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I. I NTRODUCTION

Acquiring position information by means of ad-hoc net-
works and in particular wireless sensors networks (WSNs)
received a lot of attention in the past years. Survey works,
such as [1], [2], show a large number of techniques/algorithms
that can be used to solve the localization problem.

The techniques used are often borrowed from other fields
of science and modified to fit the context of wireless sensor
networks [3–5]. In order for results established in other fields
of science to hold for the problem at hand, particular care must
be taken to ensure that the assumptions are still valid. Even
the slightest mismatch in the underlying assumptions could
render the well-known techniques useless and lead to wrong
results.

In this paper, we address the usage oflateration [6] and the
associatedCramer-Rao Bound(CRB) [3], concepts borrowed
from GPS localization [7]. Via a series of counter-examples,
we show how these concepts fail to deliver the expected
results when applied to the field of WSNs. The goal of this
paper is to bring forward the idea that a foundation based on
geometrical considerations – rather than estimation theory –
should be employed when studying the basic mechanisms and
boundaries for localization in WSNs.

II. T HE LOCALIZATION PROBLEM

Let the position of a node in the 2D plane be written as
z. The position error is defined as the euclidean distance
between the real (z) and estimated position (z̃) of a node,
ei = ‖z, z̃‖. We call ananchor a node that acquiredexact
position information (anchori has positionai). A node without
knowledge of its position is simply callednode.

Assume a scenario with three anchors (blue circles in
Fig.1(a)) and a node positioned in the central area (red
circle). Assuming the exact distancesdi between the node
and anchors are known, the node is able to infer its position
z̃ by intersecting the three circles centered atai with radii
di. If errors are added to the distance estimates, simulating
measured distancesdi, no position in the 2D plane is likely
to satisfy the distance constraints. Solving the localization
problem then takes the form of choosing the estimated position
that minimizes a certain metric. Lateration [6] is one of the

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

OX position[units]
O

Y
po

si
tio

n[
u

n
it

s
]
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(b) Position error vs. residual val.

Fig. 1. Localization in the presence of noise

most popular techniques and works as follows:

z̃ = argz̃ min

n
∑

i=1

ωi

(

di − d̃i

)2

(1)

whered̃i are the distances between the computed position and
the anchors, andωi a set of weights. When varying the noise
in the measured distances and using equal weights, we obtain
a cloud of estimated positions as shown in Fig.1(a) in gray.

Tracing back the lateration technique we come across the
concept of Cramer-Rao Bound applied to the localization
problem [3]. CRB defines the lower bound on the precision
of a localization estimator. The articles [3], [8], [9] solve the
localization problem step-wise as follows:

• Basic concept: known noise distributions are applied to
distance measurements;

• Theoretical step: determine CRB to obtain an idea of
the achievable accuracy of unbiased position estimators;

• Algorithm: from the formulation of CRB determine the
metric to be minimized in order to obtain a position (e.g.
using the lateration procedure);

• Post processing: use coefficients such as Geometric
Dilution of Precision [10] (GDOP) to correct issues not
captured by the estimation theory (such as the geometry
of anchor deployment).

It is assumedthat minimizing the sums in equation (1) leads
to better position estimates. In some works theresidual value,
i.e. the minimum value for the sum, serves as an indicator
on how good the algorithm performs. In Fig.1(b), we plot
the residual value versus the position error for each of the
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(a) Computed position trajectory
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(b) Position errors vs. distance error
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(c) Residual vs. distance error
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(d) Position error vs. residual

Fig. 2. Lateration behavior for ”regular” anchor setup

gray points in Fig.1(a). We expected a curve passing through
the origin to validate the assumption that a residual of 0
corresponds to a position error of 0. The results in Fig.1(b)
show that position error and residual value are not correlated
as assumed.

Considering the same anchor scenario as before and a
node placed at coordinates(0.6; 0.5) (red dot in Fig.2(a)), we
performed the following experiment: we kept the distances
to two anchors constant and equal to the real distances (no
noise) and only varied the distance towards the bottom-right
anchor from Fig.2(a). The blue line in Fig.2(a) shows the set
of resulting positions computed by the lateration procedure.
Fig.2(b) shows the position error versus the induced distance
error. For a distance error of 0 – when the true distance is fedto
the algorithm – the real position is returned. In other casesas
expected, the larger the distance error is, the larger the position
error becomes. Fig.2(c) shows the value of the residual versus
the induced distance error. The residual function exhibitstwo
local minima: one corresponding to the real position (distance
error equals zero) and one corresponding to the symmetrical
position of the node with respect to the first two anchors (in
green in Fig.2(a)).

