
In4073
Embedded Real-Time Systems

Introduction to Digital Filtering



In4073 Emb RT Sys (2017-2018) 2

Outline

Introduction

Z Transform

FIR Filters

IIR Filters

Fixed-point Implementation

Kalman Filter 



In4073 Emb RT Sys (2017-2018) 3

Why Signal Processing?

Improve/restore media content

 Compression/Decompression

 Audio filtering (bass, treble, equalization)

 Video filtering (enhancement, contours, ..)

 Noise suppression (accel, gyro data)

 Data fusion (mixing accel + gyro data)

By digital means: DSP



In4073 Emb RT Sys (2017-2018) 4

Example: QR Sensor Signals phi, p

2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 10
8

-300

-200

-100

0

100

200

300

phi

∫ pdtp



In4073 Emb RT Sys (2017-2018) 5

After some low-pass filtering

2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 10
8

-10

-8

-6

-4

-2

0

2

4

6

8

10

phi

∫ pdtp



In4073 Emb RT Sys (2017-2018) 6

DSP is Everywhere

Cell Phone

TV

Plant Control

Climate Control

Automotive

Copiers, Wafer Scanners

Model Quad Rotors ...



In4073 Emb RT Sys (2017-2018) 7

Objectives of this Crash Course

Appreciate the benefits of Digital Filtering

Understand some of the basic principles

Communicate with DSP engineers

Implement your own filters for the QR



In4073 Emb RT Sys (2017-2018) 8

Signals and Frequency Synthesis

Usually signals (such as s) are composed of signals with many frequencies.
For instance, s contains
• 0 Hz component (green dashed line)
• lowest freq component (purple dashed line)
• higher freq component (yellow dashed line)
• and others

Fourier: Any periodic signal with base frequency fb
can be constructed from sine waves with frequency fb, 2fb, 3fb, …

t

s



In4073 Emb RT Sys (2017-2018) 9

Frequency Spectrum

The frequency spectrum of s is:

t

s

f

0 f1 f2

possible freq components in s



In4073 Emb RT Sys (2017-2018) 10

Filter: Frequency Response

Low-pass
Filter

pass

Often filters are designed to filter frequency components in a signal

block

Filter’s Frequency Response

Freq. Spectrum Freq. Spectrum



In4073 Emb RT Sys (2017-2018) 11

Sampling A Signal

s sampled at discrete time intervals (sample frequency fs): x[n]

t

s

t

x

x[0] x[n]1/fs



In4073 Emb RT Sys (2017-2018) 12

Sampling: Avoid Aliasing

t

x

t

fs > 2 * highest freq in s: OK

fs < highest freq in s: you see non-existing low-freq signal(s)!



In4073 Emb RT Sys (2017-2018) 13

Example Filter: Moving Average

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

x[n] y[n]MA Filter

x[0] = get_sample();

y[0] = (x[0]+x[1]+x[2])/3;

put_sample(y[0]);

x[2] = x[1]; x[1] = x[0];

MA filter filters (removes) signals of certain frequency:

x, freq f, amplitude 1 y, freq f, amplitude ???MA Filter



In4073 Emb RT Sys (2017-2018) 14

Frequency Behavior MA

lower frequency x: amplitude y = 0.77
x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33,  0.00
y = 0.00, 0.11, 0.33, 0.66, 0.77, 0.66, 0.33,  0.00, -0.33, -0.66, -0.77, -0.66, -0.33   

higher frequency x: amplitude y = 0.33
x = 0.00, 1.00, 0.00, -1.00,  0.00, 1.00, 0.00, -1.00,  0.00, 1.00, 0.00, -1.00,  0.00
y = 0.00, 0.33, 0.33,  0.00, -0.33, 0.00, 0.33,  0.00, -0.33, 0.00, 0.33,  0.00, -0.33   

f/fs

|y|

1

1/20 1/6 1/4

x = 0.00, 0.87, -0,87, 0.0, 0.87, -0.87, 0.00
y = 0.00, 0.29, 0.00, 0.00, 0.00, 0.00, 0.00 

