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Why Signal Processing?

Improve/restore media content

 Compression/Decompression

 Audio filtering (bass, treble, equalization)

 Video filtering (enhancement, contours, ..)

 Noise suppression (accel, gyro data)

 Data fusion (mixing accel + gyro data)

By digital means: DSP
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Example: QR Sensor Signals phi, p
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After some low-pass filtering
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DSP is Everywhere

Cell Phone

TV

Plant Control

Climate Control

Automotive

Copiers, Wafer Scanners

Model Quad Rotors ...
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Objectives of this Crash Course

Appreciate the benefits of Digital Filtering

Understand some of the basic principles

Communicate with DSP engineers

Implement your own filters for the QR
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Signals and Frequency Synthesis

Usually signals (such as s) are composed of signals with many frequencies.
For instance, s contains
• 0 Hz component (green dashed line)
• lowest freq component (purple dashed line)
• higher freq component (yellow dashed line)
• and others

Fourier: Any periodic signal with base frequency fb
can be constructed from sine waves with frequency fb, 2fb, 3fb, …

t

s
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Frequency Spectrum

The frequency spectrum of s is:

t

s

f

0 f1 f2

possible freq components in s
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Filter: Frequency Response

Low-pass
Filter

pass

Often filters are designed to filter frequency components in a signal

block

Filter’s Frequency Response

Freq. Spectrum Freq. Spectrum
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Sampling A Signal

s sampled at discrete time intervals (sample frequency fs): x[n]

t

s

t

x

x[0] x[n]1/fs
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Sampling: Avoid Aliasing

t

x

t

fs > 2 * highest freq in s: OK

fs < highest freq in s: you see non-existing low-freq signal(s)!
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Example Filter: Moving Average

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

x[n] y[n]MA Filter

x[0] = get_sample();

y[0] = (x[0]+x[1]+x[2])/3;

put_sample(y[0]);

x[2] = x[1]; x[1] = x[0];

MA filter filters (removes) signals of certain frequency:

x, freq f, amplitude 1 y, freq f, amplitude ???MA Filter
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Frequency Behavior MA

lower frequency x: amplitude y = 0.77
x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33,  0.00
y = 0.00, 0.11, 0.33, 0.66, 0.77, 0.66, 0.33,  0.00, -0.33, -0.66, -0.77, -0.66, -0.33   

higher frequency x: amplitude y = 0.33
x = 0.00, 1.00, 0.00, -1.00,  0.00, 1.00, 0.00, -1.00,  0.00, 1.00, 0.00, -1.00,  0.00
y = 0.00, 0.33, 0.33,  0.00, -0.33, 0.00, 0.33,  0.00, -0.33, 0.00, 0.33,  0.00, -0.33   

f/fs

|y|

1

1/20 1/6 1/4

x = 0.00, 0.87, -0,87, 0.0, 0.87, -0.87, 0.00
y = 0.00, 0.29, 0.00, 0.00, 0.00, 0.00, 0.00 

1/3

transient steady-state
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Analysis: Z Transform

• We can numerically evaluate frequency behavior (see C programs)
• Rather analyze frequency behavior through analytic means
• For this we introduce Z transformation

• Let x[n] be a signal in the time domain (n)
• The Z transform of x[n] is given by

X(z) = n x[n] z-n

where z is a complex variable.

• Example:
x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
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Z Transform

• Z transforms make life easy
• Properties of the Z transform:

• Let y[n] = x[n-1]   (i.e., signal delayed by 1 sample)

Y(z) = z-1 X(z)

• Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
y = 0.00, 0.00, 0.33, 0.66, 1.00, ..
Y = 0 + 0z-1 + 0.33z-2 + 0.66z-3 + z-4 + …

= z-1 X
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Z Transform

• Other properties of the Z transform:

• Z transform of K a[n] = K A(z)
• Z transform of a[n] + b[n] = A(z) + B(z)

• Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
y = 0.00, 0.66, 1.32, 2.00, 1.32, ..
Y = 0 + 0.66z-1 + 1.32z-2 + 2.00z-3 + 1.32z-4 + …

= 2 X



In4073 Emb RT Sys (2017-2018) 19

Apply Z transform to MA Filter

• It holds Y(z) = H(z) X(z), where H(z) is filter transfer function
• Frequency response of filter can be read from H(z)

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

In terms of the Z transform we have:

Y(z) = 1/3 X(z) + 1/3 z-1 X(z) + 1/3 z-2 X(z)
= (1/3 + 1/3 z-1 + 1/3 z-2) X(z)
= H(z) X(z)

X(z) Y(z)H(z)
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Frequency Response H(z)

H(z) reveals frequency response (H(f)=H(z)| z=ej2f): 
As Y(z) = H(z) X(z), |H(z)| determines amplification of X(z)

The variable z is a complex variable and
encodes frequency f according to 

z = ej2f

= cos(2f) + j sin(2f)

This corresponds to traversing 
the unit circle in the 
complex z plane:

Re(z)

Im(z)

z = 0.7 + 0.7j

z

f/fs = 0f/fs = 1/2

f/fs = 1/8
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Fourier Interpretation H(z)

Why let z take values z = ej2f where f is frequency?

Recall Z transform of x[n] equals X(z) = n x[n] z-n

The Fourier transform of x[n] equals X(f) =  n x[n] e-j2nf

For a filter with transfer function H(f) its frequency response 
for a signal with frequency f is |H(f)|

By substituting z = ej2f in H(z) we essentially obtain 
the Fourier transform H(f) of which we know |H(f)| is

the frequency response. So let z = ej2f and evaluate |H(z)| !
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Frequency Response MA Filter

The transfer function of the MA filter is given by:

H(z) = (1/3 + 1/3 z-1 + 1/3 z-2)

= (1/3 z2 + 1/3 z + 1/3) / z2 (normalized)

re(z)

im(z)

z

Determine poles and zeros of H(z):

zero (= root of numerator): 

z1 = -½+½3j, z2 = -½-½3j 

(H(z1,2) = 0)
pole (= root of denominator): 
z3, z4 = 0
(H(z3,4) = )

Simply inspect distance z to poles/zeros.

f/fs = 1/3
(H(z) = 0)
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Frequency Response MA Filter

Interpret H(z) while 
traversing the unit circle
(upper half only):

re(z)

im(z)

z

f/fs

1

1/20 1/6 1/4 1/3

|H(z)|
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Impulse Response

MA filter: y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

Let x[n] = [n], then  y[n] = 1/3, 1/3, 1/3, 0, 0, 0, …

Z Transform: X(z) = 1, Y(z) = H(z) . 1 = H(z) = 1/3 + 1/3z-1 + 1/3z-2

Impulse signal  reveals H(z) in terms of h[n]

Impulse response (IR) of a filter:

[n] y[n], characteristic for HH

Impulse signal [n] = 1, 0, 0, 0, … (a spike, Dirac pulse)



In4073 Emb RT Sys (2017-2018) 26

Impulse Response

MA filter: h[n] = 1/3, 1/3, 1/3, 0, 0, 0, …

The IR is finite.

Filters defined by

y[n] = a0 x[n] + a1 x[n-1] + a2 x[n-2] + …

always have a finite IR and are therefore called FIR filters
(the equation is non-recursive in y)

Although any filter can be designed, FIR filters are
costly in terms of computation (often many terms needed)
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Averaging Filter

Suppose we want to extend MA filter to N terms:

y[n] = 1/N x[n] + 1/N x[n-1] + … 1/N x[n-N-1]

Suppose we don’t want to implement an N-cell FIFO + 2N ops
and experiment with the following “short cut”:

y[n] = (N-1)/N y[n-1] + 1/N x[n]

(1st term approximates contents of FIFO after x[n-N-1]
has been shifted out, 2nd term is newest sample shifted in)

