1V

In407/3
Embedded Real-Time Systems

Introduction to Digital Filtering

AN

Outline

N

L

Introduction

/ Transform

FIR Filters

IR Filters

Fixed-point Implementation
Kalman Filter

In4073 Emb RT Sys (2017-2018)

Why Signal Processing?

N

Improve/restore media content
s Compression/Decompression
= Audio filtering (bass, treble, equalization)
= Video filtering (enhancement, contours, ..)
= Noise suppression (accel, gyro data)
= Data fusion (mixing accel + gyro data)

By digital means: DSP

In4073 Emb RT Sys (2017-2018) 3

Example: QR Sensor Signals phi, p

N
\J

-10

O

p Jpdt

-200

In4073 Emb RT Sys (2017-2018)

After some low-pass filtering

%
4ﬁ phi
| ‘ ‘ H“ \ |]
0 TV] “‘ ’ " Ji muﬂh i w m)Z AR
2 ! I \" |
p [pdt

In4073 Emb RT Sys (2017-2018)

N

DSP is Everywhere

Cell Phone
& TV
Plant Control

Climate Control
® Automotive

Copiers, Wafer Scanners
Model Quad Rotors ...

In4073 Emb RT Sys (2017-2018)

N

Objectives of this Crash Course

Appreciate the benefits of Digital Filtering
Understand some of the basic principles
Communicate with DSP engineers

Implement your own filters for the QR

In4073 Emb RT Sys (2017-2018)

Signals and Frequency Synthesis

N

Usually signals (such as s) are composed of signals with many frequencies.
For instance, s contains

e 0 Hz component (green dashed line)

e lowest freq component (purple dashed line)

e higher freq component (yellow dashed line)

e and others

Fourier: Any periodic signal with base frequency f,
can be constructed from sine waves with frequency f,, 2f,, 3f,, ...

In4073 Emb RT Sys (2017-2018) 8

Frequency Spectrum

N

v

The frequency spectrum of s is:

A

v

0 fy f,

In4073 Emb RT Sys (2017-2018)

Filter: Frequency Response

N

L

Often filters are designed to filter frequency components in a signal

P/ Mo s FOWpass L s A AN
g Filter >

|

' i N ' ‘

» »

Freq. Spectrum I I Freq. Spectrum

pass block

Filter's Frequency Response

In4073 Emb RT Sys (2017-2018)

Sampling A Signal

N

S

A

v
~—

s sampled at discrete time intervals (sample frequency f,): x[n]

A
- Iy SN Iy
PN M / N / N
\ \ RS
' A\ ’I \\ ’I \\ /Il \\ ’I \\
1 - ! - /\\ ,’ \ //-\ k
l \\ ,l \\\ " . \‘ , \)
4 \ ,I \ \ s__,”
’ \ h - N ,’ \ - ’
/’/ \\\ /, N /’/ ‘\ /' \\\‘/,
“ Ti— _T TI I
»
>
<+——>
/ S

In4073 Emb RT Sys (2017-2018) 11

N
\J

Sampling: Avoid Aliasing

X
A f, > 2 * highest freq in s: OK

T Y N
W

f, < highest freq in s: you see non-existing low-freq signal(s)!

In4073 Emb RT Sys (2017-2018) 12

Example Filter: Moving Average

N

L

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

X[n] —

MA Filter

— y[n]

x[0] = get sample();
y[0] = (x[0]+x[1]+x[2])/3;
put sample(y[0]);

x[2] = x[1]; x[1] = x[O0];

MA filter filters (removes) signals of certain frequency:

X, freq f, amplitude 1 —{ MA Filter

vy, freq f, amplitude ???

