
TECHNISCHE UNIVERSITEIT DELFT
Faculteit Elektrotechniek, Wiskunde en Informatica

IN4390 – Quantitative Evaluation of Embedded Systems
practice exam, 3 hrs

Mitra Nasri, Koen Langendoen, Lydia Chen, Marco Zuniga

Question: 1 2 3 4 5 6 7 Total

Points: 8 15 10 5 10 10 10 68

Score:

• This is a closed book exam

• You may use a simple calculator only (i.e. graphical calculators are not permitted)

• Write your answers with a black or blue pen, not with a pencil

• Always justify your answers, unless stated otherwise

• The exam covers the following material:

(a) the paper “Basic Concepts and Taxonomy of Dependable and Secure Computing” by A.
Avizienis ; J.-C. Laprie ; B. Randell ; C. Landwehr

(b) chapters 18-20,22-23 (DoE), and 30-33 (Queueing Theory) of the book “The Art of Computer
Systems Performance Analysis” by R. Jain

(c) the paper “Petri nets: Properties, analysis and applications” by T. Murata

(d) chapters 11.2 (DTMC), and 11.3 (CTMC) of the book “Introduction to probability, statistics,
and random processes” by H. Pishro-Nik

(e) the paper “Exploring Exploration: A Tutorial Introduction to Embedded Systems Design
Space Exploration” by A.D. Pimentel

IN4390 QEES Cheat Sheet

Operational Laws

Utilization law U = XS

Little’s law N = XR

Forced-flow law Xk = VkX

Bottleneck law Uk = DkX

Operational Bounds

Througput X ≤ min

(
1

Dmax
,

N

D + Z

)

Response time R ≥ max (D,N ×Dmax − Z)

Queueing Theory M/M/1

Utilization U = XS = λ/µ = ρ

Probability of n clients in the system Pn = ρn(1− ρ)

Mean #clients in the system N = ρ/(1− ρ) = λ/(µ− λ)

Mean #clients in the queue NQ = N − ρ
Mean response time R = N/λ = 1/(µ− λ)

Mean waiting time W = R− S = ρ/(µ− λ)

Basic Math

Geometric series

∞∑

k=0

rk =
1

1− r , for |r| < 1

Question 1 [8 points]

Answer the following set of true/false questions on the special answer sheet that is machine readable.
(Do not forget to fill out your credentials on the answer sheet.)

(a) 1 point The ‘expected time until next failure’ is an example of extrema quantitative mea-

sures. (true/false)

Solution: FALSE: It is an example of reachability quantitative measures.

(b) 1 point Latency is a time delay between the cause and the effect of some physical change in

the system being observed. (true/false)

Solution: TRUE

(c) 1 point A dependable system will never occur any failure (true/false)

Solution: FALSE: Dependability is about quantifying the severity and frequency of fail-
ure that can potentially happen in a system. A dependable system might have a failure,
but as long that the severity and frequency of that failure remains below an acceptable
threshold, the system remains dependable.

(d) 1 point Reliability is the readiness for correct service. (true/false)

Solution: FALSE: It is the definition of availability.

(e) 1 point An incorrect internal state of a system is an error. (true/false)

Solution: TRUE

(f) 1 point Absence of improper system alterations is not an attribute of dependability, rather

it is an attribute of security. (true/false)

Solution: FALSE: Absence of improper system alterations is integrity which is an at-
tribute of both dependability and security

(g) 1 point A point X in the design space of an embedded system is said to Pareto-dominate an-

other point Y if X does better than Y in all (performance/cost) dimensions. (true/false)

Solution: FALSE as X must only excel in one dimension, and can be on par with Y in
all other dimensions.

(h) 1 point Multi-objective optimization is a heuristic search method, and can therefore only

approximate the true solution (i.e. the Pareto front). (true/false)

Solution: FALSE as (i) MOO is not a heuristic and (ii) heuristics, typically, do well on
small problems, and may be fortunate on big problems.

Question 2 [15 points]

Answer the following short questions.

(a) 5 points List all attributes of dependability.

Solution: Availability, reliability, safety, integrity, and maintainability

(b) 4 points List all means of dependability and security.

Solution: Fault prevention, fault removal, fault tolerance, fault forecasting

(c) 6 points Determine the type of ”means of dependability and security” for each of the follow-
ing actions.

(a) debugging the code by local program developers

(b) using a watchdog timer to reset a task when it hangs

(c) following coding standards

(d) using less hazardous programming languages (not like C++)

(e) simplifying the user interface

(f) using three different hardware that run the same program and then use a voter to pick
the output that the majority of the computers agree on.

Solution:

(a) fault removal

(b) fault tolerance

(c) fault prevention

(d) fault prevention

(e) fault prevention

(f) fault tolerance

Question 3 [10 points]

A master student conducts a 2-level factorial randomized design. She has then constructed the
following incomplete ANOVOA

(a) 2 points How many levels of factor B did she use in the experiments?

Solution: MSB = SSB/DFB, so DFB = SSB/MSB = 300/150 = 2. Then factor B had
3 levels.

(b) 2 points How many degrees of freedom are associated with the interaction term?

Solution: There are (DFA-1)×(DFB-1) = 2×2 = 4 degrees of freedom

(c) 2 points How many replications has the student performed of each experiment?

Solution: DFE = ab(r-1), so r = 18/(3×3) + 1 = 3 replications.

(d) 2 points What is the error mean square?

Solution: MSE=SSE/DFE = 150/18=8.33

(e) 2 points When the corresponding P values of factor A, B, and AB are 0.02, 0.04, and 0.15,
respectively, which factors are significant?

Solution: Using a significance level of 5% (or 10%), factor A and factor B are significant

Question 4 [5 points]

Below is a design for measuring the job latency from three replicates based on 5 factors, A, B, C,
D, and E.