III. R ESIDUAL VALUE BEHAVIOR

Fig.2(d) shows the position error versus the residual value.
This highly nonlinear graph shows two curves passing through
the origin. The curves can be explained by the fact that in the
residual expression the influence of the distance error enters
always as a squared factor. Underestimating a distance or
overestimating it leads to different behavior in the lateration
procedure (as shown in Fig.2(b)). This leads to the semiplane
x ∈ (−∞, 0) being folded over the semiplanex ∈ (0,∞).
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(a) Computed position trajectory
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(b) Position errors vs. distance error
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(c) Residual vs. distance error
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(d) Position error vs. residual

Fig. 3. Lateration behavior for ”hard” anchor setup

The zigzag shape of the upper curve is a direct consequence
of the residual shape in Fig.2(c).

Non linearity is not the only problem at hand: discontinuities
occur as well in the case of specific anchor topologies. For
example, in Fig.3 we ran a similar experiment with the differ-
ence that we placed the three anchors in an almost collinear
configuration. When varying the distance to the middle anchor,
shown in blue in Fig.3(a), one can notice that the computed
position ”jumps” at a certain moment over the line defined by
the almost collinear anchors. The highly nonlinear behavior
remains in the residual representation in Fig.3(c) and the
nonlinear curves in the graphs in Fig.3(b) and Fig.3(d) exhibit
discontinuities as well.

IV. CRAMER-RAO BOUND IN LOCALIZATION

We repeated the experiment described in [9] to study the
behavior of CRB (see Fig.4). Assume three anchorsai and
a nodez placed at the origin of the system of coordinates.
The anchora1 is fixed anda2 and a3 are rotating aroundz,
while maintaining the same distance towardsz. In Fig.4, the
red and blue circles represent their trajectories. The goalis to
compute the CRB for various anglesφ2 andφ3 thata2 anda3

make with the horizontal axis in order to capture the effects
of anchor geometry on localization error.

The results of this experiment are presented in Fig.5. The
axesOX and OY represent the anglesφ2 and φ3 and are
graded directly inπ. The spikes, rising to+∞, represent
discontinuities in CRB (the axisOZ was cropped). For
improved clarity, we shifted the axes with0.5π to clearly
show the four discontinuities and we represented CRB rather
than 1/CRB [9]. CRB shows discontinuities in the cases
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Fig. 4. Circular deployment of anchors

where collinearity occurs, that is with the pairs of angles
(φ2, φ3) ∈ {(π, π), (π, 2π), (2π, π), (2π, 2π)}.

There is a subtlety not described in [9]: the collinearity
situation for which the CRB goes to infinity involvesthe node
as well and not only the anchors. Although the findings we
cited above intuitively seem correctthey are false. In the case
of three collinear anchors in the 2D plane shown as a blue
dotted line in Fig.4 and given the distances between the node
and the anchorsdi, there is an uncertainty on which side of the
line the node resides: atz or at its mirrored positionz′. This
uncertainty is not infinite. We define as a metric theflipping
uncertaintyequal to‖z, z′‖. The flipping uncertainty goes to
zero when the node gets very close to the line determined by
the collinear anchors. This implies that the only case in which
a node can compute a position given a set of collinear anchors
is when the node resides on thesame lineas the anchors. This
contradicts the insight given by CRB.

Fig.4 allows us to make a second important observation.
For every position ofa2, there exist two possible positions
in which the line determined bya1 and a2 intersects the
trajectory ofa3. This means that for every positiona2, there
exist two possibilities to placea3 such that all three anchors
are collinear. The relationship betweena1, a2 anda3 basically
reduces to the intersection of the line (a1, a2) with the circle
centered atz having radius‖z, a3‖. Graphically the result is
presented in Fig.6. A point is placed in this picture for each
situation in which the anglesφ2 and φ3 lead to a collinear
situation for the three anchors. TheOZ coordinate measures
the flipping uncertainty. Although Fig.6 might look similarto
Fig.5, attention should be paid to the values on the OX and OY
axis – for the points where CRB goes to infinity, the flipping
uncertainty is actually 0.