1/3

transient steady-state



In4073 Emb RT Sys (2017-2018) 15

Outline

Introduction

Z Transform

FIR Filters

IIR Filters

Fixed-point Implementation

Kalman Filter



In4073 Emb RT Sys (2017-2018) 16

Analysis: Z Transform

• We can numerically evaluate frequency behavior (see C programs)
• Rather analyze frequency behavior through analytic means
• For this we introduce Z transformation

• Let x[n] be a signal in the time domain (n)
• The Z transform of x[n] is given by

X(z) = n x[n] z-n

where z is a complex variable.

• Example:
x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …



In4073 Emb RT Sys (2017-2018) 17

Z Transform

• Z transforms make life easy
• Properties of the Z transform:

• Let y[n] = x[n-1]   (i.e., signal delayed by 1 sample)

Y(z) = z-1 X(z)

• Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
y = 0.00, 0.00, 0.33, 0.66, 1.00, ..
Y = 0 + 0z-1 + 0.33z-2 + 0.66z-3 + z-4 + …

= z-1 X



In4073 Emb RT Sys (2017-2018) 18

Z Transform

• Other properties of the Z transform:

• Z transform of K a[n] = K A(z)
• Z transform of a[n] + b[n] = A(z) + B(z)

• Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
y = 0.00, 0.66, 1.32, 2.00, 1.32, ..
Y = 0 + 0.66z-1 + 1.32z-2 + 2.00z-3 + 1.32z-4 + …

= 2 X



In4073 Emb RT Sys (2017-2018) 19

Apply Z transform to MA Filter

• It holds Y(z) = H(z) X(z), where H(z) is filter transfer function
• Frequency response of filter can be read from H(z)

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

In terms of the Z transform we have:

Y(z) = 1/3 X(z) + 1/3 z-1 X(z) + 1/3 z-2 X(z)
= (1/3 + 1/3 z-1 + 1/3 z-2) X(z)
= H(z) X(z)

X(z) Y(z)H(z)



In4073 Emb RT Sys (2017-2018) 20

Frequency Response H(z)

H(z) reveals frequency response (H(f)=H(z)| z=ej2f): 
As Y(z) = H(z) X(z), |H(z)| determines amplification of X(z)

The variable z is a complex variable and
encodes frequency f according to 

z = ej2f

= cos(2f) + j sin(2f)

This corresponds to traversing 
the unit circle in the 
complex z plane:

Re(z)

Im(z)

z = 0.7 + 0.7j

z

f/fs = 0f/fs = 1/2

f/fs = 1/8



In4073 Emb RT Sys (2017-2018) 21

Fourier Interpretation H(z)

Why let z take values z = ej2f where f is frequency?

Recall Z transform of x[n] equals X(z) = n x[n] z-n

The Fourier transform of x[n] equals X(f) =  n x[n] e-j2nf

For a filter with transfer function H(f) its frequency response 
for a signal with frequency f is |H(f)|

By substituting z = ej2f in H(z) we essentially obtain 
the Fourier transform H(f) of which we know |H(f)| is

the frequency response. So let z = ej2f and evaluate |H(z)| !



In4073 Emb RT Sys (2017-2018) 22

Frequency Response MA Filter

The transfer function of the MA filter is given by:

H(z) = (1/3 + 1/3 z-1 + 1/3 z-2)

= (1/3 z2 + 1/3 z + 1/3) / z2 (normalized)

re(z)

im(z)

z

Determine poles and zeros of H(z):

zero (= root of numerator): 

z1 = -½+½3j, z2 = -½-½3j 

(H(z1,2) = 0)
pole (= root of denominator): 
z3, z4 = 0
(H(z3,4) = )

Simply inspect distance z to poles/zeros.

f/fs = 1/3
(H(z) = 0)



