
Monte-Carlo Localization for Mobile Wireless

Sensor Networks

Aline Baggio and Koen Langendoen

Delft University of Technology, The Netherlands
{A.G.Baggio, K.G.Langendoen}@tudelft.nl

Abstract. Localization is crucial to many applications in wireless sen-
sor networks. This article presents a range-free anchor-based localization
algorithm for mobile wireless sensor networks that builds upon the Monte
Carlo Localization algorithm. We improve the localization accuracy and
efficiency by making better use of the information a sensor node gathers
and by drawing the necessary location samples faster. Namely, we con-
strain the area from which samples are drawn by building a box that
covers the region where anchors’ radio ranges overlap. Simulation results
show that localization accuracy is improved by a minimum of 4% and
by a maximum of 73%, on average 30%, for varying node speeds when
considering nodes with knowledge of at least three anchors. The coverage
is also strongly affected by speed and its improvement ranges from 3%
to 55%, on average 22%. Finally, the processing time is reduced by 93%
for a similar localization accuracy.

Keywords: Distributed localization algorithms, wireless sensor net-
works, mobility, Monte Carlo Localization, simulations.

1 Introduction

Many applications have a need for localization, be it for locating people or ob-
jects. Most of the time, data recorded from a wireless sensor only makes sense if
correlated to a position, for example the temperature recorded in a given machine
room or cold-store. Similarly, many end-user programs are location-aware, for
example people would like to find the closest bus stop or mailbox, and emergency
services need to localize persons to be rescued. In many cases, such as indoors,
the Global Positioning System cannot be used. From now on, we will refer to a
person, object or computer coupled with a wireless sensor to be localized as an
(unknown) node.

This article presents a localization algorithm for wireless sensor networks
specifically designed with mobility in mind. One important factor is to let the
wireless sensors benefit from mobility and not only suffer from it. Literature
[5,7,11,12,13,14] has shown that using mobile anchors in static wireless sensor
networks helps improving the accuracy of the localization algorithm, as more
nodes can benefit from the anchors’ position broadcasts and as each node can

J. Cao et al. (Eds.): MSN 2006, LNCS 4325, pp. 317–328, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

318 A. Baggio and K. Langendoen

hear more of these. Similarly, mobile sensors have a chance to get more in-
formation than in a fully static environment. The challenge, however, is that
information in a mobile wireless sensor network gets invalidated more quickly if
all the nodes are moving. Hu and Evans introduce a localization algorithm deal-
ing with these different characteristics [9]. Their approach builds upon Monte
Carlo Localization (MCL) methods used in robotics to locate a mobile robot.
In this article, we present improvements to Hu and Evans’ algorithm leading to
better accuracy and lower computational cost when localizing nodes.

The remaining of this article is organized as follows. Section 2 presents some
background information on localization mobile wireless sensor networks. Sec-
tion 3 describes both our localization algorithm and Hu and Evans’ algorithm it
builds upon. Section 4 gives insight on the accuracy of the localization and effi-
ciency of the algorithm. And finally, Section 5 concludes and gives some future
work directions.

2 Dealing with Mobility

In the article [9], Hu and Evans present a range-free localization algorithm for
mobile sensor networks based on the Sequential Monte Carlo method [4,8]. The
Monte Carlo method has been extensively used in robotics [2,15] where a robot
estimates its localization based on its motion, perception and possibly a pre-
learned map of its environment. Hu and Evans extend the Monte Carlo method
as used in robotics to support the localization of sensors in a free, unmapped
terrain. The authors assume a sensor has little control and knowledge over its
movement, in contrast to a robot. A range-based version of the MCL algorithm
has recently been proposed by Dil and al. [3].

Apart from the experiments with MCL, there are at the moment few localiza-
tion protocols specifically designed with mobile wireless sensors in mind. Most of
the papers presenting localization algorithms suggest that supporting mobility
can be achieved by rerunning the localization algorithm after some time interval,
either static or adaptable. While this is not optimal but feasible in some cases,
the whole class of algorithms using information from distant nodes or iterative
approaches will suffer from severe information decay. At the time the informa-
tion reaches a distant node that wants to use it, it is very likely that the whole
network configuration has changed. A node will therefore always calculate an
inaccurate location, not due to the lack of information or to the intrinsic inac-
curacy of the calculations it uses, but due to the way its localization algorithm
gathers this information.

