
Challenge the future

Delft
University of
Technology

Introduction†

IN4390 Quantitative Evaluation of Embedded Systems
Koen Langendoen

†Original slides by Mitra Nasri, now at TU/e

2IN4390

Who is who

Koen Langendoen
• Operational laws
• Queueing theory

Marco Zuniga
• Markov chains

Lydia Chen
• Design of Experiments

George Iosifidis
• Petri nets

Teachers & Topics

course
coordinator

flipped
classroom

3IN4390

Fridays
08:45 – 12:30

Who is who

Naram Mhaisen
• Lab assignments

Agrim Sharma
• Lab assignments

Teaching assistants

Weeks
2.2 – 2.6, 2.8

4IN4390

Course setup

• Lectures
Theory, instructions, examples, Q&A

•Exam
Written exam with open-ended questions

•Practicum (lab)
3 main assignments
Tools: ROS and Petri-nets
Required: basic knowledge of C++ and Linux

The first 80% – compulsory

5IN4390

Course setup

• In-lecture quizzes

•Take-home questions

•Extra lab questions

•Project

The last 30% – elective

Customizable part

10%
bonus

6IN4390

Grading scheme
The fine print

Final grade = min(10, E + C
𝟏𝟏𝟏𝟏𝟏𝟏

) * M

E = Exam

M = {pass=1 | fail=0}
(mandatory assignments)

C = Customizable points

400 ≤ E ≤ 800
0 ≤ C ≤ 300

In-lecture quizzes (5x) 20 pts each

Take-home questions (2x) 10 pts each

Extra lab questions ≤ 120 pts

Project 80 - 120 pts

7IN4390

0

2

4

6

8

10

12

14

16

40 120 200 280 360 440 520 600 680 760

Exam score 2019/2020

Grading scheme
A word of warning

Final grade = min(10, E + C
𝟏𝟏𝟏𝟏𝟏𝟏

) * M
400 ≤ E ≤ 800

0 ≤ C ≤ 300

Exam pass rate = 23%

Course pass rate = 77%

plan your
customizable path

now!

8IN4390

Mandatory assignments

• Assignment 0
 Paper reading; questions on BS

• Assignment 1 (Lab 1)
Measurement-based performance evaluation

of ROS 2.0 communication

• Assignment 2 (Lab 2)
 Behavior modeling and analysis using Petri-nets

• Assignment 3 (Lab 3)
Derive a petri-net model from a ROS application and analyze it

With customizable extras

Pa
ir

pr
og

ra
m

m
in

g

9IN4390

Projects

•Tool demo
pick an existing performance/modeling tool
evaluate it
report experience (in class, as report)

•Application study
pick existing application/software
model or evaluate it
report experience (in class, as report)

Customizable points

Get approval
before starting!

10IN4390

Questions?

• Logistical issues …

11IN4390

Example: The number of
packets lost on two links
was measured for our file
sizes as shown below:

Which link is better?

QEES

• Use models to design, analyze, and evaluate
a system

• Compare alternatives
 based on quantitative information

• Determine the impact of a feature on
overall system performance
 pin-point bottlenecks

• System tuning/optimization
 find the best parameter settings

What is it about?

12IN4390

QEES
Where does it fit?

System Validation

Functional correctness

QEES
Evaluation of non-functional properties

such as performance, dependability, …

Real-Time Systems

Evaluation (and correctness) of timing properties
such as response-time

Quarter 1

Quarter 2

Quarter 4

Embedded Systems Lab

Quarter 3

Designing and evaluating
an embedded system

13IN4390

QEES

• Introduction to modeling and model-based design (1 lecture)
• Design of experiments (2 lectures)
• Measurement-based performance evaluation (1 lecture)
• Petri-nets and data-flow networks (2 lectures)
• Markov models (2 lectures + 1 Q&A)
• Queueing theory (2 lectures + 1 Q&A)

• Project presentations by students (1 lecture)

Which topics?

14IN4390

QEES

• Brightspace
 videos
 assignments
 lab info + deadlines
 old exams
 reading list

• Books
 The Art of Computer Systems Performance Analysis
 Embedded System Design [Peter Marwedel]
 Measuring Computer Performance: A Practitioner’s Guide [David Lilja]

Course material

15IN4390

DEFINITIONS AND CONCEPTS
[Book]: Marwedel (chapter 1)
[Paper]: Basic Concepts and Taxonomy of Dependable and Secure Computing

19 | 58Embedded and
Networked Systems

What is an embedded system?

