
Challenge the future

Delft
University of
Technology

The Art of Measurement†

IN4390 Quantitative Evaluation of Embedded Systems
Koen Langendoen

†Original slides by Mitra Nasri, now at TU/e

2IN4390

Course outline

•Lect 1: terminology, non-functional properties

•Lect 2+3: Design of Experiments

•Lect 4: The Art of Measurements

3 | 67Embedded and
Networked Systems

Agenda

• The art of measurement
1. Pillars of measurement-based evaluation
2. Goals and metrics (book chapter 3)

3. Workload selection/generation (book chapter 4)

4. Measurement: practical considerations
5. The art of data presentation (book chapter 10, 11)

6. Confidence level and confidence interval (book chapter 13)

7. Summarizing measured data (book chapter 12)

• Self study
• Common mistakes (book chapter 1, 2)
• Summarizing measured data (book chapter 12)
• The art of data presentation (book chapter 10, 11)

Source:
• Raj Jain, “The Art of Computer Systems Performance Analysis”

4 | 67Embedded and
Networked Systems

An overview of evaluation techniques

• Analytical modeling
• Based on a rigorous mathematical models

• Lectures 7, 9-13 (MC + QT)

• Simulation
• Simulate the system operation

(usually only small parts thereof)

• Not covered in this course

• Measurement
• Implement the system in full and measure

its performance directly

• This lecture

read more here: https://tu-dresden.de/zih/ressourcen/dateien/lehre/ws1112/lars/vorlesungen/lars_lecture_02_requirements-metrics-techniques.pdf?lang=en

• Positive: Provides the best insight into the effects

of different parameters and their interaction
• example: is it better to configure the system with one

fast disk or with two slow disks?

• Positive: Can be done before the system is built

and takes a short time

• Negative: these models are rarely accurate
• Usually needs many simplifying assumptions

• Depends on the quality and correctness of these

assumptions

https://tu-dresden.de/zih/ressourcen/dateien/lehre/ws1112/lars/vorlesungen/lars_lecture_02_requirements-metrics-techniques.pdf?lang=en

5 | 67Embedded and
Networked Systems

An overview of evaluation techniques

• Analytical modeling
• Based on a rigorous mathematical models

• Lectures 7, 9-13 (MC + QT)

• Simulation
• Simulate the system operation

(usually only small parts thereof)

• Not covered in this course

• Measurement
• Implement the system in full and measure

its performance directly

• This lecture

read more here: https://tu-dresden.de/zih/ressourcen/dateien/lehre/ws1112/lars/vorlesungen/lars_lecture_02_requirements-metrics-techniques.pdf?lang=en

• Positive: full control of simulation model,

parameters, level of detail (high flexibility).

• Positive: Can be done before the system is built

• Simulation of a full system is infeasible

• Simulation of the system parts does not

take everything into account

• Negative:

• It may still include simplifying assumptions

https://tu-dresden.de/zih/ressourcen/dateien/lehre/ws1112/lars/vorlesungen/lars_lecture_02_requirements-metrics-techniques.pdf?lang=en

6 | 67Embedded and
Networked Systems

An overview of evaluation techniques

• Positive: The most convincing

• Numbers don’t lie (but statistics do)

• Negative: has high costs

• Requires a full implementation of the system

(buying hardware)

• What if you want to change the hardware in case

the performance is bad?

• Analytical modeling
• Based on a rigorous mathematical models

• Lectures 7, 9-13 (MC + QT)

• Simulation
• Simulate the system operation

(usually only small parts thereof)

• Not covered in this course

• Measurement
• Implement the system in full and measure

its performance directly

• This lecture

read more here: https://tu-dresden.de/zih/ressourcen/dateien/lehre/ws1112/lars/vorlesungen/lars_lecture_02_requirements-metrics-techniques.pdf?lang=en

https://tu-dresden.de/zih/ressourcen/dateien/lehre/ws1112/lars/vorlesungen/lars_lecture_02_requirements-metrics-techniques.pdf?lang=en

7 | 67Embedded and
Networked Systems

Pillars of Measurement-Based
Evaluation

8 | 67Embedded and
Networked Systems

Pillars of measurement-based evaluation

Does your metric really measure
what you want to measure?