Mobility introduces a real-time component to the localization algorithms.
Wireless sensor networks are usually considered delay-tolerant [6,11]. To the
contrary, mobility makes a sensor network delay intolerant: information gather-
ing and location calculation should happen in a timely manner, dependent on
the speed of both the nodes and the anchors. This means that in a mobile wire-
less sensor network, methods relying on global knowledge such as calculating the
number of hops or distances to all the anchors in the network are to be avoided.

Monte-Carlo Localization for Mobile WSNs 319

Similarly, a mobile node cannot really benefit from iterative localization tech-
niques where the location estimation is refined whenever a node receives more
information from the network.

Besides possible information decay, a localization algorithm deployed in a
mobile wireless sensor network should be able to cope with the temporary lack
of anchors. In other words, the algorithms should be able to produce a location
estimate in such conditions if the application layer has a need for it. In such cases,
the location estimation could easily be tagged as uncertain, providing a mean
for the application to assess how much the results of the localization algorithm
should be trusted.

We believe mobility should be taken into account directly when designing
new localization algorithms. A wireless sensor should benefit from mobility and
exploit it to improve the efficiency of localization or get a better accuracy of its
position estimates. The algorithms based on MCL are offering such guarantees.
In the following, we build upon the range-free Monte Carlo Localization algo-
rithm proposed by Hu and Evans [9] and show that by improving the way the
anchor information is used, we can improve both the accuracy and the efficiency
of the algorithm.

3 Localization in Mobile WSNs

This section first describes the basic MCL algorithm and then introduces our
extensions.

3.1 Monte Carlo Localization

In [9], Hu and Evans define their localization algorithm as follows. The time is
divided into discrete intervals. A sensor node relocalizes in each time interval.
During the localization-algorithm initialization phase, a sensor picks a random
set of N samples L0 = {l00, l10, ..., lN−1

0 }, i.e. random localizations within the de-
ployment area. From then on, the two steps, prediction and filtering, repeat.
During the prediction step, a node picks random locations within the deploy-
ment area, possibly constrained by its maximum speed and the previous location
samples. At time t, a sensor node thus generates a new set of samples Lt based
on the previous set Lt−1 . In practice, given a location lit−1 from Lt−1 , a random
location lit is chosen from the disk of radius vmax around lit−1 , vmax being the
maximum speed of a node. During the filtering phase, all impossible locations lit
are removed from the new set of samples Lt. The filtering occurs by using the
position information obtained from both the one-hop and two-hop anchors. The
one-hop-anchor group is composed of the anchors the sensor node heard directly.
These anchors are assumed to be in the radio range r of the sensor node. The
two-hop-anchor group is composed of anchors the sensor node did not hear itself
but its one-hop neighbors did. These anchors are assumed to be in the range 2r
of the sensor node but not within a radius r. In other words, MCL makes use of
negative information. Note that this usually leads to an improved localization
accuracy in an obstacle-free deployment area but is quite risky otherwise.

320 A. Baggio and K. Langendoen

Note that after the filtering step, there may be less samples in the set than de-
sired. The prediction and filtering process thus repeats until the desired number
of samples is reached. The location estimate of a sensor at time t is the average
of all the possible locations from the sample set Lt.

3.2 Monte Carlo Localization Boxed

Despite being quite accurate, especially in low-anchor configurations, MCL’s
efficiency can be improved. Drawing samples is a long and tedious process that
could easily drain a lot of energy from a sensor node. Furthermore, the way MCL
makes use of anchor information leaves room for improvement. Our version of
the Sequential Monte Carlo Localization called Monte Carlo Localization Boxed
(MCB) uses steps similar to those of MCL. The major differences lie in the way
we use anchor information and the method we use for drawing new samples
(see [1] for algorithmic details).

