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Abstract

Localization is crucial to many applications in wireless sensor networks. In this article, we propose a range-free anchor-
based localization algorithm for mobile wireless sensor networks that builds upon the Monte Carlo localization algorithm.
We concentrate on improving the localization accuracy and efficiency by making better use of the information a sensor
node gathers and by drawing the necessary location samples faster. To do so, we constrain the area from which samples
are drawn by building a box that covers the region where anchors’ radio ranges overlap. This box is the region of the
deployment area where the sensor node is localized. Simulation results show that localization accuracy is improved by
a minimum of 4% and by a maximum of 73% (average 30%), for varying node speeds when considering nodes with knowl-
edge of at least three anchors. The coverage is also strongly affected by speed and its improvement ranges from 3% to 55%
(average 22%). Finally, the processing time is reduced by 93% for a similar localization accuracy.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Many applications have a need for localization,
be it for locating people or objects. Most of the
time, data recorded from a wireless sensor only
makes sense if correlated to a position. For exam-
ple, the temperature recorded in a given machine
room or cold-store. Similarly, many end-user pro-
grams are location-aware, for example, people
would like to find the closest bus stop or mailbox,
and emergency services need to find persons to be
rescued. In the following, we refer to a person,
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object or computer coupled with a wireless sensor
to be localized as an (unknown) node.

In both ubiquitous computing and wireless sen-
sor networks (WSNs), localization has drawn con-
siderable attention. The major difference between
these two fields lies in the capabilities of the consid-
ered computing devices. Ubiquitous computing usu-
ally considers devices such as laptops and PDAs
that are rather powerful compared to a wireless
sensor. A sensor node has both a very limited mem-
ory footprint and CPU power, and energy – pro-
vided most of the time by a small battery – is a
scarce resource. As such, localization algorithms
for wireless sensor networks have to be efficient,
both in terms of computation and power con-
sumption. Another difference between ubiquitous
.
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computing and wireless sensor networks is that lap-
tops and PDAs have often been considered mobile
while most of the existing experiments in wireless
sensor networks have concentrated on static net-
works of sensors. At the moment, few low-cost
localization algorithms exist that have been specifi-
cally designed with sensor movement in mind.

Nowadays, the most simple, off-the-shelf, mecha-
nism to determine the location of a mobile node is to
use the global positioning system (GPS) [19]. GPS
offers 3D localization based on direct line-of-sight
with at least four satellites, providing an accuracy
up to 3 m. However, some limitations of GPS ask
for alternative localization methods. First, GPS is
at the moment barely usable indoors, in cluttered
urban areas and under dense foliage. Second, while
the cost for GPS equipment has been dropping over
the years, it is still not suited for mass-produced
cheap sensor boards, phones and even PDAs. Third,
GPS equipment requires both hardware space and
energy, which are two limiting factors for integration
on miniaturized sensor boards. To overcome GPS
limitations, researchers have developed fully GPS-
free techniques for locating nodes as well as tech-
niques where a few nodes, commonly called anchors,
use GPS to determine their location and, by broad-
casting it, help other nodes in calculating their own
position without using GPS.

This article presents a localization algorithm for
wireless sensor networks specifically designed with
mobility in mind. One important factor is to let
the wireless sensors benefit from mobility and not
only suffer from it. Existing work [6,8,21,22,24,28]
has shown that using mobile anchors in static wire-
less sensor networks improves the accuracy of the
localization algorithm, as more nodes can benefit
from the anchors’ position broadcasts and as each
node can hear more of these. Similarly, mobile sen-
sors have a chance to get more information than in
a fully static environment. The challenge, however,
is that information in a mobile wireless sensor net-
work gets invalidated more quickly if all the nodes
are moving. In the article [12], Hu and Evans intro-
duce a localization algorithm dealing with these dif-
ferent characteristics. Their approach builds upon
Monte Carlo localization methods used in robotics
to locate a mobile robot. In this article, we present
improvements to Hu and Evans’ algorithm leading
to better accuracy and lower computational cost
when localizing nodes.

The remaining of this article is organized as fol-
lows. Section 2 presents some background informa-
tion on localization in both static and mobile
wireless sensor networks. Section 3 describes both
our localization algorithm and Hu and Evans’ algo-
rithm that it builds upon. Section 4 gives insight on
the accuracy of the localization and efficiency of the
algorithm. And finally, Section 5 concludes and
gives some directions for future work.

2. Localization in WSNs

There are at the moment few localization proto-
cols specifically designed for mobile wireless sensor
networks. This section presents the work of different
groups that aim at enabling localization and sup-
porting mobility in a sensor network or in a mobile
ad-hoc network.

2.1. Localization algorithms for static WSNs

Localization algorithms for static wireless sensor
networks are usually classified along several axes.
Some algorithms are said to be range-free or
range-based and some use anchors, either one-hop
or n-hop away.

A first distinction between localization algorithms
deals with the use of anchor nodes. Anchors are used
both as a localization aid for the nodes that need to
determine their location and as a way to introduce
static coordinates in a wireless sensor network. Net-
work of nodes where no anchors are used usually
establish their relative positions, possibly creating
their own coordinate system. In general, the more
anchors, the better the accuracy of the estimated loca-
tions. However, deploying anchors can be a tedious
task and prove to be a rather expensive way of
improving the accuracy of the localization algorithm.

Range-based localization algorithms use tech-
niques such as radio signal strength indicator
(RSSI) [11,23] or radio and ultrasound with angle-
of-arrival [16,18] (AOA) or time-difference-of
arrival [25,26] (TDOA), to measure the distance that
separates an unlocalized node from an anchor.
These distances, also called ranges, are sensitive to
range errors, i.e., inaccuracies in the range measure-
ments and often rely on additional hardware.