In4073 Emb RT Sys (2017-2018)

13

Frequency Behavior MA

N

lower frequency x: amplitude y = 0.77
x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33, 0.00
y = 0.33, 0.66, 0.77, 0.66, 0.33, 0.00, -0.33, -0.66, -0.77, -0.66, -0.33

higher frequency x: amplitude y = 0.33
x = 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00
y = 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33

<

steady-state

i x = 0.00, 0.87, -0,87, 0.0, 0.87, -0.87, 0.00
1 [y = 0.00, 0.00, 0.00, 0.00, 0.00
* > f/f,
0 1/6 1/4 1/3 1/2

In4073 Emb RT Sys (2017-2018) 14

Outline

N

Introduction

/ Transform

FIR Filters

IIR Filters

Fixed-point Implementation
Kalman Filter

In4073 Emb RT Sys (2017-2018) 15

Analysis: Z Transform

N

e We can numerically evaluate frequency behavior (see C programs)
e Rather analyze frequency behavior through analytic means
e For this we introduce Z transformation

e Let x[n] be a signal in the time domain (n)
e The Z transform of x[n] is given by

X(z) =X, X[n] z"

where z is a complex variable.

e Example:
x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X=0+0.332z1 + 0.66z2 + z3 + 0.66z% + ...

In4073 Emb RT Sys (2017-2018) 16

N

Z Transform

L

e Z transforms make life easy
e Properties of the Z transform:

o Let y[n] = x[n-1] (i.e., signal delayed by 1 sample)
Y(z) = z1 X(2)
e Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..

X=0+0.33z1 + 0.66z2 + z3 + 0.66z4% + ...

y = 0.00, 0.00, 0.33, 0.66, 1.00, ..

Y=0+0z!+0.33z2+ 0.6623 + z% + ...
=z1X

In4073 Emb RT Sys (2017-2018) 17

N

Z Transform

L

e Other properties of the Z transform:

e Z transform of K a[n] = K A(2)
e Z transform of a[n] + b[n] = A(z) + B(2)

e Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X=0+0.33z1 + 0.66z2 + z3 + 0.662% + ...
y = 0.00, 0.66, 1.32, 2.00, 1.32, ..

Y=0+0.66z1 + 1.3222 + 2.00z3 + 1.32z% + ...

=2X

In4073 Emb RT Sys (2017-2018)

18

N

Apply Z transform to MA Filter

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]
In terms of the Z transform we have:

Y(z) = 1/3 X(2) + 1/3 71 X(z) + 1/3 2 X(2)
=(1/3+ 1/3 71+ 1/3 z2) X(2)

= H(2) X(2)

X(z) — H(z) - Y(2)

e It holds Y(z) = H(z) X(z), where H(z) is filter transfer function
e Frequency response of filter can be read from H(z)

In4073 Emb RT Sys (2017-2018)

19

Frequency Response H(z)

N

H(z) reveals frequency response (H(f)=H(z)| z=ei?*):
As Y(z) = H(z) X(z), |[H(z)| determines amplification of X(z)

The variable z is a complex variable and
encodes frequency f according to

Imfz) f/f, = 1/8
7 = @j2nf ! z=0.7+0.7]
= cos(2xnf) + j sin(2xf) /
y4
This corresponds to traversing B > Re(2)
the unit circle in the
complex z plane:
f/fs= 1/2 i f/fs=0

In4073 Emb RT Sys (2017-2018)

Fourier Interpretation H(z)

N

L

Why let z take values z = €12™ where f is frequency?
Recall Z transform of x[n] equals X(z) = %, x[n] z™

The Fourier transform of x[n] equals X(f) = X, x[n] eJ2=nf

For a filter with transfer function H(f) its frequency response
for a signal with frequency f is |H(f)]|

By substituting z = €2 in H(z) we essentially obtain
the Fourier transform H(f) of which we know |H(f)]| is

the frequency response. So let z = e12™ and evaluate |H(z)| !

In4073 Emb RT Sys (2017-2018)

21

N

Frequency Response MA Filter

The transfer function of the MA filter is given by:

H(Z) = (1/3 + 1/3 21 + 1/3 7?)
=(1/3z22+1/3z+ 1/3) /2 (normalized)

im(z)

Determine poles and zeros of H(z):

f/f, = 1/3
(H(z) = 0)

zero (= root of numerator):
z, = -V2+12\3j, z, = -V2-123;
(H(z, ;) = 0)

pole (= root of denominator): ~ ---{--------- K-----nmne -

Z5, 2, =0
(H(z3 4) = =)

Simply inspect distance z to poles/zeros.

