In4073
 Embedded Real-Time Systems

Introduction to Digital Filtering

Outline

- Introduction
- Z Transform
- FIR Filters

IIR Filters

- Fixed-point Implementation Kalman Filter

Why Signal Processing?

- Improve/restore media content
- Compression/Decompression
- Audio filtering (bass, treble, equalization)
- Video filtering (enhancement, contours, ..)
- Noise suppression (accel, gyro data)
- Data fusion (mixing accel + gyro data)
- By digital means: DSP

Example: QR Sensor Signals phi, p

After some low-pass filtering

DSP is Everywhere

- Cell Phone
- TV
- Plant Control
- Climate Control
- Automotive
- Copiers, Wafer Scanners
- Model Quad Rotors ...

Objectives of this Crash Course

- Appreciate the benefits of Digital Filtering
- Understand some of the basic principles

Communicate with DSP engineers

- Implement your own filters for the QR

Signals and Frequency Synthesis

Usually signals (such as s) are composed of signals with many frequencies. For instance, s contains

- 0 Hz component (green dashed line)
- lowest freq component (purple dashed line)
- higher freq component (yellow dashed line)
- and others

Fourier: Any periodic signal with base frequency f_{b} can be constructed from sine waves with frequency $f_{b}, 2 f_{b}, 3 f_{b}, \ldots$

Frequency Spectrum

The frequency spectrum of s is:

Filter: Frequency Response

Often filters are designed to filter frequency components in a signal

Freq. Spectrum

Freq. Spectrum

Filter's Frequency Response

Sampling A Signal

s sampled at discrete time intervals (sample frequency f_{s}): $x[n]$

Sampling: Avoid Aliasing

Example Filter: Moving Average

$$
y[n]=1 / 3 x[n]+1 / 3 x[n-1]+1 / 3 x[n-2]
$$


```
x[0] = get_sample();
y[0] = (x[0]+x[1]+x[2])/3;
put_sample(y[0]);
x[2] = x[1]; x[1] = x[0];
```

MA filter filters (removes) signals of certain frequency:
x, freq f, amplitude $1 \rightarrow$ MA Filter $\rightarrow y$, freq f, amplitude ???

Frequency Behavior MA

lower frequency x : amplitude $y=0.77$
$x=0.00,0.33,0.66,1.00,0.66,0.33,0.00,-0.33,-0.66,-1.00,-0.66,-0.33,0.00$
$y=0.00,0.11,0.33,0.66,0.77,0.66,0.33,0.00,-0.33,-0.66,-0.77,-0.66,-0.33$
higher frequency x : amplitude $y=0.33$
$x=0.00,1.00,0.00,-1.00,0.00,1.00,0.00,-1.00,0.00,1.00,0.00,-1.00,0.00$
$\mathrm{y}=\underset{\text { transient }}{\stackrel{0.00,0.33}{\longrightarrow}} \underset{\text { steady-state }}{0.33,0.00,-0.33,0.00,0.33,0.00,-0.33,0.00,0.33,0.00,-0.33}$

Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter

Analysis: Z Transform

- We can numerically evaluate frequency behavior (see C programs)
- Rather analyze frequency behavior through analytic means
- For this we introduce Z transformation
- Let $\mathrm{x}[\mathrm{n}]$ be a signal in the time domain (n)
- The Z transform of $x[n]$ is given by

$$
X(z)=\Sigma_{n} x[n] z^{-n}
$$

where z is a complex variable.

- Example:

$$
\begin{aligned}
& x=0.00,0.33,0.66,1.00,0.66, . . \\
& X=0+0.33 z^{-1}+0.66 z^{-2}+z^{-3}+0.66 z^{-4}+\ldots
\end{aligned}
$$

Z Transform

- Z transforms make life easy
- Properties of the Z transform:
- Let $y[n]=x[n-1] \quad$ (i.e., signal delayed by 1 sample)

$$
Y(z)=z^{-1} X(z)
$$

- Example:

$$
\begin{aligned}
X & =0.00,0.33,0.66,1.00,0.66, . . \\
X & =0+0.33 z^{-1}+0.66 z^{-2}+z^{-3}+0.66 z^{-4}+\ldots \\
y & =0.00,0.00,0.33,0.66,1.00, . . \\
Y & =0+0 z^{-1}+0.33 z^{-2}+0.66 z^{-3}+z^{-4}+\ldots \\
& =z^{-1} X
\end{aligned}
$$