To be independent of hardware and counter
range inaccuracies, researchers developed range-free
methods that depend uniquely on the information –
location, hop count – a node receives from its neigh-
bors, be they anchors or regular nodes. Most range-
free algorithms use mathematical [14,15,17,27] or
geometrical [10,13] techniques to calculate the
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position of an unlocalized node. Centroid [14] is one
of the most simple range-free localization algo-
rithms. It estimates the location of a node as the
centroid of the position of the anchors heard, by
taking the mean of both the x and y-coordinates
of all the anchors. In this article, we concentrate
on range-free algorithms that use anchors to calcu-
late the location of unlocalized nodes.

2.2. Use of mobile anchors in static WSNs

To reduce the costs in terms of both needed hard-
ware and deployment effort, researchers proposed the
use of mobile anchors to help in localizing nodes
[6,8,21,22,24,28]. A mobile anchor performs the same
task as a static anchor – broadcasting its accurate
location – but can take the form of a human-carried
PDA or a robot. In the article [20], Parker and Lange-
ndoen propose to combine mobile anchors with a
statistics-based localization algorithm. Their results
show that an anchor in motion improves the accuracy
in resource-poor networks where typically few
anchors are available. By letting an anchor move,
the percentage of nodes receiving anchor messages
usually increases. A mobile anchor therefore repre-
sents many virtual static anchors. Another research
aspect when using mobile anchors is to determine
the best path an anchor has to follow to maximize
the improvement in location-estimation accuracy.

2.3. Particle filters

In the article [12], Hu and Evans present a range-
free localization algorithm for mobile sensor net-
works based on the sequential Monte Carlo method
[5,9]. The Monte Carlo method has been extensively
used in robotics [3,29] where a robot estimates its
localization based on its motion, perception and pos-
sibly a pre-learned map of its environment. Hu and
Evans extend the Monte Carlo method as used in
robotics to support the localization of sensors in a
free, unmapped terrain. The authors assume a sensor
has little control and knowledge over its movement,
in contrast to a robot. They target an environment
where there is no hardware for obtaining ranging
information, the topology of the network is unknown
and most likely irregular, the density of anchors is low
and both anchors and sensor nodes can move in an
uncontrollable manner. The only assumption, that
is, made is that the sensors or anchors move with a
known maximum speed and that the radio range is
common to the sensors and anchors – or is distributed
together with other messages. This latter point, how-
ever, is not described by the authors.

Using the sequential Monte Carlo localization
(MCL), Hu and Evans want to take advantage of
mobility to improve the accuracy of localization
and reduce the number of anchor nodes that are
required in the network. The key idea of the sequen-
tial Monte Carlo localization is to represent the pos-
terior distribution of a node’s possible locations using
a set of weighted samples. Localization happens in
two steps. First, the prediction step leads to choosing
a set of samples representing the belief of the node
regarding its location. During the prediction step, a
node picks random locations within the deployment
area, possibly constrained by its maximum speed
and the previous location samples. Second, the filter-

ing step aims at removing the impossible locations
from the set of samples. The filtering is done using
information obtained from the environment, such
as the location of the anchors in the case of a sensor
node or the detection of landmarks in the case of a
mobile robot. The process repeats and the sensor or
robot is able to update its position estimation.

In the article [4], Dil et al. recently proposed a
range-based version of the MCL algorithm intro-
duced in [12]. By using range information from
the anchors that are one and two hops away from
the unlocalized node, the authors show that they
can improve the accuracy of localization by
(roughly) 6–10%. In the latter case, only the well-
connected nodes are considered, that is, to say those
that have heard information from three or more
anchors. In the simulated network, the proportion
of well-connected nodes was 65% when considering
only the anchors that are one and two hops away
from the unlocalized node. The improvement in
accuracy, however, comes at a cost since the nodes
have to spend more energy communicating with
each others for forwarding anchor positions.

3. Localization in mobile WSNs

Apart from the experiments with the Monte
Carlo localization, there are at the moment few
localization protocols specifically designed with
mobile wireless sensors in mind. Most of the papers
presenting localization algorithms suggest that sup-
porting mobility can be achieved by rerunning the
localization algorithm after some time interval,
either static or adaptable. While this is not optimal
but feasible in some cases, the entire class of algo-
rithms using information from distant nodes or
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iterative approaches will suffer from severe informa-
tion decay. At the time the information reaches a
distant node that wants to use it, it is very likely that
the whole network configuration has changed. A
node will therefore always calculate an inaccurate
location, not due to the lack of information or to
the intrinsic inaccuracy of the calculations it uses,
but due to the way its localization algorithm gathers
this information.

Mobility introduces a real-time component to the
localization algorithms. Wireless sensor networks
are usually considered delay-tolerant [7,21]. To the
contrary, mobility makes a sensor network delay-
intolerant: information gathering and location
calculation should happen in a timely manner,
dependent on the speed of both the nodes and the
anchors. This means that in a mobile wireless sensor
network, methods relying on global knowledge such
as calculating the number of hops or distances to all
the anchors in the network are to be avoided. Sim-
ilarly, a mobile node cannot really benefit from iter-
ative localization techniques where the location
estimation is refined whenever a node receives more
information from the network.

Besides possible information decay, a localiza-
tion algorithm deployed in a mobile wireless sensor
network should be able to cope with the temporary
lack of anchors. In other words, the algorithms
should be able to produce a location estimate in
such conditions if the application layer has a need
for it. In such cases, the location estimation could
easily be tagged as uncertain, providing a mean
for the application to assess how much the results
of the localization algorithm should be trusted.

