IN4390: Quantitative Performance Evaluation for Embedded Systems

Lydia Y. Chen y.chen-10@tudelft.nl

Design of Experiments

Comparison Questions?

Q1. You are looking for a computing cloud to run your course project so that the average latency is minimized.? What kind of VMs? How many VMs?

Q2. You design a (machine learning) algorithm, which has many parameters. How do you set the parameters such that the the algorithm accuracy is maximized?

Learning Objectives

You will be able to design experiments which can capture the effects and their integrations

 You will be able to analyze the experimental results and assess its significance

Design experiment is about

<u>designing</u> a proper set of experiments for measurement or simulation, <u>developing</u> a model that best describes the data obtained, and <u>analyzing</u> the goodness of mode via errors and variances.

Terms and Definitions

Terminology

Q: Why is replication important

Captures the variability.

- Response Variable: Outcome
- Factors (Predictors): Variables that affect the response variable
- Levels (Treatment): The values that a factor can assume
- Replication: Repetition of all or some experiments
- Design: The number of experiments, the factor level and number of replications for each experiment

E.g., A ML algorithm can be on trained machine with 1-4 cores and two choices of RAM (2 and 4 GB). You want o replicate each experiment for 5 times. A total umber of experiments: 4*2*5

Replication is important for all experiments!!!!

Types of Experimental Designs

- Simple designs: Vary one factor at a time.
- Q: Recommended?

- Not statistically efficient.
- Wrong conclusions if the factors have interaction.

Q: Drawback?

- Full factorial design: All combinations.
 - Can find the effect of all factors.

Q: Advantages?

Too much time and money.

Q: Drawback?

- E.g., 2 factorial where each of **n** factors has 2 levels. # of experiments = 2ⁿ.
- Fractional factorial designs: Less than full factorial design.
 - Saves time and expenses.
 - Less information.

Q: Advantages?

- May not get all interactions.
- Not a problem if negligible interactions.

Q: Drawback?

Designs You Will Learn ...

One factorial

Two factorial

General factorial

Two level factorial 2^k

Two level fractional factorial 2^{k-p}

1

Model + Assumption

2

Estimate parameters from measurement

3

Goodness of fit: Errors, ANOVA Confidence interval

4

Check assumption

One Factorial Design

Examples of One Factor Experiment:

An algorithm has three versions: R, V, Z. Which **version** gives the **lowest** response time?

Run each version 5 times?

\overline{R}	V	Z
$\overline{144}$	101	130
120	144	180
176	211	141
288	288	374
144	72	302

Q: Is there any difference between R,V,Z?

Q: How sure we are?

Q: What is y_{ij} & $ar{y}_{.j}$

Intuition

		R	V	\mathbf{Z}	
		144	101	130	
		120	144	180	
	y denotes	176	211	141	
	responses	288	288	374	
		144	72	302	
_	Col Sum	$\Sigma y_{.1} = 872$	$\Sigma y_{.2} = 816$	$\Sigma y_{.3} = 1127$	$\Sigma y_{\cdot \cdot} = 2815$
	Col Mean	$\bar{y}_{.1} = 174.4$	$\bar{y}_{.2} = 163.2$	$\bar{y}_{.3} = 225.4$	$\mu = \bar{y}$. 187.7
	Col Effect	$\alpha_1 = \bar{y}_{.1} - \bar{y}_{}$	$\alpha_2 = \bar{y}_{.2} - \bar{y}_{}$	$\alpha_3 = \bar{y}_{.3} - \bar{y}_{}$	
_		- 13.3	€ -24.5	€ 37.7	

 $i = \{1 \dots r\}, \ r \text{ is the number of replication}$ $j = \{1 \dots a\}, \ a \text{ is the number of levels}$

Note: "dot" subscript notation implies summation over the subscript that it replaces

 $y_{i,j}$: Response of i replication for jth alternative.

 $\bar{y}_{.j}$: Average response of jth alternative replications.

 $\mu = \bar{y}_{\cdot \cdot}$: Average response of all levels of experiments.

 $\alpha_j = \bar{y}_{.j} - \bar{y}_{..}$: Effect of the alternative j.

 $e_{ij} = y_{ij} - \bar{y}_{.j}$: Error term.

Q: How do we interpret the results

- Average algorithm x requires 187.7 seconds of computing time.
- The effects of the R, V, and Z are -13.3, -24.5, and 37.7, respectively.
- That is, R/V/S requires 13.3/-24.5/-37.7
 seconds more than an average algorithm x.