In4073 Emb RT Sys (2017-2018) 23

Frequency Response MA Filter

Interpret H(z) while 
traversing the unit circle
(upper half only):

re(z)

im(z)

z

f/fs

1

1/20 1/6 1/4 1/3

|H(z)|



In4073 Emb RT Sys (2017-2018) 24

Outline

Introduction

Z Transform

FIR Filters

IIR Filters

Fixed-point Implementation

Kalman Filter



In4073 Emb RT Sys (2017-2018) 25

Impulse Response

MA filter: y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

Let x[n] = [n], then  y[n] = 1/3, 1/3, 1/3, 0, 0, 0, …

Z Transform: X(z) = 1, Y(z) = H(z) . 1 = H(z) = 1/3 + 1/3z-1 + 1/3z-2

Impulse signal  reveals H(z) in terms of h[n]

Impulse response (IR) of a filter:

[n] y[n], characteristic for HH

Impulse signal [n] = 1, 0, 0, 0, … (a spike, Dirac pulse)



In4073 Emb RT Sys (2017-2018) 26

Impulse Response

MA filter: h[n] = 1/3, 1/3, 1/3, 0, 0, 0, …

The IR is finite.

Filters defined by

y[n] = a0 x[n] + a1 x[n-1] + a2 x[n-2] + …

always have a finite IR and are therefore called FIR filters
(the equation is non-recursive in y)

Although any filter can be designed, FIR filters are
costly in terms of computation (often many terms needed)



In4073 Emb RT Sys (2017-2018) 27

Outline

Introduction

Z Transform

FIR Filters

IIR Filters

Fixed-point Implementation

Kalman Filter



In4073 Emb RT Sys (2017-2018) 28

Averaging Filter

Suppose we want to extend MA filter to N terms:

y[n] = 1/N x[n] + 1/N x[n-1] + … 1/N x[n-N-1]

Suppose we don’t want to implement an N-cell FIFO + 2N ops
and experiment with the following “short cut”:

y[n] = (N-1)/N y[n-1] + 1/N x[n]

(1st term approximates contents of FIFO after x[n-N-1]
has been shifted out, 2nd term is newest sample shifted in)

Let’s analyze the frequency response of this filter



In4073 Emb RT Sys (2017-2018) 29

Frequency Response Filter

y[n] = (N-1)/N y[n-1] + 1/N x[n]
Y(z) = (N-1)/N z-1 Y(z) + 1/N X(z)
H(z) = (1/N) / (1 – (N-1)/N z-1)

= (z/N) / (z – (N-1)/N)

zz

cf. MA filter:



In4073 Emb RT Sys (2017-2018) 30

Frequency Response Comparison

f/fs

1

1/20 1/6 1/4 1/3

|H(z)|

z z



In4073 Emb RT Sys (2017-2018) 31

Comparison of both Filters

New filter is much more different than perhaps assumed

Pole-zero plot is quite different: 
now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N), 
the sooner is the cut-off (in terms of frequency f),
this generally corresponds to MA filter but this would take large FIFO!



In4073 Emb RT Sys (2017-2018) 32

Impulse Response

Filter equation: y[n] = (N-1)/N y[n-1] + 1/N x[n] 

IR (N = 3): h[n] = 1/3, (2/3)1/3, (2/3)2/3, …, (2/3)n/3, …

The IR is infinite.

Filters defined by

b0 y[n] + b1 y[n-1] + … = a0 x[n] + a1 x[n-1] + …

always have an infinite IR and are therefore called IIR filters
(the equation is recursive in y)

Filter order determined by # coeficients. Our case: 1st order.



In4073 Emb RT Sys (2017-2018) 33

Designing Filters

Looking at the pole-zero plot, the IIR filter can be improved
by moving zero to left:
now |H(z)| even becomes zero for f = fs/2
so sharper cut-off.