(a) 4 points Write out the alias structure for this design. In other words, list all confounding
factors.

Solution: Key is finding the generator: I=ABCD, which follows from “seeing” AB=CD
(or any other alias).

The complete alias structure is then as follows: A=BCD, B=ACD, C=ABD, D=ABC,
E=ABCDE, AB=CD, AC=BD, AD=BC, AE=BCDE, BE=ACDE, CE=ABDE, DE=ABCE,
ABE=CDE, ACE=BDE, ADE=BCE

(b) 1 point what is the resolution of the above design?

Solution: The resolution follows from the generator: 4

Question 5 [10 points]

You have designed an embedded system and have run a series of trials to test it. The outcomes of
these trials are either success or failure. During your evaluation, you noticed that if the two most
recent trials were both successes, the next trial is a success with probability 0.8; otherwise, the
chance of success is 0.5. In the long run, what proportion of trials are successes?

Solution:

• Build the state space, which consists of four states: SS, FS, SF, FF.

• Build the transition matrix

M =

0.8 0.0 0.2 0.0
0.5 0.0 0.5 0.0
0.0 0.5 0.0 0.5
0.0 0.5 0.0 0.5

• The matrix is ergodic (irreducible and aperiodic), thus we can use the steady state equa-
tions PI*M = PI and Sum PI = 1

• The result is PISS = 5/11, and 2/11 for the other three states.

• The proportion of successes is: 0.8*5/11 + 0.5*6/11= 7/11

Question 6 [10 points]

You have designed an embedded system that has two main components: A and B. The system has
three states:

State 1 [S1]: both components are working.

State 2 [S2]: only component A is working.

State 3 [S3]: only component B is working.

There are no self-loops. From S1 you can go to either S2 (component A fails) or S3 (component B
fails). From S2 and S3, you can only go back to S1 (i.e. the respective component is repaired).

(a) 4 points (Discrete Time Markov Chains) Assuming the transition probabilities given below,
can we obtain a steady-state distribution? If your answer is Yes, provide the steady-state
probabilities. If your answer is No, explain why.

S1→S2 = S1→S3 = 0.5

S2→S1 = S3→S1 = 1.0

Solution: The DTMC is irreducible but periodic, thus, it does not have a steady-state.

(b) 6 points (Continuous Time Markov Chains) In CTMCs, the chain does not need to be
aperiodic to have steady-state probabilities. Considering that aperiodicity is not needed and
assuming the rates given below, can we obtain a steady-state distribution? If your answer is
Yes, provide the steady-state probabilities. If your answer is No, explain why.

S1→S2 = S1→S3 = λ1

S2→S1 = S3→S1 = λ2

Solution: For the CTMC, since periodicity does not matter only irreducibility, one can
use PI*G=0 and Sum PI = 1, which leads to

S1 = λ2/(2 ∗ λ1 + λ2)

S2 = S3 = λ1/(2 ∗ λ1 + λ2)

Question 7 [10 points]

Operational laws are a crude, but useful tool to do back-of-the-envelope calculations about the
performance benefits of adding hardware resources to a computing system. Consider a database
server consisting of a CPU and two disks, whose performance characteristics are as follows:

t (measurement time) 650 seconds
C (#completions) 200 queries
BCPU (busy time) 400 seconds
Bslow−disk (busy time) 100 seconds
Bfast−disk (busy time) 600 seconds
CCPU (#completions) 22,200 jobs
Cslow−disk (#completions) 2,000 jobs
Cgast−disk (#completions) 20,000 jobs

(a) 3 points Compute the performance benefit of adding a second CPU (i.e., how many more

database queries can be handled per second?)

Solution: Let’s compute the demands using the bottleneck law:

• DCPU = BCPU/C = 400 sec/200 queries = 2.0 sec/query

• Dslowdisk = Bslowdisk/C = 100 sec/200 queries = 0.5 sec/query

• Dfastdisk = Bfastdisk/C = 600 sec/200 queries = 3.0 sec/query

Thus the fastdisk is the bottleneck, hence, adding a second CPU has no effect!

(b) 5 points Compute the maximum performance benefit that can be gained by balancing the
load of the slow and fast disk by shifting database files from one to the other.

Solution: This requires more work as we need to see how often a query visits each disk,
and what the respective service times are:

• E[Vslowdisk] = Cslowdisk/C = 2,000 visits/200 queries = 10 visits/query

• E[Sslowdisk] = Bslowdisk/Cslowdisk = 100 sec/2,000 visits = 0.05 sec/visit

• E[Vfastdisk] = Cfastdisk/C = 20,000 visits/200 queries = 100 visits/query

• E[Sfastdisk] = Bfastdisk/Cfastdisk = 600 sec/20,000 visits = 0.03 sec/visit

Now we want to balance the visits over the disks to equalize the times spent at each disk:

• Vslowdisk + Vfastdisk = 110

• Sslowdisk × Vslowdisk = Sfastdisk × Vfastdisk

Solving the above set of equations leads to Vslowdisk = 41.25 and Vfastdisk = 68.75. Thus
equalizing the demand at Dslowdisk = Dfastdisk = 2.06, showing that balancing the disks
pays off with a factor of 1.45 (= 3/2.06).

(c) 2 points Consider the alternative approach of adding a second fast disk. How much can
performance be improved this way?

Solution: Adding a second fast disk is (at best) doubling the throughput of the combo,
thus reducing the demand to Dfast1 = Dfast2 = 3.0 / 2 = 1.5 sec/query. The result is that
the CPU now becomes the bottleneck, so Dmax reduces from 3.0 (bottleneck = fastdisk)
to 2.0 (bottleneck = CPU) or, in other words, performance is increased with a factor 1.5.