Z Transform

- Other properties of the Z transform:
- Z transform of $\mathrm{K} a[\mathrm{n}]=\mathrm{K} \mathrm{A}(\mathrm{z})$
- Z transform of $a[n]+b[n]=A(z)+B(z)$
- Example:

$$
\begin{aligned}
\mathrm{x} & =0.00,0.33,0.66,1.00,0.66, . . \\
\mathrm{X} & =0+0.33 z^{-1}+0.66 z^{-2}+z^{-3}+0.66 z^{-4}+\ldots \\
\mathrm{y} & =0.00,0.66,1.32,2.00,1.32, . . \\
\mathrm{Y} & =0+0.66 z^{-1}+1.32 z^{-2}+2.00 z^{-3}+1.32 z^{-4}+\ldots \\
& =2 \mathrm{X}
\end{aligned}
$$

Apply Z transform to MA Filter

$$
y[n]=1 / 3 x[n]+1 / 3 x[n-1]+1 / 3 x[n-2]
$$

In terms of the Z transform we have:

$$
\begin{aligned}
Y(z) & =1 / 3 X(z)+1 / 3 z^{-1} X(z)+1 / 3 z^{-2} X(z) \\
& =\left(1 / 3+1 / 3 z^{-1}+1 / 3 z^{-2}\right) X(z) \\
& =H(z) X(z)
\end{aligned}
$$

- It holds $\mathrm{Y}(\mathrm{z})=\mathrm{H}(\mathrm{z}) \mathrm{X}(\mathrm{z})$, where $\mathrm{H}(\mathrm{z})$ is filter transfer function
- Frequency response of filter can be read from $\mathrm{H}(\mathrm{z})$

Frequency Response H(z)

$H(z)$ reveals frequency response $\left(H(f)=H(z) \mid z=e^{j 2 \pi f}\right)$:
As $Y(z)=H(z) X(z),|H(z)|$ determines amplification of $X(z)$
The variable z is a complex variable and encodes frequency f according to

$$
\begin{aligned}
z & =e^{j 2 \pi f} \\
& =\cos (2 \pi f)+j \sin (2 \pi f)
\end{aligned}
$$

This corresponds to traversing the unit circle in the complex z plane:

Fourier Interpretation H(z)

Why let z take values $z=\mathrm{e}^{\mathrm{j} 2 \pi f}$ where f is frequency?
Recall Z transform of $x[n]$ equals $X(z)=\Sigma_{n} x[n] z^{-n}$
The Fourier transform of $x[n]$ equals $X(f)=\Sigma_{n} x[n] e^{-j 2 \pi n f}$
For a filter with transfer function $\mathrm{H}(\mathrm{f})$ its frequency response for a signal with frequency f is $|\mathrm{H}(\mathrm{f})|$

By substituting $z=e^{\mathrm{j} 2 \pi \mathrm{f}}$ in $\mathrm{H}(\mathrm{z})$ we essentially obtain the Fourier transform $\mathrm{H}(\mathrm{f})$ of which we know $|\mathrm{H}(\mathrm{f})|$ is the frequency response. So let $z=e^{\mathrm{j} 2 \pi f}$ and evaluate $|H(z)|$!

Frequency Response MA Filter

The transfer function of the MA filter is given by:

$$
\begin{aligned}
H(z) & =\left(1 / 3+1 / 3 z^{-1}+1 / 3 z^{-2}\right) \\
& =\left(1 / 3 z^{2}+1 / 3 z+1 / 3\right) / z^{2} \quad \text { (normalized) }
\end{aligned}
$$

Determine poles and zeros of $\mathrm{H}(\mathrm{z})$:
zero (= root of numerator):
$z_{1}=-1 / 2+1 / 2 \sqrt{ } 3 j, z_{2}=-1 / 2-1 / 2 \sqrt{ } 3 j$
($\mathrm{H}\left(\mathrm{z}_{1,2}\right)=0$)
pole ($=$ root of denominator):
$z_{3}, z_{4}=0$
$\left(H\left(z_{3,4}\right)=\infty\right)$
Simply inspect distance z to poles/zeros.