We believe mobility should be taken into account
directly when designing new localization algorithms.
A wireless sensor should benefit from mobility and
exploit it to improve the efficiency of localization
or get a better accuracy of its position estimates.
The algorithms based on Monte Carlo localization
are offering such guarantees. In the following, we
build upon the range-free Monte Carlo localization
algorithm proposed by Hu and Evans [12] and show
that by improving the way the anchor information
is used, we can improve both the accuracy and the
efficiency of the algorithm.

3.1. Monte Carlo localization

In [12], Hu and Evans define their localization
algorithm as follows. The time is divided into dis-
crete intervals. A sensor node relocalizes in each
time interval. During the localization-algorithm ini-
tialization phase, a sensor picks a random set of N

samples L0 ¼ fl0
0; l

1
0; . . . ; lN�1

0 g, i.e., random localiza-
tions within the deployment area. From then on, the
two steps, prediction and filtering, repeat. During
the prediction step at time t, a sensor node generates
a new set of samples Lt based on the previous set
Lt�1. In practice, given a location li

t�1 from Lt�1, a
random location li

t is chosen from the disk of radius
vmax around li

t�1, vmax being the maximum speed of
a node. During the filtering phase, all impossible
locations li

t are removed from the new set of samples
Lt. The filtering occurs by using the position
information obtained from both the one-hop and
two-hop anchors. The one-hop-anchor group is
composed of the anchors the sensor node heard
directly. These anchors are assumed to be in the
radio range r of the sensor node. The two-hop-
anchor group is composed of anchors the sensor
node did not hear itself but its one-hop neighbors
did. These anchors are assumed to be in the range
2r of the sensor node but not within a radius r. In
other words, MCL makes use of negative informa-
tion. Note that this usually leads to an improved
localization accuracy in an obstacle-free deployment
area but is quite risky otherwise (see Section 4.7.3).
By using information from its neighbors over the
anchors they heard, a sensor can learn about the
anchors that are outside its radio range.

Note that after the filtering step, there may be
less samples in the set than desired. The prediction
and filtering process thus repeats until the desired
number of samples is reached. The location estimate
of a sensor at time t is the average of all possible
locations from the sample set Lt.

3.2. Monte Carlo localization boxed

Despite being quite accurate, especially in low-
anchor configurations, MCL’s efficiency can be
improved. Drawing samples is a long and tedious
process that could easily drain a lot of energy from
a sensor node. Furthermore, the way MCL makes
use of anchor information leaves room for improve-
ment. Our version of the sequential Monte Carlo
localization called Monte Carlo localization boxed
(MCB) [1] uses steps similar to those of MCL.
The major differences lie in the way we use anchor
information and the method we use for drawing
new samples Fig. 1 provides a summary of the
MCB localization algorithm (see [2] for algorithmic
details).



Fig. 1. Monte Carlo localization boxed.
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The original MCL algorithm uses information
about one-hop and two-hop anchors at filtering
time only, for rejecting impossible samples. In
MCB, we use the information about the anchors
heard to constrain the area from which the samples
are drawn, as explained below. Such a method is
known as sampling from the optimal proposal [5].
Reducing the area to sample from has two conse-
quences. First, we draw good samples more easily
and thus faster. Drawing good samples means that
we have to reject samples less often in the filtering
phase, reducing thereby the number of iterations
the algorithm needs to fill the sample set entirely.
The second consequence is implementation depen-
dent. Unlike the pseudo-code shown in [12], the
implementation of MCL sets a bound on the
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number of times a node can try to draw samples if
its sample set does not contain the required number
of samples yet. This boils down to avoiding that
the algorithm loops endlessly if no valid sample
can be drawn for a given configuration. In [12],
Hu and Evans selected a sample-set size N of 50.
A node tries at most twice 10,000 times to draw a
sample. This happens once with a strict speed con-
dition, drawing new samples from the disk of
radius vmax around the old sample, and a second
time with a relaxed speed condition, drawing new
samples from the disk of radius vmax + delta
around the old sample. Drawing samples with a
relaxed speed constraint only happens if the sample
set is not full after the first series of 10,000 draws.
After the 20,000 attempts, the sample set may still
be not full, having less than 50 good samples. MCL
does not try to fill the sample set any further. In
MCB, we make sure that the sample set is as full
as possible by drawing samples that do not have
to be filtered and therefore do not require a redraw.
In most cases, the sample set is full well before
10,000 tries. Experiences have shown that 100
attempts is ample enough to fill the sample set
entirely. By ensuring that the sample set is full in
50–100 draws, a node can save precious battery
power. Filling the sample set whenever possible
also has a positive influence on localization accu-
racy over time.

The method used for constraining the area from
which MCB draws samples is as follows. A node
that has heard anchors – one-hop or two-hop
anchors – builds a box that covers the region where
the anchors’ radio ranges overlap. In other words,
this box is the region of the deployment area where
the node is localized. We call such a box the anchor
box. Fig. 2 shows an example of an anchor box
(shaded area) in the case where three one-hop
anchors were heard. For each one-hop anchor
heard, a node builds a square of size 2r centered
at the anchor position, r being the radio range.
Building the anchor box consists in calculating
coordinates (xmin, xmax) and (ymin, ymax) (see Anchor

box building in Fig. 1).
In addition, in the simulation, the box-building

algorithm cares for inconsistent or out-of-range
boxes. In other words, for boxes where the mini-
mum value xmin or ymin is larger than its respective
maximum value xmax or ymax, the box is reset either
to a box with one-hop anchors only, or to the whole
deployment area. In the case where values are out-
side of the deployment area, for example, xmin is
negative, we reset the value to the coordinate of
the border, in our example 0.