This plot corresponds to the 
well-known class of Butterworth filters
(our case: 1st-order Butterworth):

The zero is created by adding x[n-1]:

y[n] – (N-1)/N y[n-1] = 1/2N x[n] + 1/2N x[n-1]

H(z) = ((z+1)/2N) / (z-(N-1)/N)

z



In4073 Emb RT Sys (2017-2018) 34

Enhancing Filters

Frequency response 1st-order Butterworth:

log2 (f/fs)

log2(1)

log2(½)

fc 2 fc

log2 |H(z)|

4 fc½ fc

log2(¼)

slope -1 .. would like, e.g., slope -2
(sharper filtering)



In4073 Emb RT Sys (2017-2018) 35

Second-order Butterworth

Looking at the pole-zero plot, the IIR filter 
can be further improved by introducing 
more poles & zeros.
now |H(z)| has same cut-off freq fc
but sharper slope!

Computing h[n] (the ai and bi)
is difficult, so use a tool to compute
coefficients, given fs and fc
(Matlab or Web sites)

Just insert found coefficients in IIR equation
b0 y[n] + b1 y[n-1] + b2 y[n-2] = a0 x[n] + a1 x[n-1] + a2 x[n-2]

z

(2x)



In4073 Emb RT Sys (2017-2018) 36

Outline

Introduction

Z Transform

FIR Filters

IIR Filters

Fixed-point Implementation

Kalman Filter



In4073 Emb RT Sys (2017-2018) 37

• Many microcontrollers have no floating-point unit
• Software floating-point often (too) slow
• Need to implement filters in fixed-point arithmetic

2’s-complement bit representation (e.g., 32 bits, 14 bits fraction):

3.75: 000000000000000011  11000000000000
0.02: 000000000000000000  00000101001001
-1.5: 000000000000000001  10000000000000 ^ -1 + 1 =>

111111111111111110  10000000000000

Fixed-point Arithmetic

2-12021 2-2



In4073 Emb RT Sys (2017-2018) 38

• Addition, subtraction as usual
• Multiplication: result must be post-processed:

• make sure intermediate fits in variable!  (e.g., 32 bits)
• shift right by |fraction|

Example multiplication (32 bits, 14 bits fraction):

3.75: 00000000000000001111000000000000 times:
-1.5: 11111111111111111010000000000000 equals:

10100110000000000000000000000000
(value just fits in 32 bits!)
(now shift right by 14 bits and sign-extend):
11111111111111101001100000000000 which is:

-5.625 111111111111111010  01100000000000

Fixed-point Arithmetic



In4073 Emb RT Sys (2017-2018) 39

• Second-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients: 

a0 = 0.0006098548 a1 = 2 a0 a2 = a0

b0 = 1 b1 = -1.9289423 b2 = 0.9313817

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000  00000000001010 (a0 << 14)
a[1] 000000000000000000  00000000010100
a[2] 000000000000000000  00000000001010
b[1] 000000000000000001  11101101110100 ^ -1 + 1
b[2] 000000000000000000  11101110011100

Filter Example



In4073 Emb RT Sys (2017-2018) 40

int mul(int c, int d) {

int result = c * d;

return (result >> 14);

}

void filter() {

y0 = mul(a0,x0) + mul(a1,x1) + mul(a2,x2) -

mul(b1,y1) - mul(b2,y2);

x2 = x1; x1 = x0; y2 = y1; y1 = y0;

}

Implementation (high-cost)



In4073 Emb RT Sys (2017-2018) 41

• Second-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients: 

a0 = 0.0006098548 * 8/10 a1 = 2 a0 a2 = a0

b0 = 1 b1 = -2 b2 = 1

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000  00000000001000 (was 10)
a[1] 000000000000000000  00000000010000 (was 20)
a[2] 000000000000000000  00000000001000 (was 10)
-b[1] 000000000000000010  00000000000000 (was 31604)
b[2] 000000000000000001  00000000000000 (was 15260)

Filter Approximation Example



In4073 Emb RT Sys (2017-2018) 42

y0 = (x0 << 3) >> 14 + (x1 << 4) >> 14 + 

(x2 << 3) >> 14 + (y1 << 15) >> 14 –

(y2 << 14) >> 14; // assume compiler optimizes ...

x2 = x1; x1 = x0; y2 = y1; y1 = y0;

Implementation (low-cost)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-5

0

5

10

15

20

25

30

35

Approx too coarse
(2nd-order FIR: 
ai, bi very sensitive!)