The original MCL algorithm uses information about one-hop and two-hop
anchors at filtering time only, for rejecting impossible samples. In MCB, we use
the information about the anchors heard to constrain the area from which the
samples are drawn, method which we explain below. Reducing the area to sample
from has two consequences. First, we draw good samples more easily and thus
faster. Drawing good samples means that we have to reject samples less often
in the filtering phase, reducing thereby the number of iterations the algorithm
needs to fill the sample set entirely. The second consequence is implementation
dependent. Unlike the pseudo-code shown in [9], the implementation of MCL sets
a bound on the number of times a node can try to draw samples if its sample set
does not contain the required number of samples yet. This boils down to avoiding
that the algorithm loops endlessly if no valid sample can be drawn for a given
configuration. In [9], Hu and Evans selected a sample-set size N of 50. A node
tries at most twice 10,000 times to draw a sample. This happens once with a
strict speed condition, drawing new samples from the disk of radius vmax around
the old sample, and a second time with a relaxed speed condition, drawing new
samples from the disk of radius vmax + delta around the old sample. Drawing
samples with a relaxed speed constraint only happens if the sample set is not full
after the first series of 10,000 draws. After the 20,000 attempts, the sample set
may still be not full, having less than 50 good samples. MCL does not try to fill
the sample set any further. In MCB, we make sure that the sample set is as full
as possible by drawing samples that do not have to be filtered and therefore do
not require a redraw. In most cases, the sample set is full well before 10,000 tries.
Experiences have shown that 100 attempts is ample enough to fill the sample
set entirely. By ensuring that the sample set is full in 50 to 100 draws, a node
can save precious battery power. Filling the sample set whenever possible also
has a positive influence on localization accuracy over time.

The method used for constraining the area from which MCB draws samples
is as follows. A node that has heard anchors – one-hop or two-hop anchors –
builds a box that covers the region where the anchors’ radio ranges overlap. In
other words, this box is the region of the deployment area where the node is

Monte-Carlo Localization for Mobile WSNs 321

Anchor

Radio range

Radio range
approximation

r

Fig. 1. Building the anchor box

localized. We call such a box the anchor box. Figure 1 shows an example of an
anchor box (shaded area) in the case where three one-hop anchors were heard.
For each one-hop anchor heard, a node builds a square of size 2r centered at
the anchor position, r being the radio range. Building the anchor box simply
consists in calculating coordinates (xmin, xmax) and (ymin, ymax) as follows:

xmin =
n

max
j=1

(xj − r) xmax =
n

min
j=1

(xj + r) (1)

ymin =
n

max
j=1

(yj − r) ymax =
n

min
j=1

(yj + r) (2)

with (xj , yj) being the coordinates of the considered anchor j and n being the
total number of anchors heard. When considering two-hop anchors, we replace
r by 2r in the above formulas.

In addition, in the simulation, the box-building algorithm cares for inconsistent
or out-of-range boxes. In other words, for boxes where the minimum value xmin

or ymin is larger than its respective maximum value xmax or ymax, the box is reset
either to a box with one-hop anchors only, or to the whole deployment area. In
the case where values are outside of the deployment area, for example xmin is
negative, we reset the value to the coordinate of the border, in our example 0.

Once the anchor box is built, a node simply has to draw samples within the
region it covers. Since the anchor box is a bare approximation of the radio range
of the anchors, we keep a filtering step, as in the original MCL. And as in the
original MCL, the prediction and filtering steps repeat until the sample set is
full or until the maximum number of tries is reached.

Building an anchor box as described above is used in the case where the
sample set is empty, for example at initialization time. In the case where we
already have samples, the bounding box is built with an additional constraint,
namely, for each old sample lit−1 from the sample set Lt−1, we build an additional
square of size 2 ∗ vmax centered at the old sample as follows:

xi
min = max(xmin, xi

t−1 − vmax) (3)

xi
max = min(xmax, xi

t−1 + vmax) (4)

322 A. Baggio and K. Langendoen

yi
min = max(ymin, yi

t−1 − vmax) (5)

yi
max = min(ymax, yi

t−1 + vmax) (6)

where (xi
t−1, y

i
t−1) are the coordinates of sample lit−1. This updated box, which

we call sample box, delimits per old sample the area a node can move in one
time interval at maximum. Whenever a node has an initialized sample set but
heard no anchor, we build the sample box solely based on the maximum node
speed and the old samples. Box building remains a sequential process, where
the anchor box is build first – and saved for subsequent uses – and updated
independently for each old sample, creating thereby the sample box from which
the new samples are effectively drawn.