Model

Linear model

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

$$\sum_j \alpha_j = 0$$

$$e_{ij} \sim \mathcal{N}(0, \sigma^2)$$

How to get those model parameters from "y" (measurement)?

Q: What does N stand for?

Q: How to write y_{ij} when there are two levels and three replications?

Normal Distribution.

$$y_{ij} = \mu + \alpha_1 + \alpha_2 + e_{i,j}, \quad j = \{1, 2\} \text{ and } i = \{1, 2, 3\}$$

y_{ij}

Measured Data

Estimator

 $\mu, \alpha_1, ...\alpha_a$

Model parameters

$$i = \{1 \dots r\}, \ r \text{ is the number of replication}$$

 $j = \{1 \dots a\}, \ a \text{ is the number of levels}$

Model

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

$$\sum_{j} \alpha_j = 0$$

$$e_{ij} \sim \mathcal{N}(0, \sigma^2)$$

Estimator for model parameter

$$\hat{\mu} = \frac{1}{ar} \sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = \bar{y}..$$

$$\alpha_j = \bar{y}._j - \mu = \bar{y}._j - \bar{y}..$$

Derivation for interested readers:

$$\sum_{i=1}^{r} \sum_{j=1}^{a} y_{ij} = ar\mu + r \sum_{j=1}^{a} \alpha_j + \sum_{i=1}^{r} \sum_{j=1}^{a} e_{ij}$$

$$= ar\mu + 0 + 0$$

$$\bar{y}_{.j} = \frac{1}{r} \sum_{i=1}^{r} y_{ij}$$

$$= \frac{1}{r} \sum_{i=1}^{r} (\mu + \alpha_j + e_{ij})$$

$$= \frac{1}{r} \left(r\mu + r\alpha_j + \sum_{i=1}^{r} e_{ij} \right)$$

$$= \mu + \alpha_i + 0$$

Analyzing Models

$$y_{ij} = \mu + \alpha_j + e_{ij}$$
$$\sum_j \alpha_j = 0$$
$$e_{ij} \sim \mathcal{N}(0, \sigma^2)$$

- Allocation of variance (ANOVA): Testing model accuracy and confidence (Test if $\alpha_1=\alpha_2=\cdots=\alpha_a=0$)
- Allocation <u>variations to errors</u>
 - Importance ≠ Significance
 - Important ⇒ Explains a high percent of variation
 - Significance ⇒ High contribution to the variation compared to that by errors.

Total variation
Variation cross group
Variation within group

Q: What is variation?

Q: Explanations

Decomposition of Variation

$$\sum_{ij} (y_{ij} - \bar{y}_{..})^2 = \sum_{ij} y_{ij}^2 - \sum_{ij} \bar{y}_{..}^2 = \sum_{ij} \alpha_j^2 + \sum_{ij} e_{ij}^2 \quad \text{SST=SSY-SS0=SSA+SSE}$$

Total variation of y (SST)
$$SST = \sum_{ij} (y_{ij} - \bar{y}_{..})^2$$
 Q: How assumption
$$= \sum_{ij} (y_{ij}^2) - ar\bar{y}_{..}^2$$

→SST=SSY-SS0

Sum of squared y (SSY) = $ar\mu^2$ = $r\sum_i \alpha_i^2$

$$=ar\mu^2 = r\sum_i \alpha_i^2$$

goes to 0,

$$\int_{y_{ij}^2 = \mu^2 + lpha_j^2 + e_{ij}^2 + 2\mulpha_j + 2\mu e_{ij} + 2lpha_j + 2\mu e_{ij} + 2\mu e_{ij}$$

Sum of Squared Y = Sum of Squared μ + Sum of Squared α + Sum of Squared errors e

→SSY=SS0+SSA+SSE

Analyzing Models

 The ratio between some variances follows F-distribution with df1 and df2.

Q: What are parameters of F-distribution

Df1 and df2

Q: Why F-distribution?
Any assumption?

Errors follow normal distribution

Back to Examples

\overline{R}	V	Z
144	101	130
120	144	180
176	211	141
288	288	374
144	72	302

- o SST=105357.3, SSA=10992.13, SSE=94365.2
- What is the percentage of variation explained by the algorithms $\frac{SSA}{SST} = \frac{10992.13}{105357.3} = 10.4\%$

Q: That is?

