Queueing Theory

IN4390 Quantitative Evaluation of Embedded Systems Koen Langendoen

Challenge the future

Queueing theory

Yet another take at performance evaluation

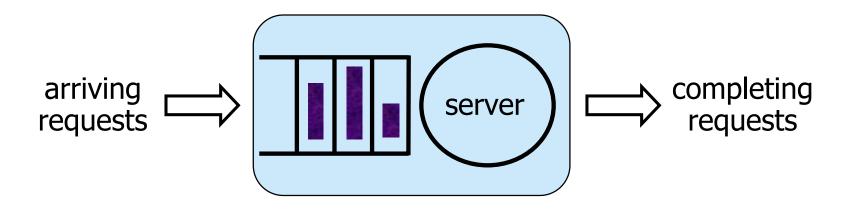
Measurements DoE Operational Laws

Simulations

۶...

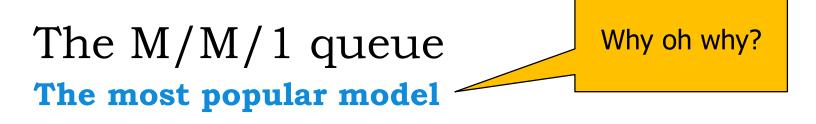
Modeling
Petri nets
Markov modeling
Queueing theory

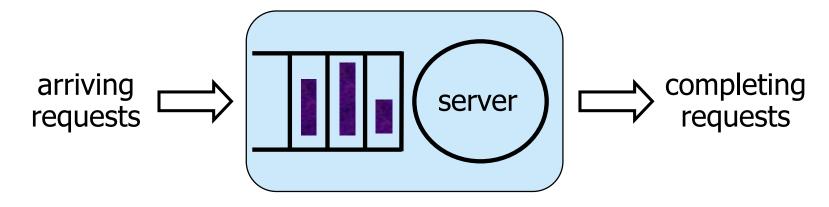
A queueing system Kendall notation (shortened)