Besides building anchor and sample boxes for drawing new samples, MCB tries
to make the best possible use of all information a node received. This influences
the localization algorithm in two ways. First, during the initialization phase or
whenever the sample set becomes empty, MCB allows a node to use two-hop
anchor information even if it has heard no one-hop anchor. Where the original
MCL makes use of two-hop-anchor information only in combination with one-
hop-anchor information during the filtering phase, MCB allows a node to use all
information it got both at prediction and filtering time. This means that a node
that heard only two-hop anchors can still draw samples using these and produce
a location estimate.

Second, whenever a node has heard anchors and has an already initialized
sample set but has failed to fill it (entirely) with new samples, MCB reverts to
solely drawing new samples from the anchor box. In other words, the sample
boxes are not used anymore. Not being able to fill the sample set typically hap-
pens when too many old samples are inconsistent with the current connectivity
and speed constraints. To counter old sample inaccuracy and draw new valid
samples, the algorithm would need to let the node travel a too long distance, i.e.
more than what could be covered with speed vmax in one time interval, to finally
meet the connectivity constraints. In such a case, MCL would try to draw new
samples with a relaxed speed constraint (vmax +delta). Drawing solely from the
anchor box in MCB is equivalent to relaxing the speed. The advantage, however,
is that no delta for the allowed speed increase has to be chosen in advance as it
is the case with MCL.

4 Evaluation

In the following, we present the results of the simulations of three localization
algorithms. We reused and extended the simulator used in [9]. First, we ran MCL
as specified in [9] and presented above. MCB was implemented as described
in Section 3. In addition, in order to compare with a well-known, simple and
efficient localization algorithm, we chose to run the Centroid [10] algorithm in our
simulations. Centroid calculates the position of an unknown node by computing
the averages of all the x and all the y coordinates of the anchors heard.

The selected localization algorithms have been tested with simulated mobile
wireless sensor networks. In the following, we assume a number of nodes and

Monte-Carlo Localization for Mobile WSNs 323

anchors deployed in an obstacle-free area of 500x500 units. We thus allow all
algorithms to use negative information (see [1] for more on this topic). Both
the nodes and anchors are mobile. The anchors know their location a priori, for
example by using GPS. The radio range r is set to 100 units for both the anchors
and the nodes.

A simulation run consists in feeding the simulator with a set of parameters
such as the number of nodes in the network, the number of anchors, the max-
imum speed at which they move, the degree of irregularity used to model the
radio communication. Time is discrete in the simulator. The speed of a node
thus represents the distance in “units” a node can move per “time unit”. For
each selected maximum speed, the simulator generates a number of random net-
work configurations, in our case 20. For each distinct network configuration, we
simulate 200 time units. The first 100 units, the nodes move without localiz-
ing. For each subsequent time unit, the nodes first localize and then move. In
other words, the time freezes and we localize the whole network using a snap-
shot. There is no movement while the nodes are localizing. This means that
message transfer is instantaneous and that the received anchor locations are still
accurate when a node receives them. As such, the simulation results represent a
best-case scenario where no inaccuracy is introduced due to ongoing movement,
communication delays, message loss or collisions, or other anchor-location inac-
curacies (i.e. GPS error). As in [9], we use a modified random waypoint mobility
model [16] where each node can vary its speed at each time step before it reaches
its destination. The pause time is set to 0 and the minimum node speed is set
to 0.1 to avoid speed decay [17]. The average node speed is close to vmax/2. In
the following, speed is expressed as a multiple of the radio range r. Finally, as
suggested in [9], we use a sample set of 50 location estimations.

To analyze the simulation results, we use the following metrics. First, we
analyze the localization error. As done in [9], the localization error is calculated
by measuring the distance between the real location of a node and its estimated
location. Second, we consider the coverage of the different algorithms, that is
the percentage of nodes that were able to calculate a location estimate. Third,
we compare the processing times necessary for purely running each algorithm,
thus excluding potential communications to gather anchor locations. Detailed
network characteristics as well as other simulation results can be found in [1].