Frequency Response MA Filter

Interpret $\mathrm{H}(\mathrm{z})$ while traversing the unit circle (upper half only):

Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter

Impulse Response

Impulse signal $\delta[\mathrm{n}]=1,0,0,0, \ldots$
(a spike, Dirac pulse)
Impulse response (IR) of a filter:

MA filter: $y[n]=1 / 3 x[n]+1 / 3 x[n-1]+1 / 3 x[n-2]$
Let $x[n]=\delta[n]$, then $y[n]=1 / 3,1 / 3,1 / 3,0,0,0, \ldots$
Z Transform: $X(z)=1, Y(z)=H(z) \cdot 1=H(z)=1 / 3+1 / 3 z^{-1}+1 / 3 z^{-2}$ Impulse signal δ reveals $\mathrm{H}(\mathrm{z})$ in terms of $\mathrm{h}[\mathrm{n}]$

Impulse Response

MA filter: $h[n]=1 / 3,1 / 3,1 / 3,0,0,0, \ldots$
The IR is finite.
Filters defined by
$y[n]=a_{0} x[n]+a_{1} x[n-1]+a_{2} x[n-2]+\ldots$
always have a finite IR and are therefore called FIR filters
(the equation is non-recursive in y)
Although any filter can be designed, FIR filters are costly in terms of computation (often many terms needed)

Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter

Averaging Filter

Suppose we want to extend MA filter to N terms:
$y[n]=1 / N x[n]+1 / N x[n-1]+\ldots 1 / N x[n-N-1]$
Suppose we don't want to implement an N-cell FIFO + 2N ops and experiment with the following "short cut":
$y[n]=(N-1) / N y[n-1]+1 / N x[n]$
(1st term approximates contents of FIFO after $\mathrm{x}[\mathrm{n}-\mathrm{N}-1]$ has been shifted out, 2nd term is newest sample shifted in)

Let's analyze the frequency response of this filter

Frequency Response Filter

$$
\begin{aligned}
y[n] & =(N-1) / N y[n-1]+1 / N x[n] \\
Y(z) & =(N-1) / N z^{-1} Y(z)+1 / N X(z) \\
H(z) & =(1 / N) /\left(1-(N-1) / N z^{-1}\right) \\
& =(z / N) /(z-(N-1) / N)
\end{aligned}
$$

cf. MA filter:

Frequency Response Comparison

Comparison of both Filters

New filter is much more different than perhaps assumed
Pole-zero plot is quite different: now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter
The closer the pole is to unit circle (larger N), the sooner is the cut-off (in terms of frequency f), this generally corresponds to MA filter but this would take large FIFO!

Impulse Response

Filter equation: $\mathrm{y}[\mathrm{n}]=(\mathrm{N}-1) / \mathrm{N} y[\mathrm{n}-1]+1 / \mathrm{N} x[\mathrm{n}]$
IR (N = 3): h[n] = 1/3, (2/3) ${ }^{1 / 3},(2 / 3)^{2} / 3, \ldots,(2 / 3)^{n} / 3, \ldots$
The IR is infinite.

Filters defined by
$b_{0} y[n]+b_{1} y[n-1]+\ldots=a_{0} x[n]+a_{1} x[n-1]+\ldots$
always have an infinite IR and are therefore called IIR filters (the equation is recursive in y)

Filter order determined by \# coeficients. Our case: $1^{\text {st }}$ order.

Designing Filters

Looking at the pole-zero plot, the IIR filter can be improved by moving zero to left:
now $|H(z)|$ even becomes zero for $f=f_{s} / 2$ so sharper cut-off.

This plot corresponds to the well-known class of Butterworth filters (our case: $1^{\text {st- }}$-order Butterworth):

The zero is created by adding $x[n-1]$:

$$
\begin{aligned}
& y[n]-(N-1) / N y[n-1]=1 / 2 N x[n]+1 / 2 N x[n-1] \\
& H(z)=((z+1) / 2 N) /(z-(N-1) / N)
\end{aligned}
$$

Enhancing Filters

Frequency response $1^{\text {st-order Butterworth: }}$

Second-order Butterworth

Looking at the pole-zero plot, the IIR filter can be further improved by introducing more poles \& zeros.
now $|\mathrm{H}(\mathrm{z})|$ has same cut-off freq f_{c} but sharper slope!