 Is this number statistical significant? Compare the variation against errors

Q: That is?

 $\frac{SSA}{SSE}$

Q: Follows what distribution?

F-Distribution when divided by their degree of freedoms

ANOVA: ANalysis Of VAriance

Analysis of Variance (ANOVA)

- Key components in ANOVA: SSY, SSO, SSA, SSE.
- Their degree of freedom: Number of independent values required to compute (additive)

Source	SSY	SS0	SSA	SSE
Degree of freedom (v)	ar	1	a-1	a(r-1)

Think about model assumptions

Q: What does additive mean?

Q: What are the reasons of these degree of freedoms

SSY-SSO=SSA+SSE
$$\rightarrow V_Y - V_0 = V_A + V_e$$

Analysis of Variance (ANOVA)

- F-test
 - Purpose: To check if SSA is *significantly* greater than SSE
 - Errors are normally distributed ⇒ SSE and SSA have chi-square distributions.

$$\frac{SSA/v_A}{SSE/v_e}$$
 ~F distribution

where $v_A = a - 1 = degrees$ of freedom for SSA, $v_e = a(r - 1) = degrees$ of freedom for SSE

• Computed ratio > $F_{[1-\alpha; vA, ve]} \Rightarrow$ SSA is significantly higher than SSE.

Q: What does that mean: Stat < F_{0.9,3,12}

Q1: Good model? Q2: Reject or accept the assumption?

It falls into the blue region, meaning the probability of find a value greater than the computer ratio is lower than alpha

ANOVA Table for One Factor Experiments

Standard output

Compo-	Sum of	% Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
У	$SSY = \sum y_{ij}^2$		ar			
$ar{y}_{\cdot \cdot}$	$SS0=ar\mu^2$		1			
у- $ar{y}_{\cdot \cdot}$	SST=SSY-SS0	100	ar-1			
A	$SSA = r\Sigma \ \alpha_i^2$	$100 \left(\frac{\text{SSA}}{\text{SST}} \right)$	a-1	$MSA = \frac{SSA}{a-1}$	$\frac{\mathrm{MSA}}{\mathrm{MSE}}$	$F_{[1-\alpha;a-1, a(r-1)]}$
		(0, 0, -)		e: e: —		a(r-1)]
е	SSE=SST- SSA	$100 \left(\frac{\text{SSE}}{\text{SST}} \right)$	a(r-1)	$MSE = \frac{SSE}{a(r-1)}$		

Back to algorithm example

Compo-	Sum of	%Variation	DF	Mean	F-	F-		
nent	Squares			Square	Comp.	Table		
	633639.00							
$y_{\cdot \cdot}$	528281.69							
у-у	105357.31	100.0%	14					
A	10992.13	10.4%	2	5496.1	0.7	2.8		
Errors	94365.20	89.6%	12	7863.8				
$s_e = \sqrt{\text{MSE}} = \sqrt{7863.77} = 88.68$								

Q: Is difference among algorithms significant?

NO!

Goodness of Estimates

ANOVA tells us goodness of overall models

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

- Goodness of estimates of model parameter
 - μ and α_j
 - Linear combination of α_i , e.g., $\alpha_1 \alpha_2$
 - → Compute the Confidences Interval (CI)
 - \rightarrow E.g., 95% CI of μ is [-22], meaning 95% chance the parameter is within the interval.

Q: what CI can you get from this model?

Q: Smaller the better or bigger the better?

Q: Which CI tells us α_1

has impact on y

[-1 1] and [-2 -1]

Confidence Interval of Model Parameters

CI range of parameter = $\begin{cases} \text{estimate} + t_{1-\alpha/2,df} \cdot (\text{std of estimate of parameter}) \\ \text{estimate} - t_{1-\alpha/2,df} \cdot (\text{std of estimate of parameter}) \end{cases}$

Q: What is $t_{\alpha/2,df}$?

Q: What is estimate?

Explaination I

distribution

Q: What is α

Significance level, but needs to check $\alpha/2$

Q: What is v here?