4.1 Localization Error

Figure 2 shows the localization error for all nodes, including the non-localized
nodes, that is the nodes that are placed in the middle of the deployment area
because they were not able to compute a location estimate (see [1] for more
simulation results). Nodes can be non-localized for several reasons. First, they
heard no anchor. This is typically the case with Centroid as it cannot produce a
location estimate if no anchor is heard. In the case of MCL, this can happen at the
beginning of the deployment when there is no previous sample set to build from.
Second, in the case of MCL, a node that has heard anchors can sometimes still
be non-localized. This happens when the algorithm is not able to fill the sample

324 A. Baggio and K. Langendoen

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Lo
ca

liz
at

io
n

er
ro

r
(r

at
io

 o
f r

ad
io

 r
an

ge
)

Maximum speed vmax (ratio of radio range)

MCL
MCB
USC

Fig. 2. Localization error (including the non-localized nodes)

set rapidly enough: the maximum number of random draws has been reached
and the new sample set is still empty. This can be the case when the region to
draw from is large and the area where the anchors’ radio range overlap is small in
comparison. Not being able to localize a node with anchors can also happen when
the sample set becomes empty for some inconsistency reasons. Inconsistencies
in a node’s sample set generally occur after a period during which the node has
heard no anchor. The new location estimations produced recursively from the
old sample set gradually become less accurate as time passes and still no anchor
is heard. Once an anchor is heard again, it can occur that all the new samples
are rejected because they do not meet connectivity and speed constraints. Not
being able to localize a node when anchors were heard is clearly unacceptable as
it leads only to wasting energy and should be prevented as much as possible.

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

A
ve

ra
ge

 n
um

be
r

of
 s

am
pl

es

Maximum speed vmax (ratio of radio range)

MCL
MCB

Fig. 3. Average number of samples

Monte-Carlo Localization for Mobile WSNs 325

Figure 2 shows that MCL is rather sensitive to slow and high speeds while
the curve for medium speeds, i.e. for a node moving at maximum between 20%
and 70% of the radio range during one time interval, remains rather flat. The
localization error for MCB as well as that of Centroid (USC) are rather inde-
pendent of the node maximum speed and only show a slight deterioration of the
accuracy as the maximum speed increases.

The behavior of the MCL localization error with respect to the maximum
speed has several causes. Slow motion gives less chances to a node to hear an-
chors. More precisely, the average number of anchors heard remains quite stable
as the speed varies, however, the time a node can remain anchor-less is on av-
erage longer. The reason for MCL’s loss in accuracy for slow speeds is thus as
follows: the slower an anchor-less node moves, the less chance it has to encounter
a new anchor quickly since the whole network moves only in small steps at each
time interval.

At slow speeds, nodes are thus more often producing location estimates with-
out being able to use anchor locations. This increases the inaccuracy of the set
of samples over time. In the worst case, nodes are localized in the middle of the
deployment area if no valid sample can be drawn once an anchor is heard again.
This effect is also noticeable in the coverage results (see [1]). The negative effect
of slow motion was also observed by Hu and Evans in [9] for MCL.

For larger values of vmax, such as 0.8r and above, the motion of the nodes
allows them to hear anchors more often and this limits the decay of the sample
set. However, since the distance a node can travel in a time unit is larger, the
area from which the random samples are drawn also increases. This affects the
accuracy in a negative way. While the average number of anchors a node hears
remains rather stable and the average number of anchor-less time intervals de-
creases as the speed increases, the average number of valid samples MCL is able
to draw for high speeds considerably decreases. The coverage MCL achieves for
high speeds is also decreasing. The impact of the maximum speed on MCL is
thus purely due to the way the algorithm produces its samples. Hu and Evans
also noticed this increase in inaccuracy in [9]. They did not provide a detailed
study of the coverage and average number of samples though.

The behavior of MCB is not as dramatically affected by the maximum node
speed as it is the case with MCL. The main reason is that the average number
of samples the MCB variants can draw is rather stable with respect to speed as
shown in Figure 3. This improves the coverage and the overall accuracy. This
behavior is due to the more efficient way MCB draw samples.

4.2 Coverage

We studied the percentage of nodes that could be localized, i.e. for which a lo-
cation estimate was produced, independently of how many anchors they heard.
The coverage of Centroid is on average 96.62%. That of MCL is 92.13% on av-
erage, ranging from 96.87% (speed 0.45r) to 86.44% (speed 1r) down to 44.81%

326 A. Baggio and K. Langendoen

(speed 2r). This comes from the fact that MCL is not able to draw enough good
samples from a large draw area in which the overlap of the anchors’ radio range
is small. This occurs in general with high maximum node speeds. In the worst
case, the new sample set remains empty leading to a non-localized node. The
average coverage for MCB is extremely stable with respect to maximum node
speed and stays around 99.98% (variation starts from the third decimal place).

