Revisiting the Cramer-Rao Bound for
Localization Algorithms

S. Dulman and P. Havinga A. Baggio and K. Langendoen
Pervasive Systems, EEMCS Parallel and Distributed Systems, EEMCS
University of Twente — The Netherlands Delft University — The Netherlands

[. INTRODUCTION
Acquiring position information by means of ad-hoc net<
works and in particular wireless sensors networks (WSN%“"’"
received a lot of attention in the past years. Survey works, |
such as [1], [2], show a large number of techniques/algmith &
that can be used to solve the localization problem. S o
The techniques used are often borrowed from other fieldsw. o LW ; :
of science and modified to fit the context of wireless sensor ooz oi o5 0 10
networks [3-5]. In order for results established in othedfie OX positionfunits] Residualiinits®)
of science to hold for the problem at hand, particular caretmu (2) Network topology (b) Position error vs. residual val.
be taken to ensure that the assumptions are still valid. Even Fig. 1. Localization in the presence of noise
the slightest mismatch in the underlying assumptions could

render the well-known techniques useless and lead to wrong
results. most popular techniques and works as follows:

Position errorfinits]

In this paper, we address the usagdatération[6] and the n .2
associatedCramer-Rao BoundCRB) [3], concepts borrowed Z = arg; minzwi (di - d/i) (1)
from GPS localization [7]. Via a series of counter-examples i=1
we show how these concepts fail to deliver the expecigghore i are the distances between the computed position and
results_ when _applled to the fl_eld of WSNs. The_goal of thlﬁle anchors, and; a set of weights. When varying the noise
paper is to bring forward the idea that a foundation based Qe measured distances and using equal weights, we obtain
geometrical considerations — ra'Fher than estimation ;heor a cloud of estimated positions as shown in Fig.1(a) in gray.
should be employed when studying the basic mechanisms ang,qing hack the lateration technique we come across the
boundaries for localization in WSNs. concept of Cramer-Rao Bound applied to the localization
problem [3]. CRB defines the lower bound on the precision
of a localization estimator. The articles [3], [8], [9] selthe
localization problem step-wise as follows:

Let the position of a node in the 2D plane be written as « Basic concept: known noise distributions are applied to
z. The position error is defined as the euclidean distance distance measurements;
between the realzf and estimated positionz) of a node, « Theoretical step: determine CRB to obtain an idea of

Il. THE LOCALIZATION PROBLEM

e; = ||z, 2||. We call ananchora node that acquiredxact the achievable accuracy of unbiased position estimators;
position information (ancharhas position:;). A node without ~ « Algorithm: from the formulation of CRB determine the
knowledge of its position is simply callegode metric to be minimized in order to obtain a position (e.qg.

Assume a scenario with three anchors (blue circles in Using the lateration procedure); _
Fig.1(a)) and a node positioned in the central area (rede Post processing: use coefficients such as Geometric

circle). Assuming the exact distancds between the node  Dilution of Precision [10] (GDOP) to correct issues not
and anchors are known, the node is able to infer its position Ccaptured by the estimation theory (such as the geometry
% by intersecting the three circles centeredaatwith radii of anchor deployment).

d;. If errors are added to the distance estimates, simulatingt is assumedhat minimizing the sums in equation (1) leads
measured distances, no position in the 2D plane is likely to better position estimates. In some works thsidual value

to satisfy the distance constraints. Solving the localirat i.e. the minimum value for the sum, serves as an indicator
problem then takes the form of choosing the estimated position how good the algorithm performs. In Fig.1(b), we plot
that minimizes a certain metric. Lateration [6] is one of ththe residual value versus the position error for each of the
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Fig. 2. Lateration behavior for "regular” anchor setup . . .
Fig. 3. Lateration behavior for "hard” anchor setup