What type of input workload
should you consider?

What is the goal?

What to measure?
• Metrics
• Workload

Can you achieve what you want
to achieve by measurement?

How to measure?
• DOs and DON’Ts of measurements

How to summarize and
present the output?

What tools should/can you use for
measuring a metrics?

Considerations while doing
measurement

How to summarize your thousands of
data points?

What are the statistical
methods/concepts that can help you?

9 | 67Embedded and
Networked Systems

Goal
What do you want to evaluate?

Goal: no human will ever be
harmed by my system

Question: What should you
measure to ensure this property?

Assume that your object-detection algorithm
is 100% accurate and never does any mistake!

Question: What type
of non-functional
property is this?

Object-detection service
• Input: image
• Output: position and type of the object

Base station

wifi

wifi

Your system

wifi

many other devices

10 | 67Embedded and
Networked Systems

Metrics

Metric types

• a count of how many times an event occurs

• the duration of some time interval

• the size of some parameter

Metrics can have conditions

• Number of successfully processed images in one hour

• Total execution time of the image processing task for serving 100 images

• Time until the next failure

Examples?

11 | 67Embedded and
Networked Systems

Metric and goal: example
Question: What is
being measured?

wifi

timetime

Object detection serviceClient node

start = getTime();

end = getTime();

delta = end - start

Answer: the round-trip time = response
time of the object detection service plus

the transmission time on the network

12 | 67Embedded and
Networked Systems

Metric and goal: example

Question: is “B” the execution
time of the object detection?

wifi

timetime

Object detection serviceClient node

Answer: No.
B includes two network delay values. The network delay
varies a lot (hence, the delay suffered when sending the Ack
might be different from the one for sending the position).

a3

a1

a2

Image: 1KB

Ack: 1B

A = a2 – a1

B = a3 – a2 Position: 1B

t1

t2

Question: is “t2-t1” the execution
time of the object detection?

Answer: No.
t2-t1 is the response time of the object detection method and it includes other
delays such as preemptions by other higher-priority tasks on the server

13 | 67Embedded and
Networked Systems

System parameters (configurations)

• System parameters are configurations and parameters that impact a system’s performance

independent of the system’s input workload

Question: what are the system
parameters in our example?

System parameters for our example:
• Speed of: base station’s CPU, robot’s microcontroller, and network.
• Scheduling policy on both ends.
• Network protocol.
• Operating system overhead for interfacing with the network.
• Reliability of the network affecting the number of retransmissions required.
• …

Example:

Metric is the round trip time of the object tracking

wifi

Sends its position
to the base station

Navigates the
device through

the campus

14 | 67Embedded and
Networked Systems

Workload model

• Workload model defines the model of input workload to the system

• It is usually a representation of the actual usage of the system after deployment

Question: what are the
workload parameters?

Workload parameters for this example:
• Number of IoT devices (user)

• Frequency of sending requests to the base station
• and distribution (periodic, Poisson, …)

• Complexity of the navigation task at different locations
• Example: around cross roads is harder than straight roads
• Proximity (presence) of other devices when it reaches to a cross road

• Other load on the robot’s microcontroller and base station CPUs

• Other load on the network

wifi

Sends its position
to the base station

Navigates the
device through

the campus

15 | 67Embedded and
Networked Systems

Factors

• Factors: Parameters that are varied during the evaluation

• Levels: Values of a factor

• Service: image rotation
• Input: image and angle
• Output: rotated image

Example:

• Image size: {10KB, 100KB, 1MB}

• Frequency of calls to service:

• Periodic: 1 every {1, 10, 100, 1000} milliseconds

• Exponential distribution with rate: {0.1, 0.2, 0.3, 0.4, 0.5}

Assumption:

• Fixed: type of CPU and operating system.