Degree of freedom

Confidence Interval of Model Parameters

CI range of parameter =
$$\begin{cases} \text{estimate} + t_{\alpha/2,df} \cdot (\text{std of estimate of parameter}) \\ \text{estimate} - t_{\alpha/2,df} \cdot (\text{std of estimate of parameter}) \end{cases}$$

Explaination II

Parameter	Estimate	Variance	
μ	$\overline{y}_{\cdot \cdot}$	s_e^2/ar	Q: how to derive it
$lpha_j$	$ar{y}_{.j}$ - $ar{y}_{}$	$s_e^2(a-1)/ar$	derive it
•	_		
e 2	$\sum e{ij}^2$	Q: what is s	td of μ and $lpha_j$
$\frac{s_e^2}{}$	a(r-1)	(1)	

Degrees of freedom for errors = a(r-1)

Example of algorithms comparison

Error variance
$$s_e^2 = \frac{94365.2}{12} = 7863.8$$

Std Dev of errors =
$$\sqrt{\text{(Var. of errors)}}$$

= 88.7

Std Dev of
$$\mu = s_e/\sqrt{ar} = 88.7/\sqrt{15} = 22.9$$

Std Dev of
$$\alpha_j = s_e \sqrt{\{(a-1)/(ar)\}}$$

= $88.7\sqrt{(2/15)} = 32.4$

Q: How to interpret those results

If the interval doesn't contain a zero then we know there is definite difference in the performance.

$$\mu = 197.7 \mp (1.782)(22.9) = (146.9, 228.5)$$

$$\alpha_1 = -13.3 \mp (1.782)(32.4) = (-71.0, 44.4)$$

$$\alpha_2 = -24.5 \mp (1.782)(32.4) = (-82.2, 33.2)$$

$$\alpha_3 = 37.6 \mp (1.782)(32.4) = (-20.0, 95.4)$$

Q. Why .95, not .9?

For 90% confidence, $t_{[0.95; 12]}$ = 1.782.

Since this is a two tailed test i.e we are looking at both sides of the curve for anomalies (5% on each side)

Checking Assumptions

Q. What are they?

1. Independent errors

a) Scatter plot of residuals versus the predicted response

a) Plot the residuals as a function of the experiment number

Trend up or down \Rightarrow other factors or side effects.

Checking Assumptions

2. Normally distributed errors:

Normal quantile-quantile plot of errors

Spread at one level significantly different than other levels⇒Need transformation, e.g., log

3. Constant standard deviation of errors:

Scatter plot of y for various levels of the factor

RECAP

Design of Experiments I

- One factorial design
- ANOVA Analysis, F-test
- Confidence Interval of Estimates, t-test

One factorial

Two factorial General factorial

Two
level
factorial
2^k

Two level fractional factorial

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

4

Check assumption

Q: By what?

Plotting and visual

examination.

2

Estimate parameters from measurement

3

Goodness of fit: Errors, ANOVA Confidence interval

$$SST = \sum_{ij} (y_{ij} - \bar{y}_{..}) = SSA + SSE$$

Confidence of interval of μ and α_i

 $\frac{SSA/df_A}{SSE/df_e}$

Q: A good model means?

Bigger F statistics, small P values.

Two-Factor Design

Examples of Two Factor Experiment:

Understanding how code size is impacted by the workloads and processors. Run each combination 3 times.

Large difference b/tw max and min values

	Processors				
Workloads	W	X	Y	Z	-
I	7006	12042	29061	9903	-
	6593	11794	27045	9206	
	7302	13074	30057	10035	0.14/1-1-2
J	3207	5123	8960	4153	Q. Why?
	2883	5632	8064	4257	
	3523	4608	9677	4065	
K	4707	9407	19740	7089	
	4935	8933	19345	6982	Log
	4465	9964	21122	6678	
L	5107	5613	22340	5356	Transformation/
	5508	5947	23102	5734	
	4743	5161	21446	4965	
W	6807	12243	28560	9803	-
	6392	11995	26846	9306	
	7208	12974	30559	10233	_

	Processors						
Workloads	W	X	Y	Z			
Ι	3.8455	4.0807	4.4633	3.9958			
	3.8191	4.0717	4.4321	3.9641			
	3.8634	4.1164	4.4779	4.0015			
J	3.5061	3.7095	3.9523	3.6184			
	3.4598	3.7507	3.9066	3.6291			
	3.5469	3.6635	3.9857	3.6091			
K	3.6727	3.9735	4.2953	3.8506			
	3.6933	3.9510	4.2866	3.8440			
•	3.6498	3.9984	4.3247	3.8246			
L	3.7082	3.7492	4.3491	3.7288			
	3.7410	3.7743	4.3636	3.7585			
	3.6761	3.7127	4.3313	3.6959			
M	3.8330	4.0879	4.4558	3.9914			
	3.8056	4.0790	4.4289	3.9688			
	3.8578	4.1131	4.4851	4.0100			

Model for Two Factorial

 $j=\{1\dots a\},\ a\, \text{is the number of factor a levels}$ $i=\{1\dots b\},\ b\, \text{is the number of factor b levels}$ $k=\{1\dots r\},\ r\, \text{is the number of replications per level}$

1. Model: With *r* replications-

 $y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk}$

Q: Total number of experiment?