Once the anchor box is built, a node simply has
to draw samples within the region it covers. Since
the anchor box is a bare approximation of the radio
range of the anchors, we keep a filtering step, as in
the original MCL. And as in the original MCL, the
prediction and filtering steps repeat until the sample
set is full or until the maximum number of tries is
reached.

Building an anchor box as described above is
used in the case where the sample set is empty, for
example, at initialization time. In the case where
we already have samples, the bounding box is built
with an additional constraint, namely, for each old
sample li

t�1 from the sample set Lt�1, we build an
additional square of size 2 * vmax centered at the
old sample, which we call sample box, (see Sample
box building in Fig. 1). This updated box delimits
per old sample the area a node can move in one time
interval at maximum. Whenever a node has an ini-
tialized sample set but heard no anchor, we build
the sample box solely based on the maximum node
speed and the old samples. Box building remains a
sequential process, where the anchor box is built
first – and saved for subsequent uses – and updated
independently for each old sample, creating thereby
the sample box from which the new samples are
effectively drawn.

Besides building anchor and sample boxes for
drawing new samples, MCB tries to make the best
possible use of all information a node received. This
influences the localization algorithm in two ways.
First, during the initialization phase or whenever
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the sample set becomes empty, MCB allows a node
to use two-hop anchor information even if it has
heard no one-hop anchor. Where the original
MCL makes use of two-hop anchor information
only in combination with one-hop anchor informa-
tion during the filtering phase, MCB allows a node
to use all information it got both at prediction and
filtering time. This means that a node that heard
only two-hop anchors can still draw samples using
these and produce a location estimate.

Second, whenever a node has heard anchors and
has an already initialized sample set but has failed to
fill it (entirely) with new samples, MCB reverts to
solely drawing new samples from the anchor box.
In other words, the sample boxes are not used any-
more. Not being able to fill the sample set typically
happens when too many old samples are inconsis-
tent with the current connectivity and speed con-
straints. To counter old sample inaccuracy and
draw new valid samples, the algorithm would need
to let the node travel a too long distance, i.e., more
than what could be covered with speed vmax in one
time interval, to finally meet the connectivity con-
straints. In such a case, MCL would try to draw
new samples with a relaxed speed constraint
(vmax + delta). Drawing solely from the anchor
box in MCB is equivalent to relaxing the speed.
The advantage, however, is that no delta for the
allowed speed increase has to be chosen in advance
as is the case with MCL.

4. Evaluation

This section presents some measurements that
compare the performance of MCL and MCB. We
also provide a comparison with two altered versions
of MCB and with a very simple protocol: Centroid.
The performance measurements are produced
through simulation. In this section, we present the
algorithms we used, our simulation procedure, the
characteristics of the wireless sensor network we
used and then provide detailed results of the various
parameters we studied.

4.1. Simulated algorithms

In the following, we present the results of the
simulations of five localization algorithms. We
reused and extended the simulator used in [12].
First, we ran MCL as specified in [12] and presented
above. MCB was implemented as described in Sec-
tion 3.
For further comparison with the original MCL,
we simulated two additional versions of MCB.
The first one, referred to as MCF, makes a limited
use of the two-hop anchors. It uses them at filtering
time only, which matches what MCL does. In prac-
tice, this means that MCF constructs its anchor box
based solely on the one-hop anchors (if any). It sub-
sequently draws samples from the sample box and
filters them using the connectivity constraint of both
the one-hop and two-hop anchors as MCB does. In
other words, we restrict the information MCF can
use at box-building time.

The second additional version of MCB we tested,
referred to as MCX, makes use of the two-hop
anchors in both the filter and when building the
anchor box as MCB does. However, the two-hop
anchors are not used alone but solely in combina-
tion with the one-hop anchors (if any). This matches
what MCL does too. If a node has heard no one-
hop anchors but has heard two-hop anchors, this
information cannot be used.

Finally, in order to compare with a well-known,
simple and efficient localization algorithm, we chose
to run the Centroid [14] algorithm in our simula-
tions. Centroid calculates the position of an
unknown node by computing the averages of all
the x- and all the y-coordinates of the anchors
heard.

4.2. Evaluation procedure

The selected localization algorithms have been
tested with simulated mobile wireless sensor net-
works. In the following, we assume a number of
nodes and anchors deployed in an obstacle-free area
of 500 · 500 units. We thus allow all algorithms to
use negative information. Both the nodes and
anchors are mobile. The anchors know their loca-
tion a priori, for example by using GPS. The radio
range r is set to 100 units for both the anchors and
the nodes.

A simulation run consists in feeding the simula-
tor with a set of parameters such as the number of
nodes in the network, the number of anchors, the
maximum speed at which they are allowed move,
the degree of irregularity used to model the radio
communication. Time is discrete in the simulator.
The simulated maximum speed of a node thus
represents the maximum distance in ‘‘units’’ a node
can move per ‘‘time unit’’. In the following, the
maximum reachable speed per time unit is expressed
as a multiple of the radio range r, in other words
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vmax/r per time unit. The actual distance a node can
cover in one time step depends on the duration, that
is, chosen. The length of a time step depends on
trade-offs taking into account the wished localiza-
tion accuracy, energy use and radio range. A short
duration provides better localization accuracy for
a fast moving node but drains precious energy.
For example, for a time step of one minute and a
radio range r of 50 m, a fast walking human
(5 km/h) would travel 1.66r per time step. For fast
moving objects, it is of course possible to choose
an adaptable time step where a node would localize
more often when moving at high speeds than when
moving slowly. The study of trade-offs between
time-step duration, localization accuracy, informa-
tion decay and energy conservation policy are left
for future work.