It is an information processing system
that is embedded into an enclosing

physical product.

Unlike a PC or servers, an embedded
system “interacts” with its physical world.

Have you heard about
Cyber-physical systems (CPS)?

[wiki] CPS vs. ES: A CPS is typically
designed as a network of interacting

elements with physical input and output
instead of as standalone devices.

20 | 58Embedded and
Networked Systems

Concepts and definitions

System
A system is an entity that interacts with other entities, i.e.,
other systems, including hardware, software, humans, etc.

Function
The function of a system is what the system is intended to do
and is described by the functional specification in terms of
functionality and performance

The boomerang drone’s functions:
- Normal mode (receives signals from user and battery

is not low)
- Move up, down, left, right
- Increase or decrease speed
- Land
- Take picture
- Send picture

- Hold mode (no signal)
- Stay still and wait for signal

- Safe-return mode (no signal from user for 2 minutes)
- Follow the path back if there is no signal
- Detect obstacles on the way
- Avoid obstacles

- Low battery mode (battery is low)
- Land safely if the battery is low

Behavior
The behavior of a system is what the system does to
implement its function. The behavior, for example, can be
described by a sequence of states

Structure
The structure of a system is what enables it to generate the
behavior.

Signal

No signal for 2
minutesS

B

NSignal
No signal

Low battery

Low battery
H

Low battery

21 | 58Embedded and
Networked Systems

Behavior
This is a state diagram, which is a “model” that

describes how the system changes modes

Is this enough to describe
the behavior?

Decision making

This is a component diagram, which is a “model” to show the
dependencies and interactions between SW/HW components

Signal

No signal for 2
minutesS

B

N
Signal No signal

Low battery

Low batteryH

Low battery

Flight control

Note: this diagram is symbolic and is not accurately model our prior example.

22 | 58Embedded and
Networked Systems

V-Model for system development

customer

Product
development

requirements
Verification and validation

End product

23 | 58Embedded and
Networked Systems

Specifications

The boomerang drone’s functions:
- Normal mode (receives signals from user and battery

is not low)
- Move up, down, left, right
- Increase or decrease speed
- Land
- Take picture
- Send picture

- Hold mode (no signal)
- Stay still and wait for signal

- Safe-return mode (no signal from user for 2 minutes)
- Follow the path back if there is no signal
- Detect obstacles on the way
- Avoid obstacles

- Low battery mode (battery is low)
- Land safely if the battery is low

This is a (very informal)
functional specification

Specifications
They describe the functional and non-functional requirements of the system

24 | 58Embedded and
Networked Systems

Specifications

Specifications
They describe the functional and non-functional requirements of the system

What examples do you have in mind for
non-functional requirements?

[Wiki] A non-functional requirement (NFR) is a requirement that specifies criteria that can be
used to judge the operation of a system, rather than specific behaviors.

Read more here: https://en.wikipedia.org/wiki/Non-functional_requirement

https://en.wikipedia.org/wiki/Non-functional_requirement

25 | 58Embedded and
Networked Systems

Quantitative properties

Quantitative properties are key selling points
(next to the functional correctness)

Slide course (Bart Theelen): https://www.win.tue.nl/~pcuijper/QEES/Guest%20Lecture%20Bart%20Theelen.pdf

https://www.win.tue.nl/%7Epcuijper/QEES/Guest%20Lecture%20Bart%20Theelen.pdf

26 | 58Embedded and
Networked Systems

Quantitative properties in industry

Quantitative properties are key selling points
(next to the functional correctness)

Slide course (Bart Theelen): https://www.win.tue.nl/~pcuijper/QEES/Guest%20Lecture%20Bart%20Theelen.pdf

https://www.win.tue.nl/%7Epcuijper/QEES/Guest%20Lecture%20Bart%20Theelen.pdf

27 | 58Embedded and
Networked Systems

Examples of quantitative measures

• Extrema (worst/best case)
• Maximum occupancy of a memory
• Minimum time until next failure
• Peak power consumption
• Worst-case response time
• Worst-case end-to-end delay

• Reachability (expected time until something happens)
• Expected time until next failure
• Expected time until first output is produced

• Long-run average
• Processor load
• Throughput of a communication network
• Mean time between failures (MTBF)
• Average power consumption

Slide course (Bart Theelen): https://www.win.tue.nl/~pcuijper/QEES/Guest%20Lecture%20Bart%20Theelen.pdf

https://www.win.tue.nl/%7Epcuijper/QEES/Guest%20Lecture%20Bart%20Theelen.pdf

28 | 58Embedded and
Networked Systems

Quantitative properties

Response time

Performance

Safety

Security

Reliability
Privacy

Availability

Portability
Durability

Extensibility

Understanding these requirements
is what makes you a valuable,

highly-paid, and highly-wanted
engineer!