Computing h[n] (the a_{i} and b_{i}) is difficult, so use a tool to compute coefficients, given f_{s} and f_{c} (Matlab or Web sites)

Just insert found coefficients in IIR equation $b_{0} y[n]+b_{1} y[n-1]+b_{2} y[n-2]=a_{0} x[n]+a_{1} x[n-1]+a_{2} x[n-2]$

Outline

- Introduction

- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter

Fixed-point Arithmetic

- Many microcontrollers have no floating-point unit
- Software floating-point often (too) slow
- Need to implement filters in fixed-point arithmetic

2's-complement bit representation (e.g., 32 bits, 14 bits fraction):

3.75: 00000000000000001111000000000000
0.02: 00000000000000000000000101001001
-1.5: $00000000000000000110000000000000 \wedge-1+1$ => 11111111111111111010000000000000

Fixed-point Arithmetic

- Addition, subtraction as usual
- Multiplication: result must be post-processed:
- make sure intermediate fits in variable! (e.g., 32 bits)
- shift right by |fraction|

Example multiplication (32 bits, 14 bits fraction):
3.75: 00000000000000001111000000000000 times:
-1.5: 11111111111111111010000000000000 equals: 10100110000000000000000000000000 (value just fits in 32 bits!) (now shift right by 14 bits and sign-extend): 1111111111111101001100000000000 which is:
$-5.62511111111111111101001100000000000$

Filter Example

- Second-order Butterworth LP Filter $\mathrm{f}_{\mathrm{c}}=10 \mathrm{~Hz}, \mathrm{f}_{\mathrm{s}}=1250 \mathrm{~Hz}$
- Coefficients:

$$
\begin{array}{lll}
a_{0}=0.0006098548 & a_{1}=2 a_{0} & a_{2}=a_{0} \\
b_{0}=1 & b_{1}=-1.9289423 & b_{2}=0.9313817
\end{array}
$$

Bit representation (e.g., 32 bits, 14 bits fraction):
$a[0] 00000000000000000000000000001010\left(a_{0} \ll 14\right)$
a[1] 00000000000000000000000000010100
a[2] 00000000000000000000000000001010
$\mathrm{b}[1] \quad 00000000000000000111101101110100 \wedge-1+1$
$\mathrm{b}[2] \quad 00000000000000000011101110011100$

Implementation (high-cost)

```
int mul(int c, int d) {
    int result = c * d;
    return (result >> 14);
}
```

```
void filter() {
```

void filter() {
y0 = mul (a0,x0) + mul(a1,x1) + mul(a2,x2) -
y0 = mul (a0,x0) + mul(a1,x1) + mul(a2,x2) -
mul(b1,y1) - mul(b2,y2);
mul(b1,y1) - mul(b2,y2);
x2 = x1; x1 = x0; y2 = y1; y1 = y0;
x2 = x1; x1 = x0; y2 = y1; y1 = y0;
}

```
}
```


Filter Approximation Example

- Second-order Butterworth LP Filter $\mathrm{f}_{\mathrm{c}}=10 \mathrm{~Hz}, \mathrm{f}_{\mathrm{s}}=1250 \mathrm{~Hz}$
- Coefficients:

$$
\begin{array}{lll}
a_{0}=0.0006098548 * 8 / 10 & a_{1}=2 a_{0} & a_{2}=a_{0} \\
b_{0}=1 & b_{1}=-2 & b_{2}=1
\end{array}
$$

Bit representation (e.g., 32 bits, 14 bits fraction):
a[0] 00000000000000000000000000001000 (was 10)
a[1] 00000000000000000000000000010000 (was 20)
a[2] 00000000000000000000000000001000 (was 10)
-b[1] 00000000000000001000000000000000 (was 31604)
$\mathrm{b}[2] \quad 00000000000000000100000000000000$ (was 15260)