4.3 Processing Time

Another factor positively influenced by the way MCB draws samples is the
processing time, that is to say, the time needed by the algorithm to produce a
location estimate. We consider here only the computation time and not the time
needed for communicating (gathering anchor positions, listening to neighbors
and forwarding anchor messages). Communication time is network-dependent
and is identical for all the MCL variants. Only Centroid communicates less as
it does not consider the two-hop anchors. We measured the processing time
through simulation on a PC.

The processing time of the MCL variants depends on several factors. First, as
the maximum number of samples N in the set grows, more samples have to be
drawn and processing time also increases. There is of course a trade-off between
the maximum number of samples in the set, the accuracy of the localization and
the processing time. In [9], Hu and Evans provided an analysis of the impact
of the maximum size of the sample set. We obtained similar results with our
algorithm though the maximum number of samples can more easily be reduced
with MCB than with MCL.

Second, the maximum number of random draws the algorithm is allowed to
make also has an influence on the processing time. In the original MCL imple-
mentation, the maximum number of draws per sample is set to two times 10,000
draws for 50 samples, once with the maximum speed vmax and a second time
with the relaxed maximum speed vmax + delta. More precisely, MCL allows two
times 10,000 draws with an uninitialized sample set, and two times 200 draws
per sample (maximum 50 samples) with an initialized sample set. With similar
loop values, MCB is 40% to 50% faster while its accuracy and coverage are better
than that of MCL and its average number of samples was higher (i.e. the sample
set was full more often). These tests and those that follow were conducted using
a 200 by 200 units deployment area with one unknown node and 32 anchors.
The radio range was set to 50 units and the maximum speed to 50 units per
time interval.

Thanks to its simplicity, Centroid performs much faster than any MCL vari-
ants. It runs in 0.0095% of the time needed by MCL and 0.0168% of the time
needed by MCB when both MCL and MCB are using the original random-draw
parameters (10,000 draws with an uninitialized sample set, 200 draws with an
initialized sample set, 50 samples in the set at maximum).

Next, we compared MCL and MCB processing times for identical localiza-
tion error when excluding the non-localized nodes. To get an identical accuracy,

Monte-Carlo Localization for Mobile WSNs 327

we varied the loop boundaries of both MCL and MCB. We kept the maximum
number of samples unchanged (50 samples). In the case of MCL, we let the
algorithm draw samples 1,000,000 times, once with the maximum speed vmax,
and a second time with the relaxed maximum speed vmax + delta. For an ini-
tialized sample set, we allow 20,000 tries twice for each of the 50 samples. With
MCB, we use a maximum of 100 draws for an uninitialized sample set. For an
initialized sample set, MCB uses 50 draws from the sample box and, in the case
of a partially full new sample set, it allows at maximum 100 extra draws from
solely the anchor box. At speed 1r, MCL was able to produce 48.7227 samples
on average and MCB 48.2153. The accuracy was 13.9% of the radio range for
MCL and 13.8% for MCB. The coverage was 98.38% for MCL and 99.96% for
MCB. The relative processing time was 100% for MCL and 6.238% for MCB.
This demonstrates the fact that MCB is much faster than MCL for a similar
localization accuracy. Even with a slightly lower average number of samples, the
coverage of MCB is better than that of MCL.

5 Conclusion and Future Work

Localization in wireless sensor networks is a topic that has received much interest
in the past years. Most proposed algorithms concentrate on static networks of
sensors with either static or mobile anchors. The problem of localizing nodes in
a mobile wireless sensor network has not yet received much attention although
mobility needs to be taken into account at design time.