Characterized by A/S/m

- A: interarrival time distr.
- S: service time distr.
- m: #servers



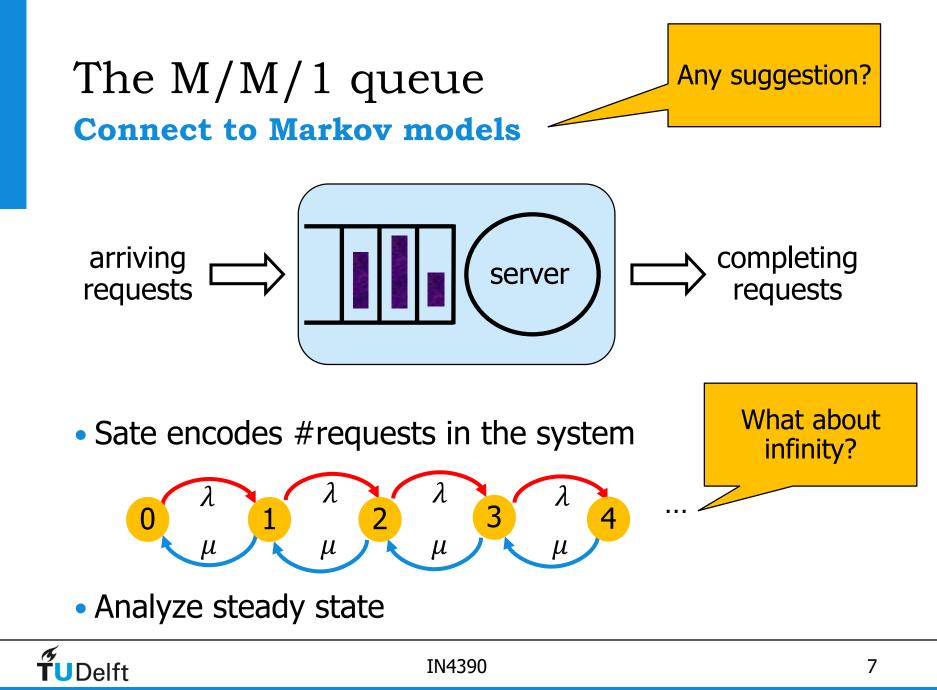


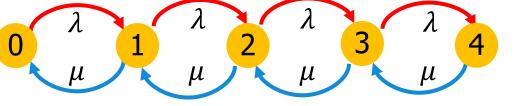
Characteristics

- exponential interarrival time
- exponential service time

realistic distr. with long tail

• **memoryless** is easy to analyze

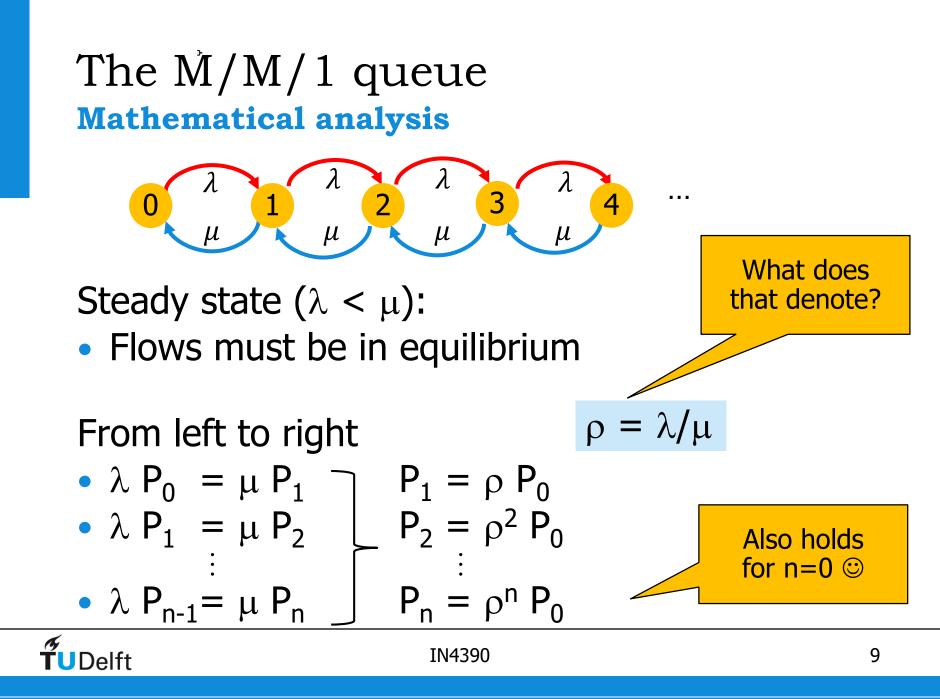


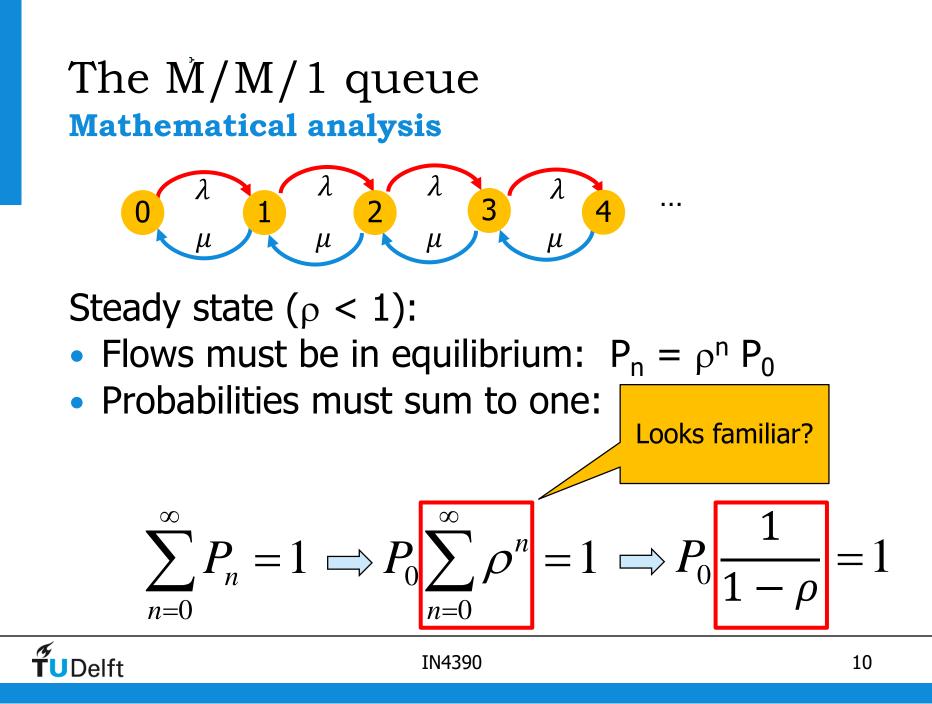


Goal:

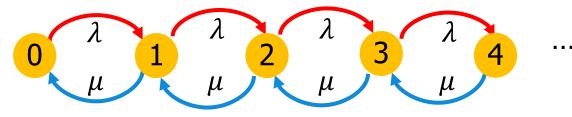
- A closed form expression of the probability of the number of jobs in the queue (P_i) given only λ and μ
- To compute • #requests in the system (N) • response time (R) How?

IN4390





The M/M/1 queue Mathematical analysis



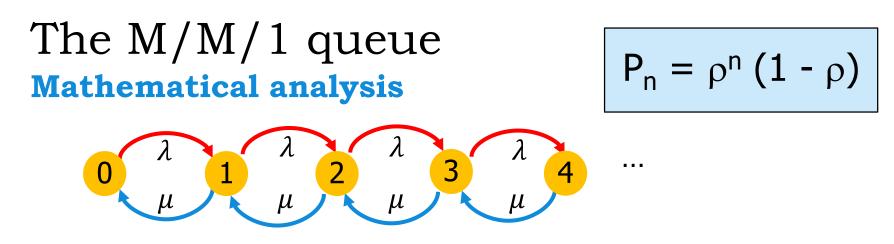
Steady state ($\rho < 1$):

- Flows must be in equilibrium
- Probabilities must sum to one

Makes sense!?

$$P_0 = 1 - \rho$$

 $P_n = \rho^n (1 - \rho)$



Goal:

Delft

• A closed form expression of the probability of the number of jobs in the queue (P_i) given only λ and μ

To compute

- #requests in the system: N =
- response time: R = N / λ

 ∞

n=0

 $P_n = \rho^n (1 - \rho)$

2

$$N = \sum_{n=0}^{\infty} n P_n = \sum_{n=0}^{\infty} n \rho^n (1-\rho) = \dots$$

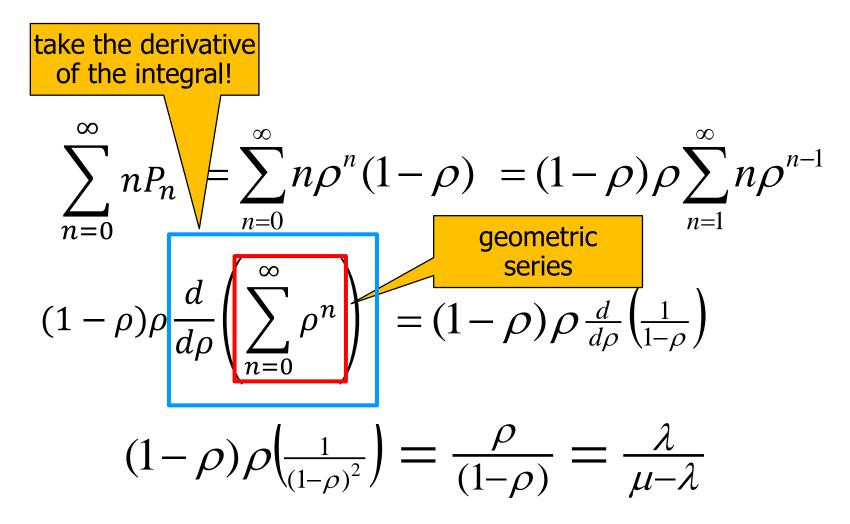
3

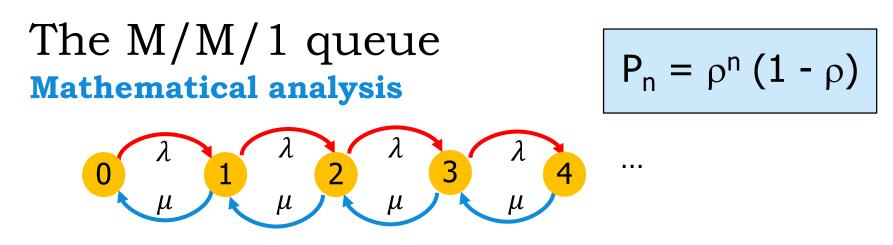
4

. . .