gray points in Fig.1(a). We expected a curve passing through i )
the origin to validate the assumption that a residual of € zigzag shape of t_he Upper curve Is a direct consequence
corresponds to a position error of 0. The results in Fig.l(Bf the r_e5|du_al _shape in Fig.2(c). . o
show that position error and residual value are not coedlat Non linearity is not the only problem at hand: discontiresti
as assumed. occur as well in the case of specific anchor topologies. For
Considering the same anchor scenario as before angxample, in Fig.3 we ran a similar experiment with the differ
node placed at coordinatés.6; 0.5) (red dot in Fig.2(a)), we €NC€ that we placed the three anchors in an almost collinear
performed the following experiment: we kept the distanc&@nfiguration. When varying the distance to the middle ancho
to two anchors constant and equal to the real distances fPWn in blue in Fig.3(a), one can notice that the computed
noise) and only varied the distance towards the bottomtrighPSition "jumps” at a certain moment over the line defined by
anchor from Fig.2(a). The blue line in Fig.2(a) shows the Sg}e ailmo§t colllnear_ anchors. The h|_ghly. non_lmear behavio
of resulting positions computed by the lateration proceduf€Mains in the residual representation in Fig.3(c) and the
Fig.2(b) shows the position error versus the induced marp_onllne_ar curves in the graphs in Fig.3(b) and Fig.3(d) lexhi
error. For a distance error of 0 — when the true distance igfeddiScontinuities as well.
the algorithm — the real position is returned. In other cases
expected, the larger the distance error is, the larger thiipo . . _
error becomes. Fig.2(c) shows the value of the residualisers We repeated the experiment described in [9] to study the
the induced distance error. The residual function exhipits behavior of CRB (see Fig.4). Assume three anchorand
local minima: one corresponding to the real position (disea @ Nodez placed at the origin of the system of coordinates.
error equals zero) and one corresponding to the symmetri¢&€ anchor, is fixed anda; anda; are rotating around,
position of the node with respect to the first two anchors (ihile maintaining the same distance towarddn Fig.4, the

IV. CRAMER-RAO BOUND IN LOCALIZATION

green in Fig.2(a)). red and blue circles represent their trajectories. The ol
compute the CRB for various anglés and¢s thatas andas
Ill. RESIDUAL VALUE BEHAVIOR make with the horizontal axis in order to capture the effects

Fig.2(d) shows the position error versus the residual valusf anchor geometry on localization error.

This highly nonlinear graph shows two curves passing thnoug The results of this experiment are presented in Fig.5. The
the origin. The curves can be explained by the fact that in tagesOX and OY represent the angleg, and ¢; and are
residual expression the influence of the distance errorentgraded directly inw. The spikes, rising to+oco, represent
always as a squared factor. Underestimating a distanced@scontinuities in CRB (the axis9Z was cropped). For
overestimating it leads to different behavior in the latiera improved clarity, we shifted the axes with5r to clearly
procedure (as shown in Fig.2(b)). This leads to the semiplashow the four discontinuities and we represented CRB rather
x € (—00,0) being folded over the semiplane € (0,00). than 1/CRB [9]. CRB shows discontinuities in the cases
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Fig. 5. Cramer-Rao Bound

Fig. 4. Circular deployment of anchors

situations in which positions can be computed, that is when
. . L . all the anchors and the node are collinear.
where collinearity occurs, that is with the pairs of angles As a final remark on CRB, it is worth noting that it gives a
(92, 0s) € {(, ), (m, 2m), (2, ), _(277’ 2_7)}' _ _ . boundary on theariancerather than on thenean valuef an
_There is a subtlety not described in [9]: the collinearity,,iased estimator. This topic has been previously adeliess
situation for which the CRB goes to infinity involvéise node accuracy versus precisiofi1]

as welland not only the anchors. Although the findings we pyayious work proposing CRB as a mechanism to determine
cited above |_ntumve|y seem corretttey are falseln the case o uncertainty of position computation shows that under
of three_ co_lllne_ar anchorg in the 2_D plane shown as a bljg,in assumptions the effects of anchors geometry can be
dotted line in Fig.4 and given the distances between the n puted as a separate coefficient, known as GDOP [7]. The
and the anchors;, there is an uncertainty on which side of the, yression of GDOP is actually directly derived from the
line the_nodg reS|d_es_: .ator at its m|rrored posn!on:’.. T.hIS expression of CRB under the following simplifying assump-
uncertainty is not |nf|n|t(/e. We define as a metric ffipping  tjons: the parameters of distance estimates (mean anaheajia
uncertaintyequal to||z, 2'||. The flipping uncertainty goes 0 4re considered equal thus the final formula takes only angles
zero when the node gets very close to the line determined Ry, »ccount. Neither of these simplifications holds in sens
the collinear anchors. This implies that the only case incwhi v orks as opposed to a satellite system — mean values of