Dependability

Read more here: https://en.wikipedia.org/wiki/Non-functional_requirement

Life time

Energy consumption

Quantitative properties are key selling points
(next to the functional correctness)

https://en.wikipedia.org/wiki/Non-functional_requirement

29 | 58Embedded and
Networked Systems

Quantitative properties

Response time

Safety

Security

Reliability
Privacy

Availability

Portability
Durability

Extensibility

Understanding these requirements
is what makes you a valuable,

highly-paid, and highly-wanted
engineer!

Read more here: https://en.wikipedia.org/wiki/Non-functional_requirement

Life time

Energy consumption

Quantitative properties are key selling points
(next to the functional correctness)

Performance

Dependability

https://en.wikipedia.org/wiki/Non-functional_requirement

31 | 58Embedded and
Networked Systems

Dependability

“The dependability and security specification of a system must include the requirements for the
attributes in terms of the acceptable frequency and severity of service failures for specified classes of
faults and a given use environment. One or more attributes may not be required at all for a given
system” [TPDS00].

The ability to deliver service that can justifiably be trusted
• The stress is on the need for justification (e.g., through rigorous

evaluation or proof) of trust

Definition 1

The ability to avoid service failures that are more frequent
and more severe than is acceptable

Definition 2

[TPDS00] “Basic Concepts and Taxonomy of Dependable and Secure Computing”, 2004.

32 | 58Embedded and
Networked Systems

Service/function failure

• Fault -- often referred to as Bug [TPDS00]
• A static defect in software (incorrect lines of code) or hardware
• A fault is the adjudged or hypothesized cause of an error

• Error
• An incorrect internal state (unobserved)
• An error is the part of total state of the system that may lead to its subsequent

service failure

• Failure
• External, incorrect behavior with respect to the expected behavior (observed)

[TPDS00] “Basic Concepts and Taxonomy of Dependable and Secure Computing”, 2004.

Fault Error Failure

33 | 58Embedded and
Networked Systems

Fault, error, and failure

First we need to know
the desired behavior

What is this?
A fault? An error? Or a failure?

image: Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

“A design without specifications cannot be
right or wrong, it can only be surprising!”

[Lee and Seshia]

Under this usage, this
implementation might not be

a fault :-)

34 | 58Embedded and
Networked Systems

Fault, error, and failure

Assume it is a rail
for a normal train

It is a fault

What is this?
A fault? An error? Or a failure?

Fault examples:
• Misconfiguration (e.g., misconfigured user permissions)
• Hardware faults (a memory cell that is always zero)
• Physical faults (caused by the environment)

• At high radiation, memory bits may randomly flip
• At high temperature, pressure sensor produces noisy data
• In the tunnels, the GPS does not work

image: Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

35 | 58Embedded and
Networked Systems

…
…

…

……

Fault, error, and failure
A fault

(like a bug in the code)

It is not activated as
long as it is not on
the program path

36 | 58Embedded and
Networked Systems

…
…

…

……

Fault, error, and failure

An error
(a fault that is on the

program path)

37 | 58Embedded and
Networked Systems

…
…

…

……

Fault, error, and failure

A failure
(an error that caused an
observable deviation of

correct behavior)

40 | 58Embedded and
Networked Systems

Addressing faults at different stages

Patching/fixing Redundancy Testing

Bernd Bruegge & Allen H. Dutoit. Object-Oriented Software Engineering: Using UML, Patters, and Java

Fault
prevention

Better design,
better tools, ….

Fault
detection

Testing,
debugging, …

Fault
removal

Fixing, patching,
…

Fault
tolerance

Redundancy,
isolation, …

Fault
forecasting

Estimating how
many faults might

still be there

42IN4390

MODELING AND MODEL-BASED DESIGN

43 | 58Embedded and
Networked Systems

Modeling, design, analysis

Modeling is the process of gaining a deeper
understanding of a system through imitation.

Models specify what a system does.

Design is the structured creation of artifacts.

It specifies how a system does what it does. This
includes optimization.

Analysis is the process of gaining a deeper
understanding of a system through dissection.

It specifies why a system does what it does (or
fails to do what a model says it should do).