$$= \dots = \frac{\rho}{(1-\rho)} = \frac{\lambda}{\mu - \lambda}$$

Proof by intimidation \odot





Goal:

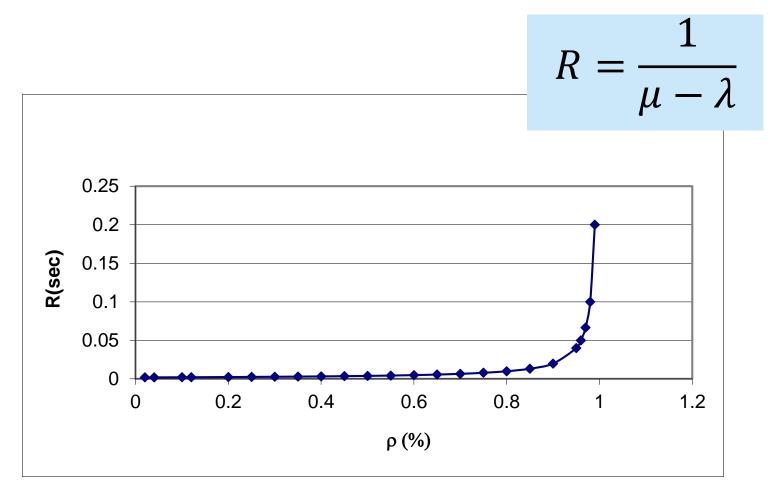
Delft

• A closed form expression of the probability of the number of jobs in the queue (P_i) given only λ and μ

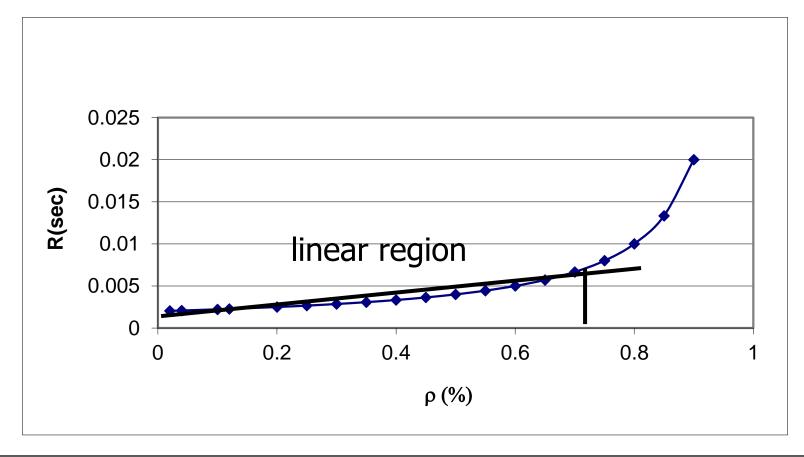
To compute

- #requests in the system: N = $\frac{\rho}{(1-\rho)} = \frac{\lambda}{\mu \lambda}$ response time: R = $1/(\mu \lambda)$