For a given set of parameters, the simulator
generates a number of random network configura-
tions, in our case 20. For each distinct network
configuration, we simulate 200 time units. The first
100 units, the nodes move without localizing. For
each subsequent time unit, the nodes first localize
and then move. In other words, the time freezes
and we localize the whole network using a snap-
shot. There is no movement while the nodes are
localizing. This means that message transfer is
instantaneous and that the received anchor loca-
tions are still accurate when a node receives them.
As such, the simulation results represent a best-
case scenario where no inaccuracy is introduced
due to ongoing movement, communication delays,
message loss or collisions, or other anchor-location
inaccuracies (i.e., GPS error). As in [12], we use a
modified random waypoint mobility model [30]
where each node can vary its speed at each time
step before it reaches its destination. The pause
time is set to 0 and the minimum node speed is
set to 0.1 to avoid speed decay [31]. Finally, as sug-
gested in [12], we use a sample set of 50 location
estimations.

To analyze the simulation results, we use the fol-
lowing metrics. First, we analyze the localization
error. As done in [12], the localization error is calcu-
lated by measuring the distance between the real
location of a node and its estimated location.
Second, we consider the coverage of the differ-
ent algorithms, that is, the percentage of nodes that
were able to calculate a location estimate. Third, we
compare the processing times necessary for purely
running each algorithm, thus excluding potential
communications to gather anchor locations.
4.3. Network characteristics

In the following, unless stated otherwise, we use a
total of 320 nodes divided as 288 regular nodes and
32 anchors. The theoretical average number of
neighbors is 40. We also determine experimentally
the average number of both anchors heard and
neighboring nodes. These values decrease as speed
increases.

The average node speed is somewhat lower than
vmax/2. This effect is due to the mobility model in use
in the simulator that selects a distant destination for
each node and lets the node make a step towards
this destination at a random chosen speed, time
interval after time interval. In most cases, the final
step, i.e., the last part of the trip, is traveled at a
lower speed than the rest of it because the distance
to the destination is smaller than the maximum dis-
tance a node can travel at maximum speed. In many
cases, this last distance is very small.

The average observed anchor density is stable.
The number of one-hop anchors a node can hear
varies between 5.08 at speed 0.1r and 4.43 at speed
2r. The average observed node density, i.e., the
number of regular nodes a node can hear, is drop-
ping slightly as the speed increases. It varies between
44.91 at speed 0.1r and 39.92 at speed 2r.

Fig. 3 shows how speed influences the chance of a
node to hear anchors: there are more anchor-free
intervals at slow speeds. We saw that the number
of anchors heard is rather stable with respect to
the maximum node speed. This thus translates as
follows: at speed 0.1r, a node will remain on average
11.21 consecutive time intervals without anchors. At
speed 2r, this average has decreased down to 2.23
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consecutive time intervals. The higher the number
of consecutive anchor-free time interval is, the
higher the localization inaccuracy as will see in Sec-
tion 4.4.

Finally, on average, 78.29% of the nodes are well-
connected, i.e., have heard at least three one-hop
anchors. This ranges from 78.74% for speed 0.1r

to 74.96% for speed 2r.
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4.4. Localization error

Originally, the simulator we extended (see [12])
considered the localization error for both the local-
ized and the non-localized nodes together. The non-
localized node were simply placed in the middle of
the deployment area. Fig. 4 shows the localization
error including the non-localized nodes. In addition,
we are also considering the localization error
excluding the non-localized nodes (Fig. 6) and the
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localization error for the well-connected nodes, that
is, having heard three one-hop anchors or more
(Fig. 7).
4.4.1. Localization error including non-localized

nodes

Fig. 4 shows the localization error including the
non-localized nodes, that is, including the nodes
that are placed in the middle of the deployment area
because they were not able to compute a location
estimate. Nodes can be non-localized for several
reasons. First, they heard no anchor. This is typi-
cally the case with Centroid as it cannot produce a
location estimate if no anchor is heard. In the case
of Monte Carlo localization, this can happen at
the beginning of the deployment when there is no
previous sample set to build from. Second, in the
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case of Monte Carlo localization, a node that has
heard anchors can sometimes still be non-localized.
This happens when the algorithm is not able to fill
the sample set rapidly enough: the maximum num-
ber of random draws has been reached and the
new sample set is still empty. This can be the case
when the region to draw from is large and the area
where the anchors’ radio range overlap is small in
comparison. Not being able to localize a node with
anchors can also happen when the sample set
becomes empty for some inconsistency reasons.
Inconsistencies in a node’s sample set generally
occur after a period during which the node has
heard no anchor. The new location estimations pro-
duced recursively from the old sample set gradually
become less accurate as time passes and still no
anchor is heard. Once an anchor is heard again, it
can occur that all the new samples are rejected
because they do not meet connectivity and speed
constraints. Not being able to localize a node when
anchors were heard is clearly unacceptable as it
leads only to wasting energy and should be pre-
vented as much as possible.

Fig. 4 shows that MCL is rather sensitive to slow
and high speeds while the curve for medium speeds,
i.e., for a node moving at maximum between 20%
and 70% of the radio range during one time interval,
remains rather flat. The localization error for the
MCB variants (MCB, MCF, MCX) as well as that
of Centroid (USC) are rather independent of the
node maximum speed and only show a slight deteri-
oration of the accuracy as the maximum speed
increases.

The behavior of the MCL localization error with
respect to the maximum speed has several causes.
Slow motion gives less chances to a node to hear
anchors. More precisely, the average number of
anchors heard remains quite stable as the speed var-
ies, however, the time a node can remain anchor-less
is on average longer. Fig. 3 shows the average num-
ber of consecutive time intervals that a node spends
without anchor at various speeds. The reason for
MCL’s loss in accuracy for slow speeds is clear from
Fig. 3: the slower an anchor-less node moves, the
less chance it has to encounter a new anchor quickly
since the whole network moves only in small steps at
each time interval.