• Measure under no other load on the hosts and the network.

16 | 67Embedded and
Networked Systems

Measuring Time: Practical Considerations

Image source: https://phys.org/news/2017-03-scientists-animals-year.html

https://phys.org/news/2017-03-scientists-animals-year.html

17 | 67Embedded and
Networked Systems

Measuring time

Approaches
1. Measuring a process’s execution time

• UNIX’s “time” command

2. Measuring time inside a program
• Programming language / OS support

3. Measuring time from outside of the system
• @inside: when the event (of interest) happens, trigger an I/O pin.

• @outside: monitor the I/O pin for changes to record the event time

Don’t measure by hand!
Measuring by hand: “looking" at a clock, launching the program, “looking"
at the clock again when the program terminates

18 | 67Embedded and
Networked Systems

UNIX time command

You can put time in front of any UNIX command

• 2.11 seconds of user time
• 1.94 seconds of system time
• 1 minutes and 8.72 seconds of wall-clock time
• 2% of CPU was used

• 0+0k memory used (text + data)
• 0 input, 0 output (file system I/O)
• 1155 minor pagefaults
• 0 swaps

surf:~$ /usr/bin/X11/time ls -la -R ~/ > /dev/null

2.11user 1.94system 1:8.72elapsed 2%CPU

(0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (0major+1155minor)pagefaults 0swaps

Invoked command

See more here: https://en.wikipedia.org/wiki/Time_(Unix)

• User Time
• time spent executing user code

• System Time
• time spent executing kernel code (inside OS)

• Wall-Clock Time
• time from start to end

https://en.wikipedia.org/wiki/Time_(Unix)

19 | 67Embedded and
Networked Systems

UNIX time command

surf:~$ /usr/bin/X11/time ls -la -R ~/ > /dev/null

2.11user 1.94system 1:8.72elapsed 2%CPU

(0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (0major+1155minor)pagefaults 0swaps

• User Time
• time spent executing user code

• System Time
• time spent executing kernel code (inside OS)

• Wall-Clock Time
• time from start to end

Question: Why wall-clock ≥ User + System?

1. because the process can be preempted by other processes that run concurrently on the system
2. because the process can be blocked waiting for I/O

20 | 67Embedded and
Networked Systems

System time

Larger system time may be a sign of higher calls to system APIs
such as fopen(), fread(), fwrite(), etc.

Question: When do you get
a large “system time”?

More information: https://www.kernel.org/doc/Documentation/trace/ftrace.txt

To pinpoint which system calls are more often used, you need

to track them via separate tracing tools such as ftrace

KernelShark
• A visualization tool to track “ftraces”
• Docs: https://kernelshark.org/Documentation.html
• Git: https://git.kernel.org/pub/scm/utils/trace-cmd/trace-cmd.git/

https://www.kernel.org/doc/Documentation/trace/ftrace.txt
https://kernelshark.org/Documentation.html
https://git.kernel.org/pub/scm/utils/trace-cmd/trace-cmd.git/

21 | 67Embedded and
Networked Systems

Visualizing ftrace outputs using KernelShark

Tells you when the system calls that
you have tracked are called

gives you details

shows the execution on
multiple CPUs

provides very nice
ZOOM option

22 | 67Embedded and
Networked Systems

Wall-clock time Question: What else does impact the wall-
clock time other than system and user times?

• I/O: time waiting for performing an I/O interaction (including reading from or writing
to files, ports, etc.)

• Preemption: time waiting for other tasks to execute

• Suspension: time being blocked (e.g., when a task wants to access a data that is
protected by a lock) or being suspended due to an I/O operation

• Other interferences: time spent on accessing memory bus of a memory bank, etc.

Wall clock – system – user =
I/O + preemption + suspension + other interferences

Question: How can you control the impact
of these delays on your measurements?