In4073 Emb RT Sys (2017-2018)

22

N

Frequency Response MA Filter

Interpret H(z) while
traversing the unit circle
(upper half only):

im(z)

’
¥

0 1/6 1/4 1/3 1/2

In4073 Emb RT Sys (2017-2018) 23

Outline

N

Introduction

#® / Transform

FIR Filters

IIR Filters

Fixed-point Implementation
Kalman Filter

In4073 Emb RT Sys (2017-2018) 24

Impulse Response

N

Impulse signal 5[n] =1, 0, 0, O, ... (a spike, Dirac pulse)

Impulse response (IR) of a filter:

6[”] —

> y[n], characteristic for H

MA filter: y

n] = 1/3 x[n]

+ 1/3 x[n-1] + 1/3 x[n-2]

Let x[n] = o[n], then y[n] = 1/3, 1/3, 1/3,0, 0, 0O, ...

Z Transform: X(z) = 1,Y(z2) =H(z) .1 =H(2) = 1/3 + 1/3z1 + 1/3z2
Impulse signal & reveals H(z) in terms of h[n]

In4073 Emb RT Sys (2017-2018)

25

N

Impulse Response

MA filter: h[n] = 1/3, 1/3, 1/3,0, 0, O, ...
The IR is finite.

Filters defined by

y[n] = g, X[n] + a; x[n-1] + a, x[n-2] + ...

always have a finite IR and are therefore called FIR filters
(the equation is non-recursive in y)

Although any filter can be designed, FIR filters are
costly in terms of computation (often many terms needed)

In4073 Emb RT Sys (2017-2018)

26

Outline

N

Introduction

#® / Transform

FIR Filters

[IIR Filters

Fixed-point Implementation
Kalman Filter

In4073 Emb RT Sys (2017-2018) 27

Averaging Filter

N

Suppose we want to extend MA filter to N terms:
y[n] = 1/N x[n] + 1/N x[n-1] + ... 1/N X[n-N-1]

Suppose we don’t want to implement an N-cell FIFO + 2N ops
and experiment with the following “short cut”:

y[n] = (N-1)/N y[n-1] + 1/N x[n]

(1st term approximates contents of FIFO after x[n-N-1]
has been shifted out, 2nd term is hewest sample shifted in)

Let’s analyze the frequency response of this filter

In4073 Emb RT Sys (2017-2018) 28

N

Frequency Response Filter

y[n] = (N-1)/N y[n-1] + 1/N x[n]
Y(z) = (N-1)/N z1 Y(z2) + 1/N X(2)
H(z) = (1/N) / (1 = (N-1)/N z1)
= (z/N) / (z = (N-1)/N)
cf. MA filter:

In4073 Emb RT Sys (2017-2018) 29

N

Frequency Response Comparison

- fIf,
0 1/6 1/4 1/3 1/2

In4073 Emb RT Sys (2017-2018)

30

Comparison of both Filters

N

New filter is much more different than perhaps assumed

Pole-zero plot is quite different:
now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N),
the sooner is the cut-off (in terms of frequency f),
this generally corresponds to MA filter but this would take large FIFO!

In4073 Emb RT Sys (2017-2018) 31

N

Impulse Response

Filter equation: y[n] = (N-1)/N y[n-1] + 1/N x[n]
IR (N = 3): h[n] = 1/3, (2/3)1/3, (2/3)%/3, ..., (2/3)"/3, ...

The IR is infinite.

Filters defined by
by Y[n] + by y[n-1] + ... = a5 x[n] + a; x[n-1] + ...

always have an infinite IR and are therefore called IIR filters
(the equation is recursive in y)

Filter order determined by # coeficients. Our case: 1t order.

In4073 Emb RT Sys (2017-2018) 32

N

Designing Filters

Looking at the pole-zero plot, the IIR filter can be improved
by moving zero to left:

now |H(z)| even becomes zero for f = f,/2 A

so sharper cut-off. i

This plot corresponds to the '\ Z
well-known class of Butterworth filters ___ 4 i
(our case: 1st-order Butterworth):

The zero is created by adding x[n-1]:

y[n] = (N-1)/N y[n-1] = 1/2N x[n] + 1/2N x[n-1]

H(z) = ((z+1)/2N) / (z-(N-1)/N)

In4073 Emb RT Sys (2017-2018) 33

Enhancing Filters

N

L

Frequency response 1st-order Butterworth:

log2 [H(z)|

log2(1)

slope -1 .. would like, e.g., slope -2

(sharper filtering)
og2(V2) [N

l0g2(Va) [

. — 5 . log2 (f/f.)
nf f 2f ‘4f

In4073 Emb RT Sys (2017-2018) 34

Second-order Butterworth

N

L

Looking at the pole-zero plot, the IIR filter
can be further improved by introducing
more poles & zeros. A
now |H(z)| has same cut-off freq f. ’
but sharper slope!

