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Queueing theory

Yet another take at performance evaluation

 Measurements
> DOE
> Operational Laws

e Simulations
> e

» Modeling
> Petri nets
»Markov modeling
> Queueing theory

why bother?
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A queueing system
Kendall notation (shortened)

4 N
arriving completing
requests I I P :> requests

N /

Characterized by A/S/m
- A: interarrival time distr.
- S: service time distr.

- M: #servers
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The M/M/1 queue 2 Why oh why?

The most popular model

4 I
arriving completing
requests I I P :> requests
\ )
Characteristics

- exponential interarrival time realistic distr.
- exponential service time with long tail

- memoryless is easy to analyze
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The M / M / 1 queue 2 Any suggestion?

Connect to Markov models

. ™
arriving completing
requests I I A :D requests

- /

« Sate encodes #requests in the system Wi'?qaﬁtn?tt;‘;Ut

\/u\/\/

 Analyze steady state
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The M/M/1 queue

Mathematical analysis

/\/\/\/\
\/\/\/\/

Goal:

» A closed form expression of the probability
of the number of jobs in the queue (P,)
given only A and p

To compute 2 Flow?

o #requests in the system (N)

e response time (R) /

How?
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The M/M/1 queue

Mathematical analysis

/\/\/\/\

\/ '\/ \/ \/
Steady state (A < p):

e Flows must be in equilibrium /

From left to right p =2
* APy =uP; ) Pr=pP

What does
that denote?

* AP =HP2 >P2?PZP0

Also holds
for n=0 ©

* AP=uP, | P =p"P,

—
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The M/M/1 queue

Mathematical analysis

/\/\/\/\

\/\/\/\/

Steady state (p < 1):
e Flows must be in equilibrium: P, = p" P,

o Probabilities must sum to one:
Looks familiar?

1
n:l :>P01—p:1

SP=1=P>
n=0 n=
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The M/M/1 queue

Mathematical analysis

/\/\f\/\

\/\/\/\/

Steady state (p < 1):
e Flows must be in equilibrium

e Probabilities must sum to one

Makes sense!?

Phb=1-p %

Pn=pn(1-p)

7
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The M/M/1 queue
Mathematical analysis Po=p"(1-p)

/\/\/\/\
\/\/\/\/

Goal:

» A closed form expression of the probability |
of the number of jobs in the queue (P, \/
given only A and pn

To compute ®
s #requests in the system: N = ) nh,
sresponse time: R=N/ A n=0
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The M/M/1 queue e
Mathematical analysis Po=p"(1-p)

/\/\/\/\
\./\/\/v

Compute #requests in the system:

Z znp ) I
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Proof by intimidation ©

take the derivative
of the integral!

) geometric
series
/I

Z nPTx/[ i np'(1-p) = (1—p)pi np™

n=1

(1- p)p-%qz: p”[); =(1-p)og; (1_1p)

| — P
(1_p)p((1_;)2) — (1_,0) —

u—A
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The M/M/1 queue
Mathematical analysis Po=p"(1-p)

/\/\/\/\
\/\/\/\/

Goal:

» A closed form expression of the probability |
of the number of jobs in the queue (P,) \/
given only A and pn

To compute
A |
. #requests in the system: N = —~ \/

eresponse time: R = 1/(u — A1) (1=p) “_’1
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Stable

Region
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The M/M/1 queue

Main results

/\4 /\/'\3/\

\/\/\/\/

Utilization U=XS=Au=p

Prob. of n clients in the system |P_ = p" (1 - p)

Mean #clients in the system N=p/(1-p) =L/ (u-Ar)

Mean #clients in the queue Ng=N-(1-Py))=N-p

Mean response time R =N/x=1/(pn-A) = S/(1-p)
Mean waiting time W =R-S=p/(u-L)
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What needs
Mathematical analysis
NG ® /\ /\ /\

'\/\/\/\/

Steady state (p < 1):
e Flows must be in equilibrium

From left to right p=M2u
APy = pnP Py =2p P

°* APy ?Zu P, | P, =.292 Py 2 one too many
: : forn=0®
e AP4=2uP, | P,=2p"P,
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The M/M/2 queue

Mathematical analysis

/\/\f\/\

\_/\/\/U

Steady state (p < 1):
e Flows must be in equilibrium: P, = 2p" P,
e Probabilities must sum to one:

= - 1+
an=1:>2P02p - P, =1 :>—pP =1
n=0

n=0 — P
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The M/M/2 queue

Mathematical analysis

/\/\f\/\

\_/\/\/U

Steady state (p < 1):
e Flows must be in equilibrium

o Probabilities must sum to one
_1-p
Po = 1+p
_ 1-p
P = 20" 1+p
fuDelrt IN4390 2



The M/M/2 queue p = 2pn 1P

Mathematical analysis 1+p

NER WD TG NG
\-/\/\/\/

Compute #requests in the system:
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The M/M/2 queue

Main results

p=2/2n

/\/\f\/\

3

\/&/\/\/

Utilization

U=1-Py=2p/(1+p)

Prob. of n clients in the system

P,.=2p"(1-p)/(1+p)

Mean #clients in the system

N=2p/(1-p?)

Mean #clients in the queue

NQ = 2p° [ (1-p?)

Mean response time

R=N/x=1/(u(1-p?)

Mean waiting time

W=R-1/u=p?/(n(1-p?))

]
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Waiting for the bus

The inspection paradox |3
Waiting at a queue

-D/D/1 2 How come?
>E[W] =0

«M/M/1

>E[W] = % E[S] Is this bad?
- M/G/1 :

»E[W] = 1‘—)p ZEIE?S]] >> % E[S]

E[S?] = (1 + C2) E[S]?

»C,? = squared coefficient of variation

7
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Variability in Job Sizes

Deterministic Sq“%rfegac'fl_’::i‘;' r“:'e”T
Human IQs
Uniform(0,b) - for any b C2 _ VCZI”(S)

2
Exponential distribution E[S]

C*=50-100 Unix process lifetimes

C’=w

Pareto distribution
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Waiting for the bus

Back to

S: time between buses
Wait a

. ”“llll ||W7H!H|mn.. l N

\ time

Y Y
S S S

» Have a steady stream of students take the bus
and average their waiting times

o E[wait] = 2% _ > E[S]/2

#students
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The inspection paradox
Is everywhere

» Examples

»everybody speeds at the highway (or goes much slower)
»planes are always filled to the max

»pubs are noisy
. high load
leads to waiting

o M/SQ 0 | E[S?] | job size variance
= leads t iti
>2'1_ 2ETS] eads to waiting
increase x

server speed

smart scheduling
(SRPT)

"
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