At slow speeds, nodes are thus more often pro-
ducing location estimates without being able to
use anchor locations. This increases the inaccuracy
of the set of samples over time. In the worst case,
nodes are localized in the middle of the deployment
area if no valid sample can be drawn once an anchor
is heard again. This effect is also noticeable in the
coverage results shown in Fig. 9. Note that the neg-
ative effect of slow motion was also observed by Hu
and Evans in [12] for MCL.

For larger values of vmax, such as 0.8r and above,
the motion of the nodes allows them to hear
anchors more often and this limits the decay of
the sample set. However, since the distance a node
can travel in a time unit is larger, the area from
which the random samples are drawn also increases.
This affects the accuracy in a negative way. While
the average number of anchors a node hears
remains rather stable and the average number of
anchor-less time intervals decreases as the speed
increases (Fig. 3), the average number of valid sam-
ples MCL is able to draw for high speeds consider-
ably decreases as shown in Fig. 5. The coverage
MCL achieves for high speeds is also decreasing
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(Fig. 9). The impact of the maximum speed on
MCL is thus purely due to the way the algorithm
produces its samples. Hu and Evans also noticed
this increase in inaccuracy in [12]. They did not pro-
vide a detailed study of the coverage and average
number of samples though.

The behavior of the MCB variants (MCB, MCF,
MCX) is not as dramatically affected by the maxi-
mum node speed as it is the case with MCL. The
main reason is that the average number of samples
the MCB variants can draw is rather stable with
respect to speed as shown in Fig. 5. This improves
the coverage as shown in Fig. 9 and the overall
accuracy. This behavior is due to the more efficient
way the MCB variants draw their samples.
4.4.2. Localization error excluding non-localized

nodes

Fig. 6 shows the localization error excluding the
non-localized nodes. Here, the general trend is that
the accuracy of each algorithm is improved. The
accuracy of Centroid, for example, is improved by
7.2% on average by excluding the non-localized
nodes. The improvement is 9.4% on average for
MCL, ranging from 3.76% to 15.76% (speed 0.05r)
and even 63.99% (speed 2r). The improvement in
the case of MCB is negligible (0.02% on average).
This is due to the fact that most nodes are localized
and very few are thus excluded in Fig. 6. MCF and
MCX follow a trend similar to that of MCB but
show an improvement of 0.5% on average when
excluding the non-localized nodes.

As a matter of fact, we observe that the improve-
ment in accuracy of the MCB variants over MCL is
mainly gained by improving the coverage. For
speeds 0.2r–0.8r, the improvement obtained by the
MCB variants is marginal. For lower and higher
speeds, the MCL curve shows the impact of the
reduced average number of samples.

Comparing the curves of MCB to these of MCF
and MCX, we see that the localization error is
mostly identical. Only for slow speeds, for 0.05r–
0.4r, are MCF and MCX more accurate than
MCB. This demonstrates that increasing the cover-
age and maintaining a high average number of sam-
ples has a price. Where MCF and MCX declare a
node as non-localized, MCB keeps drawing samples
and produces a location estimate. Recall that MCB
can produce location estimates based solely on two-
hop anchors, which MCF and MCX do not do. In
other words, increasing the coverage has thus a cost
in accuracy. This effect is the most pronounced for
speeds up to 0.2r.

4.4.3. Localization error for the well-connected nodes
Fig. 7 shows the localization error for the well-

connected nodes, that is, to say the nodes having
at least three one-hop anchors. The curves follow
here the trend of Fig. 4 where the localization error
including the non-localized nodes is shown. All
algorithms show an improvement in accuracy when
only the well-connected nodes are considered. This
improvement ranges on average from 2.37% for
MCB, 2.4% for MCL, and 2.6% for MCF and
MCX to 12.22% for Centroid, when compared with
the values from Fig. 4. All algorithms also improve
their accuracy if we compare the results with those
of Fig. 6 (4.9% for Centroid, 2.3% for MCB, 2.1%
for MCF and MCX), except MCL (�7%). This
illustrates the fact that even with well-connected
nodes and thus in theory enough anchors to pro-
duce a reasonable location estimate, MCL is not
always able to localize a node. This is mostly due
to MCL’s inefficiency when drawing samples.
MCB avoids such a waste of energy and can localize
a node in such cases. Remember that MCB can
revert to using solely the anchor box whenever a
node has failed drawing new samples from its old
sample set. Reverting to the anchor box allows a
node both to reinitialize a decayed sample set with
fresh and valid samples and to localize based on
valid (anchor) information.

4.4.4. Localization error per number of anchors heard

Fig. 8 shows the distribution of the localization
error with respect to the number of anchors heard
at a maximum speed of 1r. The dotted curve shows
the percentage of occurrences (right-hand y-axis),
that is, to say how often nodes could heard a given
number of anchors. The number of anchors is given
in percent as well (x-axis). In the simulation we used
a total of 32 anchors. In this case, we see that the
nodes heard a maximum of 16 anchors (50%).
Above 50% of anchors, there is no data and both
the number of occurrences and localization error
are set to zero. The figure shows that, as expected,
the localization error decreases as the number of
heard anchors increases. The effect is the most dra-
matic for Centroid which even becomes more accu-
rate than MCL beyond 6 anchors (18.75% of
anchors with an accuracy of 0.292r for MCL and
0.282r for Centroid). We also notice that the MCL
curve displays a small peak around 50% of anchors
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heard. This is due to an increase in the number of
unlocalized nodes. This is due again to the way
MCL draws samples: at speed 1r, the area to sample
from is rather large, while with many anchors, the
area where the connectivity constraint are met is a
rather small. This leads to sample sets with few or
no samples. A similar phenomenon can be seen at
slower speed with more than 50% of anchors (fig-
ures not shown here).