Let’s analyze the frequency response of this filter
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Frequency Response Filter

y[n] = (N-1)/N y[n-1] + 1/N x[n]
Y(z) = (N-1)/N z-1 Y(z) + 1/N X(z)
H(z) = (1/N) / (1 – (N-1)/N z-1)

= (z/N) / (z – (N-1)/N)

zz

cf. MA filter:
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Frequency Response Comparison

f/fs

1

1/20 1/6 1/4 1/3

|H(z)|

z z
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Comparison of both Filters

New filter is much more different than perhaps assumed

Pole-zero plot is quite different: 
now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N), 
the sooner is the cut-off (in terms of frequency f),
this generally corresponds to MA filter but this would take large FIFO!
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Impulse Response

Filter equation: y[n] = (N-1)/N y[n-1] + 1/N x[n] 

IR (N = 3): h[n] = 1/3, (2/3)1/3, (2/3)2/3, …, (2/3)n/3, …

The IR is infinite.

Filters defined by

b0 y[n] + b1 y[n-1] + … = a0 x[n] + a1 x[n-1] + …

always have an infinite IR and are therefore called IIR filters
(the equation is recursive in y)

Filter order determined by # coeficients. Our case: 1st order.
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Designing Filters

Looking at the pole-zero plot, the IIR filter can be improved
by moving zero to left:
now |H(z)| even becomes zero for f = fs/2
so sharper cut-off.

This plot corresponds to the 
well-known class of Butterworth filters
(our case: 1st-order Butterworth):

The zero is created by adding x[n-1]:

y[n] – (N-1)/N y[n-1] = 1/2N x[n] + 1/2N x[n-1]

H(z) = ((z+1)/2N) / (z-(N-1)/N)

z
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Enhancing Filters

Frequency response 1st-order Butterworth:

log2 (f/fs)

log2(1)

log2(½)

fc 2 fc

log2 |H(z)|

4 fc½ fc

log2(¼)

slope -1 .. would like, e.g., slope -2
(sharper filtering)
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Second-order Butterworth

Looking at the pole-zero plot, the IIR filter 
can be further improved by introducing 
more poles & zeros.
now |H(z)| has same cut-off freq fc
but sharper slope!

Computing h[n] (the ai and bi)
is difficult, so use a tool to compute
coefficients, given fs and fc
(Matlab or Web sites)

Just insert found coefficients in IIR equation
b0 y[n] + b1 y[n-1] + b2 y[n-2] = a0 x[n] + a1 x[n-1] + a2 x[n-2]

z

(2x)
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• Many microcontrollers have no floating-point unit
• Software floating-point often (too) slow
• Need to implement filters in fixed-point arithmetic

2’s-complement bit representation (e.g., 32 bits, 14 bits fraction):

3.75: 000000000000000011  11000000000000
0.02: 000000000000000000  00000101001001
-1.5: 000000000000000001  10000000000000 ^ -1 + 1 =>

111111111111111110  10000000000000

Fixed-point Arithmetic

2-12021 2-2
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• Addition, subtraction as usual
• Multiplication: result must be post-processed:

• make sure intermediate fits in variable!  (e.g., 32 bits)
• shift right by |fraction|

Example multiplication (32 bits, 14 bits fraction):

3.75: 00000000000000001111000000000000 times:
-1.5: 11111111111111111010000000000000 equals:

10100110000000000000000000000000
(value just fits in 32 bits!)
(now shift right by 14 bits and sign-extend):
11111111111111101001100000000000 which is:

-5.625 111111111111111010  01100000000000

Fixed-point Arithmetic
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• Second-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients: 

a0 = 0.0006098548 a1 = 2 a0 a2 = a0

b0 = 1 b1 = -1.9289423 b2 = 0.9313817

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000  00000000001010 (a0 << 14)
a[1] 000000000000000000  00000000010100
a[2] 000000000000000000  00000000001010
b[1] 000000000000000001  11101101110100 ^ -1 + 1
b[2] 000000000000000000  11101110011100