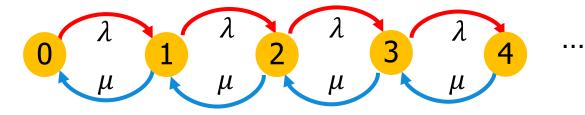
Response Time vs. Arrivals



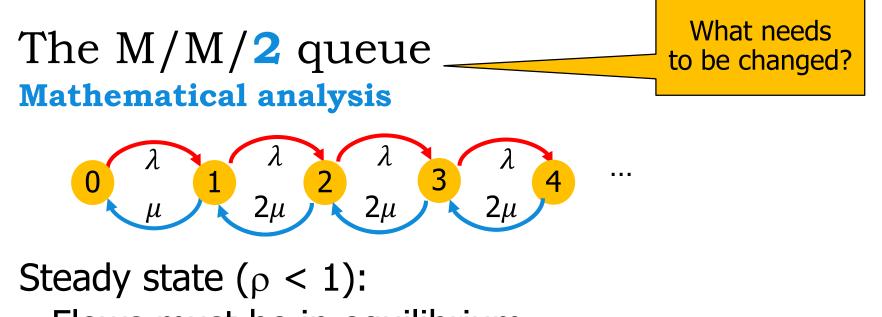
Stable Region



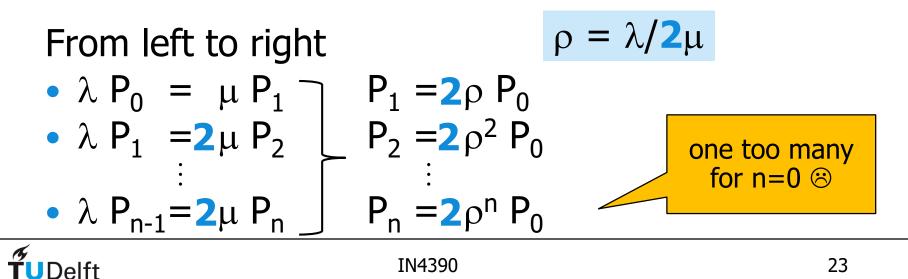
The M/M/1 queue Main results



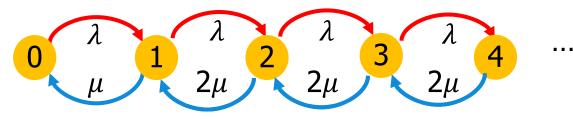
Utilization	$U = X S = \lambda/\mu = \rho$
Prob. of n clients in the system	$P_{n} = \rho^{n} (1 - \rho)$
Mean #clients in the system	$N = \rho / (1-\rho) = \lambda / (\mu-\lambda)$
Mean #clients in the queue	$N_Q = N - (1 - P_0) = N - \rho$
Mean response time	$R = N/\lambda = 1/(\mu - \lambda) = S/(1-\rho)$
Mean waiting time	$W = R - S = \rho/(\mu - \lambda)$



Flows must be in equilibrium



The M/M/2 queue Mathematical analysis

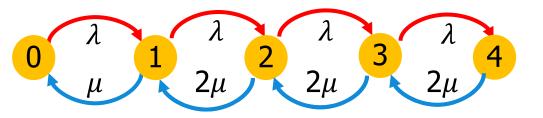


Steady state ($\rho < 1$):

- Flows must be in equilibrium: $P_n = 2\rho^n P_0$
- Probabilities must sum to one:

$$\sum_{n=0}^{\infty} P_n = 1 \implies 2P_0 \left[\sum_{n=0}^{\infty} \rho^n - P_0 = 1 \right] \implies \frac{1+\rho}{1-\rho} P_0 = 1$$

The M/M/2 queue Mathematical analysis



Steady state ($\rho < 1$):

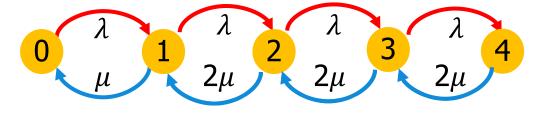
- Flows must be in equilibrium
- Probabilities must sum to one

$$P_0 = \frac{1-\rho}{1+\rho}$$
$$P_n = 2\rho^n \frac{1-\rho}{1+\rho}$$

. . .

 $P_n = 2\rho^n \frac{1-\rho}{1+\rho}$

. . .



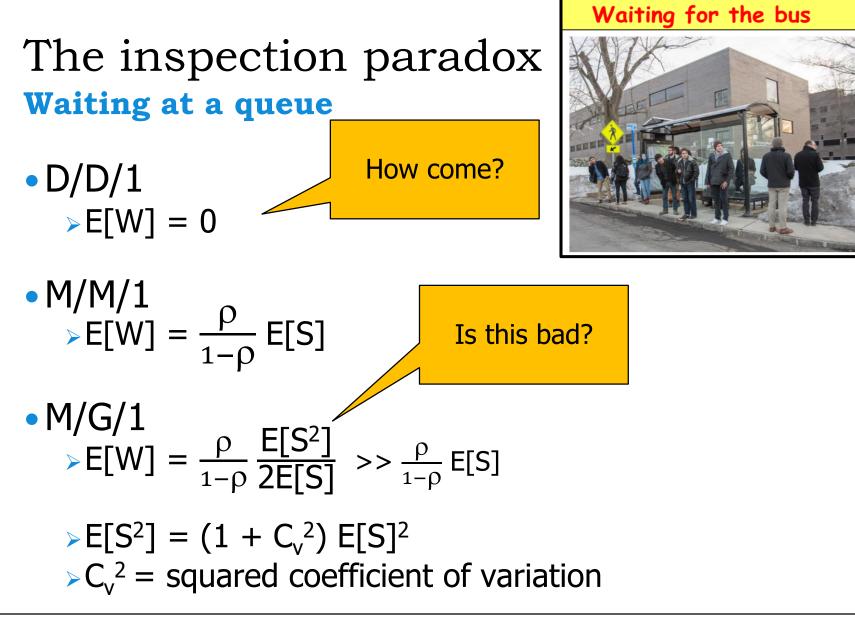
Compute *#requests* in the system:

$$N = \sum_{n=0}^{\infty} nP_n = \sum_{n=0}^{\infty} 2n\rho^n \frac{1-\rho}{1+\rho}$$