The last two observations lead to the conclusion that CRB
does not indicate all the troublesome anchor configurations.
Worse than that, it indicates infinite uncertainty in the only
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Fig. 5. Cramer-Rao Bound

situations in which positions can be computed, that is when
all the anchors and the node are collinear.

As a final remark on CRB, it is worth noting that it gives a
boundary on thevariancerather than on themean valueof an
unbiased estimator. This topic has been previously addressed
asaccuracy versus precision[11].

Previous work proposing CRB as a mechanism to determine
the uncertainty of position computation shows that under
certain assumptions the effects of anchors geometry can be
computed as a separate coefficient, known as GDOP [7]. The
expression of GDOP is actually directly derived from the
expression of CRB under the following simplifying assump-
tions: the parameters of distance estimates (mean and variance)
are considered equal thus the final formula takes only angles
into account. Neither of these simplifications holds in sensor
networks as opposed to a satellite system – mean values of
distances of a node towards various anchors can be of different
orders of magnitude and the variances are proportional to
the actual distances. Furthermore, as CRB fails grasping the
characteristics of the underlying geometric setup, GDOP isof
little use in our case.

We conclude that while it makes sense to use CRB in the
context of GPS where the distances between a node and the
anchors are very large and the amount of error on the distances
is assumed insignificant, the method cannot be applied to
WSNs.

V. TOWARDS AN EXPLANATION

We make abstraction of the exact procedure of computing
a position. We assume the coordinates of then anchorsai are
known. We place a node at a positionz. Let f be the function
that translatesai and z into a set of distancesdi. Let f−1

denote the function through whichai anddi are mapped back
into the positionz. The functionf−1 denotes the perfect one-
hop distance-based localization algorithm running with noise-
less data. In practice, exact distances are not available. We
thus feed into the functionf−1 noisy measurementsdi and
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Fig. 6. Flipping uncertainty

receive a computed positioñz. The new distances betweeñz
andai, written asd̃i, slightly differ fromdi, compensating for
the noise.

For the case of collinear anchors, given anchor positions
ai and distancesdi, two positionsz, z′ can be computed
(see Fig.4). Note thatai and di alone do not offer enough
information to distinguish between the two cases, thusf−1

is undefined (a function associates only one output value
to a given input). The default definition off−1 leads to
undefined behavior over the input domain, even whenthe
real distancesdi are available. This is one of the reasons
why CRB does not hold:f−1 is assumed always defined and
equal to the real position of the node. In order to account for
the flipping uncertainty, triggered by anchor geometryand by
measurement noise as in Fig.3(a),f−1 needs to be redefined
to output a single value also in the case collinearity (or in the
case of only one or two anchors being present).

Another observation we can make is that a ”stable” geo-
metrical structure that leads to only one cluster of possible
positions for a node in the presence of small amounts of
noise, can become ”unstable” for larger amounts of noise. By
unstable we understand that the resulting positions will bepart
of several geographic clusters (see Fig.3(a)). This means that
there is a relation between the shape of the geometrical setup
(positions of the node and anchors) and the amount of tolerable
noise.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we showed that the one-hop distance-based
localization mechanism hasgeometryas its foundation and
not measurement noiseas CRB assumes. The localization
boundaries should thus be explored first from a geometrical

perspective and then complemented by knowledge of the noise
characteristics. We have supported this claim with a seriesof
examples showing the limitations of the current approach.

Based on this argumentation, we propose a radical change in
the way in which the localization problem is to be addressed:

• Basic concept: geometrical setup (positions of the an-
chors and of the node);

• Theoretical steps: define a functionf−1 mapping anchor
positions and distances to an estimated position; deter-
mine the geometrical boundaries for maximum allowed
errors;

• Algorithm: from the formulation of geometrical bound-
aries determine the metric to be minimized to obtain a
position (leading to a ”geometric” lateration procedure);

• Post processing: explore new metrics for the positioning
error (euclidean distance is considered the default one –
it is nevertheless a one-dimensional metric that cannot
express all the characteristics of a higher-dimensional
phenomenon).

This description is also the base for our future work, in
which we wish to explore the trade-offs between geometrical
setup and amount of noise as well as define a boundary under
which noisy measurements will lead to a set of clustered
positions. Our final target is to provide a clear formulation
of the achievable boundaries of localization algorithms and to
offer a new metric to be minimized taking the geometry of
the setup and the measurement noise into account.
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