In this paper, we presented a localization algorithm that builds upon Hu and
Evans’ findings [9] and that makes Monte Carlo Localization more lightweight
for use in wireless sensor networks. By making better use of the information
a node gathers (one-hop and two-hop anchors) and by restricting the area a
node has to draw samples from to a (small) box, we improve the whole process
of localizing. The results of simulations of our algorithm, called Monte Carlo
Localization Boxed, show that it allows a node to get an improved accuracy at
a reduced cost. Most importantly, it ensures that a node having heard anchors
will be localized and it will not pay a high price in term of processing time
and energy expenditure because of the inefficiency of the localization algorithm
(random draws). Our simulation results also show that the overall coverage of
the localization algorithm is improved by ensuring that the sample sets are full
as often as possible.

In the future, we are planning to deploy MCB on a test network of wireless
sensors and study the behavior of the algorithm in a real-life setting. We will
also make several extensions to the protocol so that it can benefit from extra
information on the sensors’ mobility patterns and mobility-pattern variability.
This encompasses maintaining knowledge about sensors’ speed and direction,
possibly using additional equipment such as accelerometers and deploying it in
heterogeneous networks using a mix of both mobile and static anchors.

328 A. Baggio and K. Langendoen

References

1. A. Baggio. Monte-Carlo localization for mobile wireless sensor networks. Technical
Report PDS-2006-004, Delft University of Technology, June 2006.

2. F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization for mobile
robots. In IEEE International Conference on Robotics and Automation (ICRA99),
Detroit, Michigan, USA, may 1999.

3. B. Dil, S. Dulman, and P. J. M. Havinga. Range-based localization in mobile sensor
networks. In Third European Workshop on Wireless Sensor Networks, volume 3868
of Lecture Notes in Computer Science, pages 164–179, Zurich, Switzerland, Feb.
2006. Springer.

4. A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods
in Practice. Springer, 2001.

5. P. Dutta and S. Bergbreiter. Mobiloc: Mobility enhanced localization, Dec. 2003.
6. K. Fall. A delay-tolerant network architecture for challenged Internets. In ACM

SIGCOMM, pages 27–34, Karlsruhe, Germany, Aug. 2003.
7. A. Galstyan, B. Krishnamachari, K. Lerman, and S. Pattem. Distributed online

localization in sensor networks using a moving target. In Third international sympo-
sium on Information processing in sensor networks (IPSN), pages 61–70, Berkeley,
California, USA, Apr. 2004.

8. J. E. Handschin. Monte Carlo techniques for prediction and filtering of non-linear
stochastic processes. Automatica, 4(6):555–563, July 1970.

9. L. Hu and D. Evans. Localization for mobile sensor networks. In Tenth Inter-
national Conference on Mobile Computing and Networking (MobiCom’04), pages
45–57, Philadelphia, Pennsylvania, USA, Sept. 2004.

10. D. E. N. Bulusu, J. Heidenmann. GPS-less low cost outdoor localization for very
small devices. IEEE Personal Communications Magazine, 7(5):28–34, October
2000.

11. P. N. Pathirana, N. Bulusu, A. V. Savkin, and S. K. Jha. Node localization using
mobile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile
Computing, 4(3):285–296, May–June 2005.

12. R. Peng and M. L. Sichitiu. Localization of wireless sensor networks with a mobile
beacon. In First IEEE Conference on Mobile Ad-hoc and Sensor Systems (MASS
2004), Fort Lauderdale, FL, USA, Oct. 2004.

13. N. B. Priyantha, H. Balakrishnan, E. D. Demaine, and S. Teller. Mobile-assisted
localization in wireless sensor networks. In INFOCOM 2005, Miami, FL, USA,
Mar. 2005.

14. K.-F. Ssu, C.-H. Ou, and H. C. Jiau. Localization with mobile anchor points
in wireless sensor networks. IEEE Transactions on Vehicular Technology, pages
1187–1197, May 2005.

15. S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte Carlo localization
for mobile robots. Artificial Intelligence, 128(1–2):99–141, May 2001.

16. J. Yoon, M. Liu, and B. Noble. Random waypoint considered harmful. In IEEE
INFOCOM, San Franciso, CA, USA, March–April 2003.

17. J. Yoon, M. Liu, and B. Noble. Sound mobility models. In ACM MobiCom, pages
205–216, San Diego, CA, USA, Sept. 2003.

	Introduction
	Dealing with Mobility
	Localization in Mobile WSNs
	Monte Carlo Localization
	Monte Carlo Localization Boxed

	Evaluation
	Localization Error
	Coverage
	Processing Time

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