4.5. Coverage

Fig. 9 shows the percentage of nodes that could
be localized, i.e., for which a location estimate was
produced, independently of how many anchors they
heard. The coverage of Centroid is on average
96.62%. That of MCL is 92.13% on average, rang-
ing from 96.87% (speed 0.45r) to 86.44% (speed
1r) down to 44.81% (speed 2r). This comes from
the fact that MCL is not able to draw enough good
samples from a large draw area in which the overlap
of the anchors’ radio range is small. This occurs in
general with high maximum node speeds. In the
worst case, the new sample set remains empty lead-
ing to a non-localized node. The average coverage
for MCB is extremely stable with respect to maxi-
mum node speed and stays around 99.98% (varia-
tion starts from the third decimal place). The
average coverage is 99.78% for MCF and 99.79%
for MCX, which shows that neglecting information
reduces the coverage. Both MCF and MCX are very
stable too.

4.6. Processing time

Another factor positively influenced by the way
MCB draws samples is the processing time, that is,
to say, the time needed by the algorithm to produce
a location estimate. We consider here only the com-
putation time and not the time needed for commu-
nicating, that is, to say gathering anchor positions,
listening to neighbors and forwarding anchor mes-
sages. Communication time is network-dependent
and is identical for all the Monte Carlo localization
variants as they all need to communicate with both
one-hop and two-hop anchors. Only Centroid com-
municates less as it does not consider the two-hop
anchors. We measured the processing time through
simulation on a PC.

The processing time of the Monte Carlo localiza-
tion variants depends on several factors. First, as
the maximum number of samples N in the set grows,
more samples have to be drawn and processing time
also increases. There is of course a trade-off between
the maximum number of samples in the set, the
accuracy of the localization and the processing time.
In [12], Hu and Evans provided an analysis of the
impact of the maximum size of the sample set. We
obtained similar results with our algorithm though
the maximum number of samples can more easily
be reduced with MCB than with MCL.

Second, the maximum number of random draws
the algorithm is allowed to make also has an influ-
ence on the processing time. In the original MCL
implementation, the maximum number of draws
per sample is set to two times 10,000 draws for 50
samples, once with the maximum speed vmax and a
second time with the relaxed maximum speed
vmax + delta. More precisely, MCL allows two times
10,000 draws with an uninitialized sample set, and
two times 200 draws per sample (maximum 50 sam-
ples) with an initialized sample set. With similar loop
values, MCB is 40–50% faster while its accuracy and
coverage are better than that of MCL and its average
number of samples was higher (i.e., the sample set
was full more often). These tests and those that
follow were conducted using a 200 · 200 units
deployment area with one unknown node and 32
anchors. The radio range was set to 50 units and
the maximum speed to 50 units per time interval.

Thanks to its simplicity, Centroid performs much
faster than any Monte Carlo localization variants. It
runs in 0.0095% of the time needed by MCL and
0.0168% of the time needed by MCB when both
MCL and MCB are using the original random-draw
parameters, i.e., 10,000 draws with an uninitialized
sample set, 200 draws with an initialized sample
set, 50 samples in the set at maximum.

Next, we compared MCL and MCB processing
times for identical localization error when excluding
the non-localized nodes. To obtain this identical
localization accuracy for MCL and MCB, we varied
the loop boundaries of both algorithms. We kept
the maximum number of samples unchanged (50
samples). In the case of MCL, we let the algorithm
draw samples 1,000,000 times, once with the maxi-
mum speed vmax, and a second time with the relaxed
maximum speed vmax + delta. For an initialized
sample set, we allow 20,000 tries twice for each of
the 50 samples. With MCB, we use a maximum of
100 draws for an uninitialized sample set. For an
initialized sample set, MCB uses 50 draws from
the sample box and, in the case of a partially full
new sample set, it allows at maximum 100 extra
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draws from solely the anchor box. At speed 1r,
MCL was able to produce 48.7227 samples on aver-
age and MCB 48.2153. The resulting localization
accuracy was 13.9% of the radio range for MCL
and 13.8% for MCB. The coverage was 98.38% for
MCL and 99.96% for MCB. The relative processing
time was 100% for MCL and 6.238% for MCB. This
demonstrates the fact that MCB is much faster than
MCL for a similar localization accuracy. Even with
a slightly lower average number of samples, the
coverage of MCB is better than that of MCL.

4.7. Other parameters

We studied the influence of a number of other
parameters on our localization algorithm. This sub-
section briefly describes the results of our
experiments.

4.7.1. Influence of anchor motion

In Section 4.4, we saw the influence of speed
when both nodes and anchors have an identical
maximum speed. In this section, we study the influ-
ence of anchor motion on the unknown nodes, more
precisely, we study the impact of mobile versus sta-
tic anchors.

Our simulations show that using static anchors
with mobile unknown nodes has a very limited
impact. With unknown nodes moving at slow
speeds, the static anchors allow MCB to improve
its accuracy by about 1.5% (for speed 0.2r with a
radio range r of 50 units, considering only the local-
ized nodes). As the maximum speed increases, the
improvement keeps decreasing and finally using sta-
tic anchors even introduces a slight inaccuracy at
speed 0.8r and higher. MCL shows a similar behav-
ior while the localization accuracy of Centroid
remains slightly worse with static anchors for all
maximum speeds (varying between 0.3% and 0.1%
additional inaccuracy).