Implementation (low-cost)

$$
\begin{aligned}
\mathrm{y} 0= & (\mathrm{x} 0 \ll 3) \gg 14+(\mathrm{x} 1 \ll 4) \gg 14+ \\
& (\mathrm{x} 2 \ll 3) \gg 14+(\mathrm{y} 1 \ll 15) \gg 14- \\
& (\mathrm{y} 2 \ll 14)>14 ; / / \text { assume compiler optimizes } . . \\
\mathrm{x} 2= & \mathrm{x} 1 ; \mathrm{x} 1=\mathrm{x} 0 ; \mathrm{y}^{2}=\mathrm{y} 1 ; \mathrm{y} 1=\mathrm{y} 0 ;
\end{aligned}
$$

Approx too coarse (2 ${ }^{\text {nd }}$-order FIR:
a_{i}, b_{i} very sensitive!)

Cascade two $1^{\text {st }}$-order filters

- First-order Butterworth LP Filter $\mathrm{f}_{\mathrm{c}}=10 \mathrm{~Hz}, \mathrm{f}_{\mathrm{s}}=1250 \mathrm{~Hz}$
- Coefficients:

$$
\begin{array}{ll}
a_{0}=0.0245221 & a_{1}=a_{0} \\
b_{0}=1 & b_{1}=-0.95095676
\end{array}
$$

Bit representation (e.g., 32 bits, 14 bits fraction):
$a[0] 00000000000000000000000110010010\left(a_{0} \ll 14\right)$
a[1] 00000000000000000000000110010010
$\mathrm{b}[1] \quad 00000000000000000011110011011100 \wedge-1+1$

Approx: $\mathrm{a}[0]=512$ (was 402), b[1] = 16384 (was 15580)

Results

Approx bit better But still bad for very low frequencies

So add more powers of two until good approx (see matlab demo)

Scaling: tips and tricks

- One size fits all? NO!
- number of bits depends on needed precision (sensor vs. joystick)
- special case for proportional controller: $\mathrm{P} * \varepsilon$
- $\mathrm{fp}_{\mathrm{n}} * \mathrm{fp}_{\mathrm{n}}=\mathrm{fp}_{2 \mathrm{n}} \quad$ (overflow! requires an additional shift)
- scalar $* \mathrm{fp}_{\mathrm{n}}=\mathrm{fp}_{\mathrm{n}}$ (overflow? no shift needed)
- $\mathrm{fp}_{\mathrm{m}} * \mathrm{fp}_{\mathrm{n}}=\mathrm{fp}_{\mathrm{m}+\mathrm{n}}$ (when P can't be represented as a scalar)
- document precision for every data type (part of softw arch)
- $f p_{n}$ to scalar
- be patient, shift at last instant (when feeding the engines)

Outline

- Introduction

- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter

Recall QR Sensor Signals phi, p

After $2^{\text {nd }}-$ order Low-pass (10Hz)

Bias in p : Integration drift in phi

Problem Analysis

- Noise is still considerable

Still little correlation between (filtered) phi and p More aggressive filtering -> more phase delay 10 Hz signals already 90 deg phase lag with $2^{\text {nd-order }}$ In our particular case we might apply notch filter In general though, too many noise frequencies sphi: negligible drift, too high noise sp: low noise, drift -> prohibits integration to phi

- Kalman Filter: combine the best of both worlds!

Kalman Filter (near-hover)

- Sensor Fusing: gyro and accel share same information

- Integrate sp to phi
- Adjust integration for sp (drift) bias b by comparing phi to sphi, averaged over long period (phi ~ constant)
- Return phi, and p (= sp - bias)

Algorithm

- $\mathrm{p}=\mathrm{sp}-\mathrm{b}$
phi $=$ phi +p * P2PHI // predict phi
e = phi - sphi
phi $=$ phi $-\mathrm{e} / \mathrm{C} 1$
$\mathrm{b}=\mathrm{b}+(\mathrm{e} / \mathrm{P} 2 \mathrm{PHI}) / \mathrm{C} 2$ // adjust bias term

P2PHI: depends on loop freq -> compute/measure
C1 small: believe sphi ; C1 large: believe sp
C2 large (typically > 1,000 C1): slow drift

Summary

- DSP is everywhere
- This was merely introduction into the field - Get a feel for it when applying to QR