Q: Which figure has interactive effect?

axbxr

Right figure has

interaction

 α_i : Effect of factor A

 β_i :Effect of factor B

Y_{ii}:Effect of interaction A&B.

Q: What is β_2 =3?

When factor B at level 2, it will be 3 units higher than the overall average

36

Model for Two Factorial

 $j = \{1 \dots a\}, a \text{ is the number of factor a levels}$ $i = \{1 \dots b\}, b$ is the number of factor b levels $k = \{1 \dots r\}, r$ is the number of replications per level

1. Model: With *r* replications-

$$y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk}$$

 β_i :Effect of factor B Y_{ii}: Effect of interaction A&B.

 α_i : Effect of factor A

$$\sum_{j=1}^{a} \alpha_j = 0; \sum_{i=1}^{b} \beta_i = 0;$$

$$\sum_{j=1}^{a} \gamma_{1j} = \sum_{j=1}^{a} \gamma_{2j} = \dots = \sum_{j=1}^{a} \gamma_{bj} = 0$$

Q: What about distribution of error?

$$\sum_{j=1}^{a} \alpha_{j} = 0; \sum_{i=1}^{b} \beta_{i} = 0;$$

$$\sum_{j=1}^{a} \gamma_{1j} = \sum_{j=1}^{a} \gamma_{2j} = \dots = \sum_{j=1}^{a} \gamma_{bj} = 0$$

$$\sum_{i=1}^{b} \gamma_{i1} = \sum_{i=1}^{b} \gamma_{i2} = \dots = \sum_{i=1}^{b} \gamma_{ia} = 0$$

$$\sum_{k=1}^{r} e_{ijk} = 0 \quad \forall i, j \qquad e_{ijk} \sim N(0, \sigma)$$

$$\sum_{k=1}^{r} e_{ijk} = 0 \quad \forall i, j$$

$$e_{ijk} \sim N(0,\sigma)$$

Model for Two Factorial

 $j=\{1\dots a\},\ a$ is the number of factor a levels $i=\{1\dots b\},\ b$ is the number of factor b levels $k=\{1\dots r\},\ r$ is the number of replications per level

1. Model: With *r* replications-

$$y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk}$$

 α_j : Effect of factor A

 β_i :Effect of factor B

 Y_{ij} : Effect of interaction A&B.

2. How to estimate the parameters

$$\bar{y}_{ij.} = \mu + \alpha_j + \beta_i + \gamma_{ij}$$

$$\mu = \bar{y}_{...}$$

$$\alpha_j = \bar{y}_{.j.} - \bar{y}_{...}$$

$$\beta_i = \bar{y}_{i..} - \bar{y}_{...}$$

$$\gamma_{ij} = \bar{y}_{ij.} - \bar{y}_{i..} - \bar{y}_{.j.} + \bar{y}_{...}$$

Check the textbook for derivation.

Back to the Example

		Proce	essors	Row	Row	Row	
Workloads	W	X	Y	Z	Sum	Mean	Effect
I	3.8427	4.0896	4.4578	3.9871	16.3772	4.0943	0.1520
J	3.5043	3.7079	3.9482	3.6188	14.7792	3.6948	-0.2475
K	3.6720	3.9743	4.3022	3.8397	15.7882	3.9470	0.0047
${ m L}$	3.7084	3.7454	4.3480	3.7277	15.5295	3.8824	-0.0599
${ m M}$	3.8321	4.0933	4.4566	3.9900	16.3720	4.0930	0.1507
Col Sum	18.5594	19.6105	21.5128	19.1635	78.8463		
Col Mean	3.7119	3. <u>92</u> 21	4.3026	3.8327		3.9423	
Col effect (-0.2304	(-0.0202)	0.3603	-0.1096			

Estimated interaction terms

Workload	s W	X	Y	Z
I	-0.0212	0.0155	0.0032	0.0024
J	0.0399	0.0333	-0.1069	0.0337
K	-0.0447	0.0475	-0.0051	0.0023
${ m L}$	0.0564	-0.1168	0.1054	-0.0450
M	-0.0305	0.0205	0.0033	0.0066

Q. How to interpret those values

Processor W requires 10^{0.23} (=1.69) <u>less</u> code than avg processor.