As the loss in localization accuracy is rather
small, static anchors could be used at our advantage
in protocol extensions: (1) a mobile node can deduce
it is moving since there is no doubt about who is
moving anymore: the node or the anchor. Anchors
could even broadcast a special ‘‘tag’’ stating they
are static. Scenarios with both static and mobile
anchors could provide an attractive setting for local-
ization; (2) static anchors fit the ‘‘static infrastruc-
ture’’ scenario we encounter so often in urban or
office setting, thereby making deployment more
realistic.
4.7.2. Influence of node and anchor density

As could be expected, increasing the total num-
ber of anchors improves the accuracy of all the stud-
ied localization algorithms. Centroid is very
sensitive to the number of one-hop anchors a node
can hear while the Monte Carlo-based localiza-
tion algorithms still manage to localize nodes even
when few anchors can be heard. The coverage of
Centroid degrades dramatically in anchor-poor
scenarios.

Varying the total number of non-anchor nodes
also has an impact on MCL and MCB as they use
two-hop anchors. Increasing the total number of
non-anchor nodes increases the average number
of neighbors of a node and thereby its number of
two-hop anchors. This also improves accuracy, up
to a certain point where it makes no difference
anymore, i.e., a node then only gets ‘‘duplicate’’
two-hop anchors via different neighbors.
4.7.3. Influence of negative information

The original MCL algorithm makes use of
negative information to filter samples obtained
when considering the two-hop anchors. While this
appears to work well in an obstacle-free deployment
area, at least in simulation, this can lead to a larger
localization error when obstacles block or dampen
the radio signal of two otherwise close-by nodes.
Such a scenario is illustrated in Fig. 10. We consider
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three nodes, A, an anchor; B and C, two unknown
nodes. Because of the wall blocking the radio signal,
node C cannot hear anchor A directly but instead
gets information about the anchor location via node
B. When using negative information, node C would
conclude it cannot be located within the radio range
of the anchor (white disk) and should be located in
the donut-shaped light-gray area (two hops away).
Subsequently, all the samples contained within
radio range of the anchor A are rejected. In a con-
figuration such as the one depicted in Fig. 10, this
results in placing node C further away from node
A than it really is and thus introduces localization
inaccuracy.

Running a simple test with one wall in a
100 · 100-unit deployment area were almost all the
nodes could hear each others revealed that using
negative information has an impact on localization
accuracy. We used 288 unknown nodes and 32
anchors with a radio range r of 100 units and a max-
imum speed of 0.5r. As illustrated in Fig. 10, a wall
ran vertically through the deployment area and did
not touch the borders of the deployment area in
order to get configurations where a node could
not hear an anchor through the wall – in one-hop –
but could reach it in two hops via a neighbor, as
it is the case with nodes A, B and C.

When not using negative information, MCB con-
sistently produced a localization error of 31.79%.
The identical figures are explained by the fact that
(1) all the nodes were well-connected in such an envi-
ronment and (2) MCB localized all the nodes. The
original MCL, using negative information, produced
a localization error 34.02% of the radio range on
average for the localized and non-localized nodes
together or for the well-connected nodes. When con-
sidering the localized nodes only, MCL produces a
localization error of 51.36%. It is worth noting that
MCL managed to localized only 13.83% of the nodes
while MCB localized them all, and that the non-
localized nodes (placed in the center of the deploy-
ment area) actually improved the localization accu-
racy in the case of MCL. Finally, MCL did
experience difficulties when drawing samples and
its average sample-set size is only 3.3955 samples.
MCB did fill its sample set more systematically and
reached an average sample-set size of 49.9991.

The results of this preliminary experiment lead
us to think that using negative information should
be avoided in environments with obstacles that
can totally block the radio signal or degrade its
quality – and thus alter the radio range. This means
that drawing conclusions based on the facts that a
node did not hear another one are error-prone in
an environment with obstacles. We are investigat-
ing this issue further with more complex obstacle
configurations, such as an office floor, and various
localization protocols. We also plan to study the
influence of radio-range variability and determine
if it causes similar problems when using negative
information.
5. Conclusion and future work

Localization in wireless sensor networks is a
topic that has received much interest in the past
years. Most proposed algorithms concentrate on
static networks of sensors with either static or
mobile anchors. The problem of localizing nodes
in a mobile wireless sensor network has not yet
received much attention although mobility needs
to be taken into account at design time.

In this paper, we presented a localization algo-
rithm that builds upon Hu and Evans’ findings
[12] and that makes Monte Carlo localization more
lightweight for use in wireless sensor networks. By
making better use of the information a node gathers
from one-hop and two-hop anchors and by restrict-
ing the area a node has to draw samples from to a
(small) box, we improve the whole process of local-
izing. The results of simulations of our algorithm,
called Monte Carlo localization Boxed, show that
it allows a node to get an improved accuracy at a
reduced cost. Most importantly, it ensures that a
node having received information from anchors will
be localized and it will not pay a high price in term
of processing time and energy expenditure because
of the inefficiency of the localization algorithm (ran-
dom draws). Our simulation results also show that
the overall coverage of the localization algorithm
is improved by ensuring that the sample sets are full
as often as possible.

Future work encompasses a detailed study of the
energy versus accuracy trade-offs of MCB. In partic-
ular, we will study how the variations in the sample-
set size, number of draws and duration of a time
step affect the accuracy of localization. We will
run new experiments in environments with obstacles
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and study the impact of using or not using negative
information.

We are also planning to deploy MCB on a test
network of wireless sensors and study the behavior
of the algorithm in a real-life setting. We will also
make several extensions to the protocol so that it
can benefit from extra information on the sen-
sors’ mobility patterns and mobility-pattern vari-
ability. This encompasses maintaining knowledge
about sensors’ speed and direction, possibly using
additional equipment such as accelerometers and
deploying it in heterogeneous networks using a
mix of both mobile and static anchors.
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