23 | 67Embedded and
Networked Systems

Wall-clock time

One approach is to try to run your process in isolation (when no other process is running)

Question: Would this be enough?

Wall clock – system – user =
I/O + preemption + suspension + other interferences

hey, I have designed a stabilizer that processes
1000 samples per millisecond on an Arduino Mega

Oh, even when your drone is flying?

No way! It happens only in the lab
when I turn off every other process in the system!

24 | 67Embedded and
Networked Systems

Wall-clock time
surf:~$ /usr/bin/X11/time ./parallelQuicksort2

9.76user 10.51system 0:06.11elapsed 331%CPU

(0avgtext+0avgdata 158268maxresident)k

0inputs+0outputs (0major+7599minor)pagefaults 0swaps

Question: Why wall clock time < system + user time?

This system could have multiple cores and execute the
program in parallel on multiple cores. In that case, the wall-

clock time becomes smaller than user or system times.

25 | 67Embedded and
Networked Systems

Drawbacks of UNIX time command

• The time command has poor resolution
• “Only" milliseconds

• “time” times the whole code
• Often ES code is not terminating (i.e. runs forever)

• Sometimes we're only interested in timing some part of the code, for
instance the one that we are trying to optimize

26 | 67Embedded and
Networked Systems

Timing with gettimeofday

• gettimeofday from the standard C library

• Measures the number of microseconds since midnight, Jan 1st 1970, expressed in seconds
and microseconds

Can be used to time sections of code
• Call gettimeofday at beginning of section
• Call gettimeofday at end of section
• Compute the time elapsed in microseconds:

(end.tv sec*1000000.0 + end.tv usec -
start.tv sec*1000000.0 - start.tv usec) / 1000000.0)

https://linux.die.net/man/2/gettimeofday https://linux.die.net/man/3/clock_gettime

Have a look at clock_gettime()
Measures the number of nanoseconds since midnight,
Jan 1st 1970, expressed in seconds and nanoseconds.
Obviously not precise at the nanosecond level but
much better than gettimeofday

https://linux.die.net/man/2/gettimeofday
https://linux.die.net/man/3/clock_gettime

28 | 67Embedded and
Networked Systems

Using timers

long x = 30, start, end;

start = micros();

x = 42 * x;

end = micros();

printf(end – start);

source: http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture06.pdf

Assumption: There is no other process or an operating system in this example. The goal is to measure the runtime
of the middle instruction that runs on an Arduino Mega.

Each instruction is
about 2~3 microsecond

micros() returns values
that are integer multiples

of 4 microseconds

What can invalidate
this measurement?

• Timers are not infinitely accurate
• All clocks have a granularity
• The error in a time measurement, even if everything is perfect, may be the size of this granularity

(sometimes called a clock tick)

• Always know your clock granularity
• Ensure that your measurement is for a long enough duration (say 100x the “tick”)

http://wgropp.cs.illinois.edu/courses/cs598-s16/lectures/lecture06.pdf

29 | 67Embedded and
Networked Systems

Timers and rollover

Timer Rollover
• Occurs when an n-bit counter undergoes a transition from its maximum value 2𝑛 – 1 to zero.

Hardware timer

Software timer

When interrupt occurs, interrupt-service routine increments the timer value which is
read by a program.

Counter value is read from a memory location.

30 | 67Embedded and
Networked Systems

Timers and rollover

𝑻𝒄
′ 32-bits 64-bits

10 ns 42 s 5058 years

1 𝜇s 1.2 hour 0.5 million years

1 ms 49 days 0.5 × 109• low resolution
• late rollover

• high resolution
• early rollover

There is a trade-off between rollover time and granularity of the timer

31 | 67Embedded and
Networked Systems

The Art of Data Gathering

Image source: https://streetfightmag.com/2019/03/25/the-fundamental-ethical-stakes-of-data-collection-and-ad-targeting/#.Xc68AvlKhaQ

https://streetfightmag.com/2019/03/25/the-fundamental-ethical-stakes-of-data-collection-and-ad-targeting/#.Xc68AvlKhaQ

32 | 67Embedded and
Networked Systems

Why should you repeat your measurements?