Computing h[n] (the a; and b;)

is difficult, so use a tool to compute
coefficients, given f, and f.

(Matlab or Web sites)

Just insert found coefficients in IIR equation
by Y[Nn] + by y[n-1] + b, y[n-2] = a, x[n] + a; X[n-1] + a, X[n-2]

In4073 Emb RT Sys (2017-2018)

35

Outline

N

Introduction

#® / Transform

FIR Filters

IIR Filters

Fixed-point Implementation
Kalman Filter

In4073 Emb RT Sys (2017-2018) 36

Fixed-point Arithmetic

N

e Many microcontrollers have no floating-point unit
e Software floating-point often (too) slow
e Need to implement filters in fixed-point arithmetic

2's-complement bit representation (e.g., 32 bits, 14 bits fraction):

21 20 2:122

\

3.75: 000000000000000011 11000000000000

0.02: 000000000000000000 00000101001001

-1.5: 000000000000000001 10000000000000 ™ -1 +1 =>
111111111111111110 10000000000000

In4073 Emb RT Sys (2017-2018) 37

Fixed-point Arithmetic

N

e Addition, subtraction as usual

e Multiplication: result must be post-processed:
e make sure intermediate fits in variable! (e.g., 32 bits)
o shift right by |fraction]

Example multiplication (32 bits, 14 bits fraction):

3.75: 00000000000000001111000000000000 times:
-1.5: 11111111111111111010000000000000 equals:
10100110000000000000000000000000

(value just fits in 32 bits!)

(now shift right by 14 bits and sign-extend):

11111111111111101001100000000000 which is:
-5.625 111111111111111010 01100000000000

In4073 Emb RT Sys (2017-2018)

38

Filter Example

N

L

e Second-order Butterworth LP Filter f. = 10Hz, f, = 1250Hz
e Coefficients:

a, = 0.0006098548 a; = 2 a, a, = q,
by =1 b, = -1.9289423 b, = 0.9313817

Bit representation (e.g., 32 bits, 14 bits fraction):

000000000000000000 00000000001010 (a, << 14)
000000000000000000 00000000010100
000000000000000000 00000000001010
000000000000000001 11101101110100 ~ -1+ 1
000000000000000000 11101110011100

OO0 oL O
N =N = O

In4073 Emb RT Sys (2017-2018) 39

N

Implementation (high-cost)

int mul (int ¢, int d) {
int result = ¢ * 4;
return (result >> 14);

}

void filter () {

y0 = mul (a0,x0) + mul (al,xl) + mul(a2,x2) -
mul (bl,yl) - mul(b2,y2);
x2 = x1; x1 = x0; y2 = yl; yl = yO0;

In4073 Emb RT Sys (2017-2018)

40

N

Filter Approximation Example

e Second-order Butterworth LP Filter f. = 10Hz, f, = 1250Hz
e Coefficients:
a, = 0.0006098548 * 8/10 a; =2 q, a, = Qq,
by=1 b, =-2 b,=1

Bit representation (e.g., 32 bits, 14 bits fraction):

000000000000000000 00000000001000 (was 10)
000000000000000000 00000000010000 (was 20)
000000000000000000 00000000001000 (was 10)
1] 000000000000000010 00000000000000 (was 31604)
000000000000000001 00000000000000 (was 15260)

D'O'_QJ aQ Q
NN = O

In4073 Emb RT Sys (2017-2018) 41

Implementation (low-cost)

N

(x0 << 3) >> 14 + (x1 << 4) >> 14 +

(x2 << 3) >> 14 + (yl << 15) >> 14 -

(y2 << 14) >> 14; // assume compiler optimizes ...
x2 = x1; x1 = x0; y2 = yl; yl = yO0;

yO0

35

30~

25

Approx too coarse
(2nd-order FIR:
a, b, very sensitive!)