a node can compute a position given a set of collinear anch@fSiances of a node towards various anchors can be of differe
is when the node resides on tseme lineas the anchors. This  qers of magnitude and the variances are proportional to

contradicts the insight given by CRB. the actual distances. Furthermore, as CRB fails graspiag th
Fig.4 allows us to make a second important observatiogharacteristics of the underlying geometric setup, GDOGF is

For every position ofas, there exist two possible positionsjittle use in our case.

in which the line determined by, and a, intersects the \ve conclude that while it makes sense to use CRB in the

trajectory ofaz. This means that for every positian, there context of GPS where the distances between a node and the

exist two possibilities to places such that all three anchorsgnchors are very large and the amount of error on the distance

reduces to the intersection of the ling ( a2) with the circle \ygNs.

centered at having radiug||z, as||. Graphically the result is

presented in Fig.6. A point is placed in this picture for each V. TOWARDS AN EXPLANATION

situation in which the angleg, and ¢3 lead to a collinear ~We make abstraction of the exact procedure of computing

situation for the three anchors. Tli&Z coordinate measuresa position. We assume the coordinates ofithenchorss; are

the flipping uncertainty. Although Fig.6 might look similar  known. We place a node at a positienLet f be the function

Fig.5, attention should be paid to the values on the OX and Qiat translates:; and = into a set of distanced;. Let f~!

axis — for the points where CRB goes to infinity, the flippingienote the function through whieh andd; are mapped back

uncertainty is actually 0. into the positionz. The functionf~! denotes the perfect one-
The last two observations lead to the conclusion that CRibdp distance-based localization algorithm running witiseo

does not indicate all the troublesome anchor configuratiomsss data. In practice, exact distances are not availabte. W

Worse than that, it indicates infinite uncertainty in theyonlthus feed into the functiorf —' noisy measurements$; and



perspective and then complemented by knowledge of the noise
T characteristics. We have supported this claim with a sefes
examples showing the limitations of the current approach.

Based on this argumentation, we propose a radical change in

the way in which the localization problem is to be addressed:

o Basic concept: geometrical setup (positions of the an-
chors and of the node);

« Theoretical steps: define a functiory —! mapping anchor
positions and distances to an estimated position; deter-
mine the geometrical boundaries for maximum allowed
errors;

o Algorithm: from the formulation of geometrical bound-
aries determine the metric to be minimized to obtain a
position (leading to a "geometric” lateration procedure);

o Post processing: explore new metrics for the positioning
error (euclidean distance is considered the default one —
it is nevertheless a one-dimensional metric that cannot
express all the characteristics of a higher-dimensional

Angle ¢s [7] - Angle ¢ [7]

Fig. 6. Flipping uncertainty

receive a computed positioh The new distances betweén phenomenon).
anda;, written asd;, slightly differ fromd;, compensating for  Thjs description is also the base for our future work, in
the noise. which we wish to explore the trade-offs between geometrical

For the case of collinear anchors, given anchor positioggtyp and amount of noise as well as define a boundary under
a; and distancesl;, two positionsz, 2’ can be computed which noisy measurements will lead to a set of clustered
(see Fig.4). Note thas; and d; alone do not offer enough positions. Our final target is to provide a clear formulation
information to distinguish between the two cases, tfiS  of the achievable boundaries of localization algorithm &
is undefined (a function associates only one output valdger 5 new metric to be minimized taking the geometry of
to a given input). The default definition of = leads 0 the setup and the measurement noise into account.
undefined behavior over the input domain, even wiles
real distancesd; are available. This is one of the reasons REFERENCES
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