Errors

Error is the difference between the measured value
and the ‘true value’ of the thing being measured

Uncertainty is a quantification of the
doubt about the measurement result

• Whenever possible, we try to correct for any known errors

• But any error whose value we do not know is a source of uncertainty

Uncertainties

wifi
Error can be a caused by

a low timer resolution

Network delay and signal
strength are two sources of
uncertainty in this example

33 | 67Embedded and
Networked Systems

Measurement process

Assumption: there is no other process in the system. There is no operating system.
The measurements are the runtime of the only task in the system.

runtime (ms)

sample number
1

360

2

300

3

210

4

95

5 6 7 … 100 101 102 …

70
50

72
64

69 50

Question: Why do the first measurements
show a larger runtime?

The reason is “cold start”

34 | 67Embedded and
Networked Systems

Cold start

• Code may still be on disk, and not even loaded into memory.

• Data may be in slow memory rather than fast, e.g., cache, (note: this may
be wrong or right for what you are measuring)

Question: How to solve this issue if we
want to measure the long-run average?

Note: usually you need to put effort to ensure that the data in the intended part of the memory hierarchy.

Let the program run for a while and then start measuring

35 | 67Embedded and
Networked Systems

Considerations for gathering data

• The effect of hidden or ignored parameters

Question: What can be the
cause of this behavior?

ro
u

n
d

 t
ri

p
 t

im
e

(m
s)

image number (equal size)1 2 3 4

360

330

210

95

5 6 7 8 9 10 11 …

70 50 72 6469

121

time of sending image10 100 200 300 400 410 420 440 450 460 490 …

300

wifi

one user in
the network

Note: In this example, measured values
are affected by the frequency of
sending images.

What you see here is the effect of
queuing delay in the base station
(since it cannot process all data at
once, it queues them).

36 | 67Embedded and
Networked Systems

Considerations for gathering data

• Measurement-induced perturbations

On embedded systems, writing outputs on the terminal will heavily
impact the system’s behavior

In Arduino Mega, storing time in an array takes about 2~3 microseconds, while
writing it using printf() is about 70~80 microseconds

Question: What is it?

• The system resources consumed by the measurement tool itself as it collects data may
strongly affect the system’s performance.

• Tracing produces the highest level of perturbation (both CPU and disk are used) on
• time measurements,

• spatial and temporal memory access (cache flush, different paging,. . .), or

• system response time (and thus on workload characterization).

• The larger the overhead, the more likely the system behavior will be modified.

37 | 67Embedded and
Networked Systems

Considerations for gathering data

• Measurement-induced perturbations

Question: What is it?

38 | 67Embedded and
Networked Systems

Considerations for gathering data

When measuring time:
• Do not write the measured data on the output while gathering samples

• Solution: store the data in an array and then output the array after gathering
samples

• Do not use dynamic memory allocation for storing samples (e.g., malloc())

Question: Why?

Solution: Use an array with predefined size
(static memory allocation)

• It messes up the memory alignment of the program
and changes its behavior.

• You may even run into “out of memory” problem due
to fragmentation of memory

Question: how to
solve it?

39 | 67Embedded and
Networked Systems

Problem: smart compiler

If the result of the computation is not used, the compiler may eliminate the code.

Question: When does it
become an issue?

void bar(){
long start = getTime();
…
x = (y > 1) ? (y * y * 2) : (2.123456789 % 17);
…
// foo(x);
….
long end = getTime();
print(end – start);
}

You decided to comment out this line to avoid
including the runtime of “foo” into “bar”.