In4073 Emb RT Sys (2017-2018) 43

• First-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients: 

a0 = 0.0245221 a1 = a0

b0 = 1 b1 = -0.95095676

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000  00000110010010 (a0 << 14)
a[1] 000000000000000000  00000110010010
b[1] 000000000000000000  11110011011100 ^ -1 + 1

Approx: a[0] = 512 (was 402), b[1] = 16384 (was 15580) 

Cascade two 1st-order filters



In4073 Emb RT Sys (2017-2018) 44

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-1

-0.5

0

0.5

1

1.5

Results

Approx bit better
But still bad for very
low frequencies

So add more powers
of two until good approx
(see matlab demo)



In4073 Emb RT Sys (2017-2018) 45

• One size fits all? NO!
• number of bits depends on needed precision (sensor vs. joystick)

• special case for proportional controller: P * ε
• fpn * fpn = fp2n (overflow! requires an additional shift)
• scalar * fpn = fpn (overflow? no shift needed)
• fpm * fpn = fpm+n (when P can’t be represented as a scalar)

• document precision for every data type (part of softw arch)

• fpn to scalar
• be patient, shift at last instant (when feeding the engines)

Scaling: tips and tricks



In4073 Emb RT Sys (2017-2018) 46

Outline

Introduction

Z Transform

FIR Filters

IIR Filters

Fixed-point Implementation

Kalman Filter



2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 10
8

-300

-200

-100

0

100

200

300

In4073 Emb RT Sys (2017-2018) 47

Recall QR Sensor Signals phi, p

phi

∫ pdtp



2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 10
8

-10

-8

-6

-4

-2

0

2

4

6

8

10

In4073 Emb RT Sys (2017-2018) 48

After 2nd-order Low-pass (10Hz)

phi

∫ pdtp



In4073 Emb RT Sys (2017-2018) 49

Bias in p: Integration drift in phi

phi

∫ pdt

p



In4073 Emb RT Sys (2017-2018) 50

Problem Analysis

Noise is still considerable

Still little correlation between (filtered) phi and p

More aggressive filtering -> more phase delay

10 Hz signals already 90 deg phase lag with 2nd-order

In our particular case we might apply notch filter

In general though, too many noise frequencies

sphi: negligible drift, too high noise

sp: low noise, drift -> prohibits integration to phi

Kalman Filter: combine the best of both worlds!



In4073 Emb RT Sys (2017-2018) 51

Kalman Filter (near-hover)

Sensor Fusing: gyro and accel share same information

Kalman
Filter

sp

sphi

p

phi

Integrate sp to phi

Adjust integration for sp (drift) bias b by comparing

phi to sphi, averaged over long period (phi ~ constant)

Return phi, and p (= sp – bias)

b



In4073 Emb RT Sys (2017-2018) 52

Algorithm

p = sp – b // estimate real p

phi = phi + p * P2PHI // predict phi

e = phi – sphi // compare to measured phi

phi = phi – e / C1 // correct phi to some extent

b = b + (e/P2PHI) / C2 // adjust bias term

P2PHI: depends on loop freq -> compute/measure

C1 small: believe sphi ; C1 large: believe sp

C2 large (typically > 1,000 C1): slow drift



In4073 Emb RT Sys (2017-2018) 54

Summary

DSP is everywhere

This was merely introduction into the field

Get a feel for it when applying to QR