Filter Example
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int mul(int c, int d) {

int result = c * d;

return (result >> 14);

}

void filter() {

y0 = mul(a0,x0) + mul(a1,x1) + mul(a2,x2) -

mul(b1,y1) - mul(b2,y2);

x2 = x1; x1 = x0; y2 = y1; y1 = y0;

}

Implementation (high-cost)
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• Second-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients: 

a0 = 0.0006098548 * 8/10 a1 = 2 a0 a2 = a0

b0 = 1 b1 = -2 b2 = 1

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000  00000000001000 (was 10)
a[1] 000000000000000000  00000000010000 (was 20)
a[2] 000000000000000000  00000000001000 (was 10)
-b[1] 000000000000000010  00000000000000 (was 31604)
b[2] 000000000000000001  00000000000000 (was 15260)

Filter Approximation Example
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y0 = (x0 << 3) >> 14 + (x1 << 4) >> 14 + 

(x2 << 3) >> 14 + (y1 << 15) >> 14 –

(y2 << 14) >> 14; // assume compiler optimizes ...

x2 = x1; x1 = x0; y2 = y1; y1 = y0;

Implementation (low-cost)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-5

0

5

10

15

20

25

30

35

Approx too coarse
(2nd-order FIR: 
ai, bi very sensitive!)
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• First-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients: 

a0 = 0.0245221 a1 = a0

b0 = 1 b1 = -0.95095676

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000  00000110010010 (a0 << 14)
a[1] 000000000000000000  00000110010010
b[1] 000000000000000000  11110011011100 ^ -1 + 1

Approx: a[0] = 512 (was 402), b[1] = 16384 (was 15580) 

Cascade two 1st-order filters
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-1

-0.5

0

0.5

1

1.5

Results

Approx bit better
But still bad for very
low frequencies

So add more powers
of two until good approx
(see matlab demo)
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• One size fits all? NO!
• number of bits depends on needed precision (sensor vs. joystick)

• special case for proportional controller: P * ε
• fpn * fpn = fp2n (overflow! requires an additional shift)
• scalar * fpn = fpn (overflow? no shift needed)
• fpm * fpn = fpm+n (when P can’t be represented as a scalar)

• document precision for every data type (part of softw arch)

• fpn to scalar
• be patient, shift at last instant (when feeding the engines)

Scaling: tips and tricks
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Recall QR Sensor Signals phi, p

phi

∫ pdtp
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After 2nd-order Low-pass (10Hz)

phi

∫ pdtp
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Bias in p: Integration drift in phi

phi

∫ pdt

p
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Problem Analysis

Noise is still considerable

Still little correlation between (filtered) phi and p

More aggressive filtering -> more phase delay

10 Hz signals already 90 deg phase lag with 2nd-order

In our particular case we might apply notch filter

In general though, too many noise frequencies

sphi: negligible drift, too high noise

sp: low noise, drift -> prohibits integration to phi

Kalman Filter: combine the best of both worlds!
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Kalman Filter (near-hover)

Sensor Fusing: gyro and accel share same information

Kalman
Filter

sp

sphi

p

phi

Integrate sp to phi

Adjust integration for sp (drift) bias b by comparing

phi to sphi, averaged over long period (phi ~ constant)

Return phi, and p (= sp – bias)

b
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Algorithm

p = sp – b // estimate real p

phi = phi + p * P2PHI // predict phi

e = phi – sphi // compare to measured phi

phi = phi – e / C1 // correct phi to some extent

b = b + (e/P2PHI) / C2 // adjust bias term

P2PHI: depends on loop freq -> compute/measure

C1 small: believe sphi ; C1 large: believe sp

C2 large (typically > 1,000 C1): slow drift
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Summary

DSP is everywhere

This was merely introduction into the field

Get a feel for it when applying to QR