The compiler may remove the line that
changes x, so your final measurement may

look much shorter than it will be if “foo” was
not commented out

40 | 67Embedded and
Networked Systems

The Art of Data Summarization

ru
n

ti
m

e

system 1 system 2 system 3

41 | 67Embedded and
Networked Systems

Data summarization

1. How to report the performance as a single number?

• Is specifying the mean the correct way?

• How to report the variability of measured quantities?

d
ep

en
d

en
t

va
ri

ab
le

independent variable

d
ep

en
d

en
t

va
ri

ab
le

independent variable

mean mean

median

median

42 | 67Embedded and
Networked Systems

Data summarization

1. How to report the performance as a single number?

• Is specifying the mean the correct way?

• How to report the variability of measured quantities?

d
ep

en
d

en
t

va
ri

ab
le

independent variable

d
ep

en
d

en
t

va
ri

ab
le

independent variable

mean

Variance

43 | 67Embedded and
Networked Systems

Interpreting results

System A

ru
n

ti
m

e
(m

s)

System B

Question: How do these
systems compare?

System A has a less predictable runtime (a lot
of runtime variations)
However, in average, it has a smaller runtime
than System B.

System B has a more predictable runtime,
but with a larger average.

Question: Which one do you pick?

Answer: It absolutely depends on the other non-functional
requirements of the system, e.g., control systems’
performance (stability) degrades if there is jitter, so you
prefer system B.

44 | 67Embedded and
Networked Systems

Data summarization

• You can show both mean and variance

Question: Is it good enough?

Variance does not tell you much about
the distribution of data, min, or max

Question: What are the alternatives
to variance and when are they

appropriate?

45 | 67Embedded and
Networked Systems

Confidence interval
distribution of your samples:

co
u

n
t

measured value

Confidence
level

Confidence
interval

47 | 67Embedded and
Networked Systems

Histogram

Configuration A Configuration B

runtime (ms)

48 | 67Embedded and
Networked Systems

Box plots

Box plot is better than just
showing mean and variance

Question: How to
obtain this?

However, it does not show the
distribution of your data

49 | 67Embedded and
Networked Systems

Further data representations

source: https://serialmentor.com/dataviz/boxplots-violins.html

https://serialmentor.com/dataviz/boxplots-violins.html

55 | 67Embedded and
Networked Systems

Common Mistakes

56 | 67Embedded and
Networked Systems

Common mistakes

• Biased goals
• Example:

• To show that OUR system is better than THEIRS

• Mistake: Finding the metrics and workload such that OUR system turns out better
rather than finding the right metrics and workloads.

• Unsystematic Approach
• Selecting system parameters , factors, metrics, and workload arbitrarily

• Incorrect Performance Metrics
• Example: Comparing Two CPUs based on the throughput (MIPS)

• CISC

• RISC

57 | 67Embedded and
Networked Systems

Common mistakes

• Unrepresentative workload
• Example: if packet in the network are generally mixture of long and short, workload should

consist of short and long packet sizes, not just long ones.

• Not performing a sensitivity analysis on the factors
• Sensitivity analysis answers the question, "if the factors deviate from the expectations, what will

the effect be on the system being analyzed”.

• Putting too much emphasis on the results of the analysis, presenting it as fact rather than
evidence.

• Ignoring variability of results when reporting the outcome
• Only reporting mean value

• Omitting Assumptions and limitations
• Assumption and limitations of the analysis are often omitted in the final report.
• This may lead the user to apply the analysis to another context where assumption will not be

valid anymore.