Processor X requires $10^{0.02}$ (=1.05) <u>less</u> than an avg. processor.

Workload I on processor W requires 0.02 <u>less</u> log code size than an average workload on processor W. Equivalently 0.02 <u>less log</u> code size than workload I on an average processor.

Back to the Example: Analysis

 $j=\{1\dots a\},\ a\, \text{is the number of factor a levels}$ $i=\{1\dots b\},\ b\, \text{is the number of factor b levels}$ $k=\{1\dots r\},\ r\, \text{is the number of replications per level}$

$$y_{ijk} = \mu + \alpha_j + \beta_i + \gamma_{ij} + e_{ijk}$$

Overall model

ANOVA

Q: What analysis and what to check for them?

$$\alpha_1 = \alpha_2 = \cdots = \alpha_a = 0$$

$$\beta_1 = \beta_2 = \dots = \beta_b = 0$$

$$\gamma_{11} = \cdots = \gamma_{1a} = \gamma_{21} = \cdots = \gamma_{2a} \cdots = \gamma_{b1} = \cdots = \gamma_{ba} = 0$$

Individual parameters

Confidence Interval

Q. How many parameters

a+b+ab

Analyzing the Model by ANOVA

 $\hat{y}_{ij} = \mu + \alpha_j + \beta_i + \gamma_{ij} = \bar{y}_{ij}.$

 $e_{ijk} = y_{ijk} - \bar{y}_{ij}.$

Q: What are those terms

Variations explained by factor A, B, AB.

$$SST = SSY - SS0 = SSA + SSB + SSAB + SSE$$

$$\sum_{ijk} (y_{ijk} - \bar{y}_{...})^2 = \sum_{ijk} y_{ijk}^2 - \sum_{ijk} \bar{y}_{...} = \sum_{ijk} \alpha_i^2 + \sum_{ijk} \beta_j^2 + \sum_{ijk} \gamma_{ij}^2 + \sum_{ijk} e_{ijk}^2$$

Source	SSY	SS0	SSA	SSB	SSAB	SSE
Degree of freedom (V)	abr	1	a-1	b-1	(a-1)(b-1)	ab(r-1)

Q: What about their degree of freedom?

Q: how additive property work here?

Analyzing the Model by ANOVA

$$\hat{y}_{ij} = \mu + \alpha_j + \beta_i + \gamma_{ij} = \bar{y}_{ij}.$$

$$e_{ijk} = y_{ijk} - \bar{y}_{ij}.$$

$$\circ \frac{SSA/v_A}{SSE/v_e} \sim F[a-1,ab(r-1)]$$

$$\circ \frac{SSB/v_B}{SSE/v_e} \sim F[b-1,ab(r-1)]$$

 $\circ \frac{SSAB/v_{AB}}{SSE/v_e} \sim F[(a-1)(b-1), ab(r-1)]$

Q. How should we use these values?

Compare it with $F_{[1-\alpha; vA, ve]}$, $F_{[1-\alpha; vB, ve]}$ & $F_{[1-\alpha; vAB, ve]}$

Q. Those values tell us: importance or significance

ANOVA for Two Factors w Replications

Standard output

Compo-	Sum of	$\% { m Variation}$	DF	Mean	F–	F-
nent	Squares			Square	Comp.	Table
\overline{y}	$SSY = \sum y_{ij}^2$		abr			
$ar{y}_{\cdots}$	$SS0 = a\overline{br}\mu^2$		1			
$y - \bar{y}_{\cdots}$	SST = SSY - SS0	100	abr-1			
A	$SSA = br \Sigma \alpha_j^2$	$100 \left(\frac{\mathrm{SSA}}{\mathrm{SST}} \right)$	a-1	$MSA = \frac{SSA}{a-1}$	$\frac{\mathrm{MSA}}{\mathrm{MSE}}$	$F_{[1-\alpha;a-1,ab(r-1)]}$
B	$SSB = ar \Sigma \beta_i^2$	$100 \left(\frac{\widetilde{\mathbf{S}}\widetilde{\mathbf{S}}\widetilde{\mathbf{B}}}{\widetilde{\mathbf{S}}\widetilde{\mathbf{S}}\widetilde{\mathbf{T}}} \right)$	b-1	$MSB = \frac{SSB}{b-1}$	$\frac{\overline{\text{MSB}}}{\overline{\text{MSE}}}$	$F_{[1-\alpha;b-1,ab(r-1)]}$
AB	$SSAB = r\Sigma \gamma_{ij}^2$	$100 \left(\frac{\text{SSAB}}{\text{SST}} \right)$	$(a-1) \\ (b-1)$	$ MSAB = \underline{SSAB} (a-1)(b-1) $	<u>MSAB</u> MSE	$F_{\substack{[1-\alpha,(a-1)(b-1),\\ab(r-1)]}}$
e	SSE = SST - (SSA + SSB + SSAB)	$100 \left(\frac{\text{SSE}}{\text{SST}} \right)$	ab(r-1)	$MSE = \frac{SSE}{ab(r-1)}$		(/)