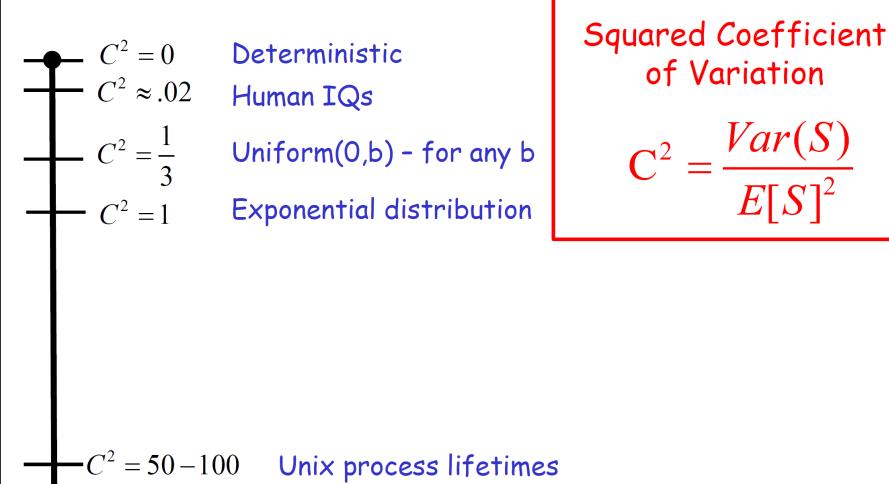
$$= \dots = \frac{2\rho}{(1-\rho^2)}$$

The M/M/2 queue **Main results** $\rho = \lambda/2\mu$ $\rho = \lambda/2\mu$...

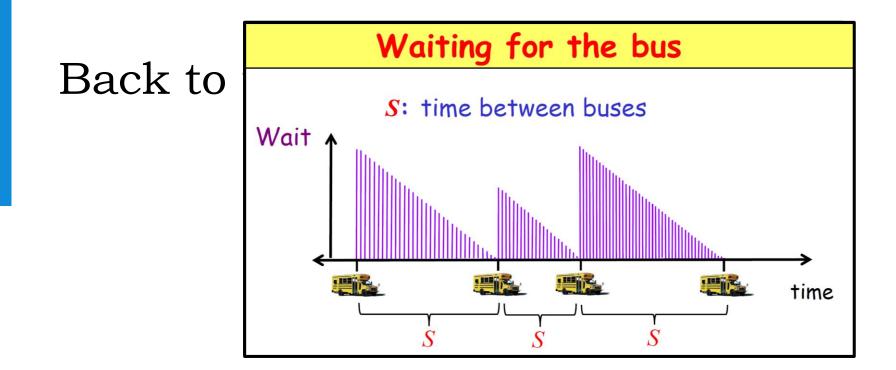
Utilization	$U = 1 - P_0 = 2\rho / (1 + \rho)$
Prob. of n clients in the system	$P_n = 2\rho^n (1 - \rho) / (1 + \rho)$
Mean #clients in the system	$N = 2\rho / (1-\rho^2)$
Mean #clients in the queue	$N_Q = 2\rho^3 / (1-\rho^2)$
Mean response time	$R = N/\lambda = 1 / (\mu (1-\rho^2))$
Mean waiting time	W = R - $1/\mu = \rho^2 / (\mu (1-\rho^2))$



Variability in Job Sizes



 $=\infty$ Pareto distribution



 Have a steady stream of students take the bus and average their waiting times

• E[wait] =
$$\frac{\sum \text{wait}_s}{\# \text{students}} > E[S]/2$$

The inspection paradox Is everywhere

Examples

everybody speeds at the highway (or goes much slower)planes are always filled to the max