58 | 67Embedded and
Networked Systems

Common mistakes in performance evaluation

59 | 67Embedded and
Networked Systems

A systematic approach to performance evaluation

1. State goals and define the system

2. List services/functionalities that you want to evaluate

3. Select metrics

4. List workload parameters

5. Select factors and their values

6. Select/build the workload

7. Design the experiment

8. Gather measurement data

9. Analyze the data

10. Present the results regression model

effect model

60 | 67Embedded and
Networked Systems

The Emb. Syst. perspective

• ES is about making the right trade off
• choose the best parameter setting(s), system config, …

• Performance vs. cost

cost

perf

Pareto front

61 | 67Embedded and
Networked Systems

Pareto Optimality multi-objective optimization

62 | 67Embedded and
Networked Systems

Step 1: open www.kahoot.it in your browser (phone or laptop)
Step 2: enter the pin code and then a nickname

http://www.kahoot.it/

63 | 67Embedded and
Networked Systems

Assignment 1

64 | 67Embedded and
Networked Systems

Assignment 1

• Is focused on evaluating ROS 2.0’s communication overheads

• ROS 2.0 is the latest generation of ROS (Robotics operating system)

• The assignment will be released Monday

• Lab starts from tomorrow

65 | 67Embedded and
Networked Systems

ROS 2.0 – example

Publish Subscribe

node

Pedestrian
detection

node

Car
detection

topic

Images

Subscribe

Camera

node

As soon as a data is sent to a topic,
ROS’s executor is activated and calls
the call back of the subscribers.

67 | 67Embedded and
Networked Systems

ROS 2.0 – under the hood

time timetime

Prepare image Publish

Detect cars

Pedestrian
detection

Car
detection

ImagesCamera

Notify

time

Detect pedestrians

Notify

ROS
middlewareOS OSApplications Applications Applications

68 | 67Embedded and
Networked Systems

Case study for Assignment 1

• Factors
• ROS configurations

• 3 DDS choices: FastRTPS, OpenSplice, Connext

• OS configurations
• process priority

• Smart CPU frequency scaling: active, inactive

Talker

ROS node

Listener

ROS node

ROS

time timetime

Prepare data
PublishRecord time

ROS middleware
Notify

Process data
Record time

Each time stamp is stored at
publish_time_XKbyte.txt

(where X shows the data size).

Each time stamp is stored at
subscribe_time_XKbyte.txt

(where X shows the data size).

La
te

n
cy

• Size of message
• 4KB, 16KB, …, 4MB (in total 8 values)

69 | 67Embedded and
Networked Systems

Questions?

70 | 67Embedded and
Networked Systems

Sources used to make the slides

• Jean-Marc Vincent and Arnaud Legrand
• Performance measurements of computer systems: tools and analysis, M2R PDES, 2015

• http://polaris.imag.fr/arnaud.legrand/teaching/2015/M2R_EP_measurements.pdf

• Holger Brunst and Matthias S. Mueller
• Performance Analysis of Computer Systems

• Center for Information Services and High Performance Computing (ZIH), TU Dresden

• https://tu-dresden.de/zih/ressourcen/dateien/lehre/ws1112/lars/vorlesungen/lars_lecture_02_requirements-metrics-
techniques.pdf?lang=en

• William Gropp
• Course: Designing and Building Applications for Extreme Scale Systems, Illinois, 2016

• http://wgropp.cs.illinois.edu/courses/cs598-s16/index.htm

• Raj Jain
• The Art of Computer Systems Performance Analysis

• https://www.cse.wustl.edu/~jain/books/perf_sli.htm

• Other slides and sources:
• https://slideplayer.com/slide/7709208/

• https://www.slideshare.net/ShubraBansal/uncertainity-in-measurement

• https://serialmentor.com/dataviz/boxplots-violins.html

Thank you

http://polaris.imag.fr/arnaud.legrand/teaching/2015/M2R_EP_measurements.pdf
https://tu-dresden.de/zih/ressourcen/dateien/lehre/ws1112/lars/vorlesungen/lars_lecture_02_requirements-metrics-techniques.pdf?lang=en
http://wgropp.cs.illinois.edu/courses/cs598-s16/index.htm
https://www.cse.wustl.edu/~jain/books/perf_sli.htm
https://slideplayer.com/slide/7709208/
https://www.slideshare.net/ShubraBansal/uncertainity-in-measurement
https://serialmentor.com/dataviz/boxplots-violins.html