Back to the example

Compo-	Sum of	%Variation	DF	Mean	F-	F-
nent	Squares			Square	Comp.	Table
\overline{y}	936.95					
$ar{y}_{}$	932.51					
$y - \bar{y}_{\dots}$	4.44	100.00%	59			
Processors	2.93	65.96%	3	0.9765	1340.01	2.23
Workloads	1.33	29.90%	4	0.3320	455.65	2.09
Interactions	0.15	3.48%	12	0.0129	17.70	1.71
Errors	0.03	0.66%	40	0.0007		
$s_e = \sqrt{\text{MSE}} = \sqrt{0.0008} = 0.03$						

Q. Are they significant

YES

Confidence Intervals For Effects

CI range of parameter =
$$\begin{cases} \text{estimate} + t_{1-\alpha/2,df} \cdot (\text{std of estimate of parameter}) \\ \text{estimate} - t_{1-\alpha/2,df} \cdot (\text{std of estimate of parameter}) \end{cases}$$

	Parameter Estimat	ion Be careful
Parameter	Estimate	Variance
$\overline{\mu}$	$\bar{y}_{}$	s_e^2/abr
$lpha_j$	$ar{y}_{i}$ - $ar{y}_{}$	$s_e^2(a-1)/abr$
eta_i	$ar{y}_{.j.}$ - $ar{y}_{}$	$s_e^2(b-1)/abr$
γ_{ij}	$\bar{y}_{ij.}$ - \bar{y}_{i} - $\bar{y}_{.j.}$ + $\bar{y}_{}$	$s_e^2(a-1)(b-1)/abr$

$$\frac{s_e^2}{\text{Degrees of freedom for errors}} \frac{\sum e_{ijk}^2/\{ab(r-1)\}}{\text{Degrees of freedom for errors}}$$

Para-	Mean	Std.	Confidence
meter	Effect	Dev.	Interval
${\mu}$	3.9423	0.0035	(3.9364, 3.9482)

Processors

W	-0.2304	0.0060	(-0.2406, -0.2203
Χ	-0.0202	0.0060	(-0.0304, -0.0100
Y	0.3603	0.0060	(0.3501, 0.3704)
\mathbf{Z}	-0.1096	0.0060	(-0.1198, -0.0995

Workloads

Q. Which factors are not significant?

Yes, except K.

Back to example: CI for Processor W

When sample size is greater than 32, T distribution is similar to Normal distribution.

 \circ From ANOVA table: s_e =0.03. The standard deviation of processor effects:

$$s_{\alpha_j} = s_e \sqrt{\frac{a-1}{abr}} = 0.03 \sqrt{\frac{4-1}{4 \times 5 \times 3}} = 0.0060$$

Q: Why not T distribution table

- The error degrees of freedom: $ab(r-1) = 40 \Rightarrow$ use Normal tables
- For 90% confidence, $z_{0.95} = 1.645$, 90% confidence interval for the effect of processor W is:

 Q. Why 0.95 not 0.9?

 T distribution is two sided

 $CI = \{-0.230 + 1.645 * .0060, -.2304 - 1.645 * .0060\} = (-0.240, -0.220)$

Q. significant

Yes. 0 is not included

Recommended Readings

- The Art of Computer Systems Performance Analysis: Chapter 16, 20, 22
 and 23
- Design and Analysis of Experiments: Chapter 3

Homework: What is the difference with Regression models?

Thanks! Any questions?

lydiaychen@ieee.org