Operational Laws

IN4390 Quantitative Evaluation of Embedded Systems Koen Langendoen

Challenge the future

Queueing theory Yet another take at performance evaluation

- Measurements
 DoE
- Simulations
 ...
 Modeling
 Petri nets
 Markov modeling
 Queueing theory

Queues are everywhere When demand exceeds supply

impacts response timesignals bottleneck(s)

TUDelft

Characterized by

- arrival distribution (rate)
- request size (service time)
- scheduling discipline

A queueing system Kendall notation

Characterized by A/S/m/B/K/SD

- A: interarrival time distr.
- S: service time distr.
- m: #servers
- B: #buffers

├ M|E|D|...|G

- K: population size
- **SD**: Service Discipline

A queueing system Kendall for dummies

Characterized by A/S/m

- A: interarrival time distr.
- **S**: service time distr.
- m: #servers

- M|E|D|...|G

Operational laws Hold for any distributions and scheduling

• Operational \Rightarrow directly measurable

= random

variable?

Testable assumptions

#arrivals = #completions [job flow balance]

Observable variables

- > arrival rate
- service time
- > waiting time

operational law = relation between observables

> . . .

Operational laws

UTILIZATION LAW	U = X S
LITTLE'S LAW	N = X R
FORCED FLOW LAW	$X_k = V_k X$
BOTTLENECK LAW	$U_k = D_k X$

Good for

TUDelft

"back of the envelope" calculationsdetermining performance bounds

IN4390

System model

Little's law Cheers!

$\mathbf{N} = \mathbf{R} \mathbf{X}$

IN4390

Operational laws

/ _k X

Good for

"back of the envelope" calculationsdetermining performance bounds

Systems of systems

- Multiple resourcesConnected queues
- Operational laws apply
 individual queues
 system as a whole
 - number devices (1 .. #resources)top-level system is device 0

 $N_{k} = X_{k} R_{k}$ $N_{0} = X_{0} (R_{0} + Z)$

Forced Flow law

$$> X_{k} = \frac{C_{k}}{t} = \frac{C_{k}}{C_{0}} \frac{C_{0}}{t} = V_{k} X$$

TUDelft

Example

What one rattling disk reveals

Suppose a system has:

- 30 terminals
- 18 seconds average think time
- 20 visits to a specific disk/interaction
- 30% utilization of that disk
- 25 ms is the average time for a disk access

Compute the system throughput and response time.

N = 307 = 18 $V_{disk} = 20$ $U_{disk} = 0.30$ $S_{disk} = 25 \text{ ms}$

Example What one rattling disk reveals

Compute the

- system throughput
- response time

$$\mathbf{X}_{\mathbf{k}} = \mathbf{V}_{\mathbf{k}} \mathbf{X}$$

$$N = 30$$

 $Z = 18$
 $V_{disk} = 20$
 $U_{disk} = 0.30$
 $S_{disk} = 25$ ms

Operational laws

UTILIZATION LAW	U = X S N = X R	
FORCED FLOW LAW	$X_k = V_k X$	\checkmark

Good for

"back of the envelope" calculationsdetermining performance bounds

Bottleneck law

 Relate system throughput to device utilization

$$\mathbf{U}_{\mathbf{k}} = \mathbf{D}_{\mathbf{k}} \mathbf{X}$$

Delft

> $D_k = V_k S_k$: total service demand on device k for all visits of a job

 The device with the highest utilization (demand) is the bottleneck in the system

Webserver example

- Measurements taken during one hour from a Web server indicate that the utilization of the CPU and the two disks are: $U_{CPU} = 0.25$, $U_{diskA} = 0.35$, and $U_{diskB} = 0.30$. The server log shows that 216,000 requests were processed during the measurement interval.
- What are the service demands (the time used by each request) at the CPU and both disks?
- Which component is the bottleneck?
- What is the maximum (potential) throughput?
- What was the response time of the Web server?

IN4390

tricky!

Asymptotic Bounds for Closed Systems

$$X \le \min\left(\frac{1}{D_{max}}, \frac{N}{D+Z}\right)$$

$$R \ge \max(D, N \times Dmax - Z)$$

$$L = \sum_{k} D_{k}$$

$$D = \sum_{k} D_{k}$$

$$D_{max} = max_{k} D_{k}$$

Upper bounds on throughput lower bounds on response time > can be obtained by considering the service demands only (i.e., without solving any underlying model)

 when loading the system, the slowest device becomes the bottleneck:

>
$$X = U_k / D_k \le 1 / D_k$$
 $X \le 1 / D_{max}$

$$\mathbf{U}_{\mathbf{k}} = \mathbf{D}_{\mathbf{k}} \mathbf{X}$$

max throughput when no queueing occurs (R ≥ D):
 X = N / (R+Z) ≤ N / (D+Z)

UDelft

$$N = X (R+Z)$$

 Apply Little's Law (R = N/X – Z) to previous proof

$$\mathbf{X} \leq min\left(\frac{N}{D+Z}, \frac{1}{D_{max}}\right)$$

Webserver example Closed system

- Z =18
- D_{CPU} = 5
- $D_{disk a} = 4$
- $D_{disk b} = 3$

Operational laws and bounds

UTILIZATION LAW	U = X S
LITTLE'S LAW	N = X R
FORCED FLOW LAW	$X_k = V_k X$
BOTTLENECK LAW	$U_k = D_k X$

$$X \le \min\left(\frac{1}{D_{max}}, \frac{N}{D+Z}\right)$$
$$R \ge \max(D, N \times Dmax - Z)$$

