Kx−Ax)
2 +(Ky−Ay)

2 = R2
K,A (3)

(Kx−Bx)
2 +(Ky−By)

2 = R2
K,B (4)

Solving for Kx in terms ofKy, A andB, gives us

e = R2
K,A−A2

y−A2
x (5)

m =
e− (B2

y +B2
x−R2

K,B)

2(Bx−Ax)
(6)

n =
2(By−Ay)Ky

2(Bx−Ax)
(7)

Kx = m−nKy (8)

Using Equations 3 and 5-8 we can then solve forKy

o = (Axn−Ay−mn)2(m2 +2Axm− e) (9)

Ky =
−2(Axn−Ay−mn)±2

√

o(n2 +1)

2n2 +1
(10)

Equation 10 gives us two values forKy which we can
then substitute back into Equation 4 to get values forKx.

h = R2
K,B−B2

y−B2
x (11)

Kx = −Bx±
√

2ByKy +h−B2
x−K2

y (12)

This gives us up to 4(Kx,Ky) pairs that represent po-
tential values forK. Results involving imaginary numbers
are discarded, as they do not represent valid solutions.