20~

15

10~

I L I I L I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

In4073 Emb RT Sys (2017-2018) 42

Cascade two 1st-order filters

N

L

e First-order Butterworth LP Filter f. = 10Hz, f, = 1250Hz
e Coefficients:

a, = 0.0245221 a; = q,

by =1 b, = -0.95095676

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000 00000110010010 (a, << 14)
a[l] 000000000000000000 00000110010010
b[1] 000000000000000000 11110011011100 ~ -1 + 1

Approx: a[0] = 512 (was 402), b[1] = 16384 (was 15580)

In4073 Emb RT Sys (2017-2018) 43

Results

N

15

[y

0.

)]

o

-0.

[&)]

i « +— Approx bit better
) But still bad for very
‘ low frequencies
/ So add more powers
1 of two until good approx
(see matlab demo)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-1

In4073 Emb RT Sys (2017-2018) 44

N

Scaling: tips and tricks

e One size fits all? NO!
e number of bits depends on needed precision (sensor vs. joystick)

e special case for proportional controller: P * €
e fp, * fp, = fp,, (overflow! requires an additional shift)

e scalar * fp,, = fp,, (overflow? no shift needed)
e fp, * fp, = fPmsn (When P can’t be represented as a scalar)

e document precision for every data type (part of softw arch)

e fp, to scalar
e be patient, shift at last instant (when feeding the engines)

In4073 Emb RT Sys (2017-2018) 45

Outline

N

Introduction

#® / Transform

FIR Filters

IIR Filters

Fixed-point Implementation
Kalman Filter

In4073 Emb RT Sys (2017-2018) 46

Recall QR Sensor Signals phi, p

N
\J

300

200 -

B | ‘ ’ ‘ phi
e

-100 -
p [pdt
_300 [[1 [[[1 1
2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 10°

In4073 Emb RT Sys (2017-2018)

After 2nd-order Low-pass (10Hz)

N
\J

phi

il
(4
\
l Ludtll | i '

L’
i

p [pdt

H‘

y 7 i

In4073 Emb RT Sys (2017-2018)

48

N

a0

Bias in p: Integration drift in phi

25+

A0

1B

pd

,-ff//_
J pdt /// '

10 | // .

phi |
o ¥ _
| ¢ i
| P
429% E.IISEI 27 E.I?'1 2.;'2 E.I?E E.I?ﬂf 2.74 2.}5) 12:?

In4073 Emb RT Sys (2017-2018)

49

Problem Analysis

N

L

Noise is still considerable

Still little correlation between (filtered) phi and p
More aggressive filtering -> more phase delay

10 Hz signals already 90 deg phase lag with 2"d-order
In our particular case we might apply notch filter

In general though, too many noise frequencies

sphi: negligible drift, too high noise

sp: low noise, drift -> prohibits integration to phi

® @ PP PePePe

Kalman Filter: combine the best of both worlds!

In4073 Emb RT Sys (2017-2018) 50

Kalman Filter (near-hover)

N

L

Sensor Fusing: gyro and accel share same information

Kalman

sphi — Filter . phi

Integrate sp to phi
Adjust integration for sp (drift) bias 6 by comparing

phi to sphi, averaged over /ong period (phi ~ constant)
Return phi, and p (= sp — bias)

In4073 Emb RT Sys (2017-2018) 51

Algorithm

N

® p=sp—-b // estimate real p

@ phi = phi + p * P2PHI // predict phi

e = phi— sphi // compare to measured phi
phi =phi—-e/Cl // correct phi to some extent
b=Db+ (e/P2PHI) / C2 // adjust bias term

P2PHI: depends on loop freq -> compute/measure
C1 small: believe sphi ; C1 large: believe sp
C2 large (typically > 1,000 C1): slow drift

¢ @ @

In4073 Emb RT Sys (2017-2018) 52

N

Summary

L

DSP is everywhere
This was merely introduction into the field
Get a feel for it when applying to QR

In4073 Emb RT Sys (2017-2018)

54