44 | 58Embedded and
Networked Systems

Modeling, design, analysis
Real system

http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SimulinkModeling https://www.nomagic.com/mbse/images/whitepapers/SysML_Inverted_Pendulum_System.pdf

Models can be used to describe
specification

This mathematical model expresses
the physics of the plant

Models can be used to design the system Models can be used to
analyze the system

http://ctms.engin.umich.edu/CTMS/index.php?example=InvertedPendulum§ion=SimulinkModeling
https://www.nomagic.com/mbse/images/whitepapers/SysML_Inverted_Pendulum_System.pdf

45 | 58Embedded and
Networked Systems

Why is modeling important?
• Systems getting more complex

• Abstraction is needed to understand the system or to
design it

• Partitioning into subsystems is needed

Design space

Specifications

Intermediate models

implementation

Ab
st

ra
ct

io
n

ga
pDesign step

Ab
st

ra
ct

io
n

le
ve

l

46 | 58Embedded and
Networked Systems

Why is modeling important?
• Models are a good base for communication between

engineers
• Engineers think in diagrams

• Models are important for documentation
• Standardized semantics
• Formal language with (hopefully) only one meaning

• Models abstract from the very detailed implementation
• Allow focusing on most important aspects

• Models can be used when the system architecture is not
yet ready at early design stages in order to:
• Evaluate functional and non-functional requirements
• Find design faults

47 | 58Embedded and
Networked Systems

Model-driven v.s. model-based design

An interesting read
IBM Harmony: https://www.ibm.com/support/knowledgecenter/SSB2MU_8.3.0/com.btc.tcatg.user.doc/topics/atgreqcov_SecSysControllerHarmony.html
Other source: http://www.win.tue.nl/~pcuijper/docs/QEES/DF/QEES%20introcollege%202013-2014.pptx

Model-driven design:
use models to automate the arrows

Model-based design:
use models to get a grip on the boxes

Example:
The IBM Harmony process (for IoT)
is a model-driven design.

https://www.ibm.com/support/knowledgecenter/SSB2MU_8.3.0/com.btc.tcatg.user.doc/topics/atgreqcov_SecSysControllerHarmony.html
http://www.win.tue.nl/%7Epcuijper/docs/QEES/DF/QEES%20introcollege%202013-2014.pptx

48 | 58Embedded and
Networked Systems

When do we create a model?

To design a given specification To understand, evaluate, analyze,
or optimize a given system

Use modeling
to design the

system

End
user

Development
team Use modeling to

understand, analyze,
or optimize the system

Quantitative evaluation
and optimization

End
user

Development
team

50IN4390

QEES

• Introduction to modeling and model-based design (1 lecture)
• Design of experiments (2 lectures)
• Measurement-based performance evaluation (1 lecture)
• Petri-nets and data-flow networks (2 lectures)
• Markov models (2 lectures + 1 Q&A)
• Queueing theory (2 lectures + 1 Q&A)
• Project presentations by students (1 lecture)

Modeling is key

Statistical modeling

Modeling concurrent
programs

(design and performance analysis)

Modeling state-based
programs and queues

(performance analysis)

51IN4390

Assignment 0

• Read the following paper (all sections)
• “Basic Concepts and Taxonomy of Dependable and Secure

Computing”
• https://ieeexplore.ieee.org/document/1335465

• Take the quiz on Brightspace
 Due date Monday Nov. 15th

• Notes.
 There will be a quiz (with customizable points) from the first four

chapters of the paper on Thursday Nov. 18th

https://ieeexplore.ieee.org/document/1335465

	Introduction†
	Who is who
	Who is who
	Course setup
	Course setup
	Grading scheme
	Grading scheme
	Mandatory assignments
	Projects
	Questions?
	QEES
	QEES
	QEES
	QEES
	Definitions and concepts
	What is an embedded system?
	Concepts and definitions
	Behavior
	V-Model for system development
	Specifications
	Specifications
	Quantitative properties
	Quantitative properties in industry
	Examples of quantitative measures
	Quantitative properties
	Quantitative properties
	Dependability
	Service/function failure
	Fault, error, and failure
	Fault, error, and failure
	Fault, error, and failure
	Fault, error, and failure
	Fault, error, and failure
	Addressing faults at different stages
	Modeling and Model-Based Design
	Modeling, design, analysis
	Modeling, design, analysis
	Why is modeling important?
	Why is modeling important?
	Model-driven v.s. model-based design
	When do we create a model?
	QEES
	Assignment 0

