In4073 Embedded Real-Time Systems

Introduction to Digital Filtering

Outline

Fixed-point Implementation

Why Signal Processing?

Improve/restore media content Compression/Decompression Audio filtering (bass, treble, equalization) Video filtering (enhancement, contours, ..) Noise suppression (accel, gyro data) Data fusion (mixing accel + gyro data) By digital means: DSP

Example: QR Sensor Signals phi, p

In4073 Emb RT Sys (2017-2018)

After some low-pass filtering

DSP is Everywhere

Cell Phone

Model Quad Rotors ...

Objectives of this Crash Course

Appreciate the benefits of Digital Filtering
 Understand *some* of the basic principles
 Communicate with DSP engineers
 Implement your own filters for the QR

Signals and Frequency Synthesis

Usually signals (such as s) are composed of signals with many frequencies. For instance, s contains

- 0 Hz component (green dashed line)
- lowest freq component (purple dashed line)
- higher freq component (yellow dashed line)
- and others

S

Fourier: Any *periodic* signal with base frequency f_b can be constructed from sine waves with frequency f_b , $2f_b$, $3f_b$, ...

Frequency Spectrum

In4073 Emb RT Sys (2017-2018)

Filter: Frequency Response

Often filters are designed to filter frequency components in a signal

s sampled at *discrete* time intervals (sample frequency f_s): x[n]

In4073 Emb RT Sys (2017-2018)

Example Filter: Moving Average

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

 $x[n] \longrightarrow MA Filter \longrightarrow y[n]$

x[0] = get_sample(); y[0] = (x[0]+x[1]+x[2])/3; put_sample(y[0]); x[2] = x[1]; x[1] = x[0];

MA filter filters (removes) signals of certain frequency:

x, freq f, amplitude 1 \rightarrow MA Filter \rightarrow y, freq f, amplitude ???

Frequency Behavior MA

lower frequency x: amplitude y = 0.77 x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33, 0.00 y = 0.00, 0.11, 0.33, 0.66, 0.77, 0.66, 0.33, 0.00, -0.33, -0.66, -0.77, -0.66, -0.33

higher frequency x: amplitude y = 0.33x = 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00 y = 0.00, 0.33, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33

transient steady-state

x = 0.00, 0.87, -0.87, 0.0, 0.87, -0.87, 0.00y = 0.00, 0.29, 0.00, 0.00, 0.00, 0.00, 0.00

|y|

1

Outline

Fixed-point Implementation

Kalman Filter

Analysis: Z Transform

- We can numerically evaluate frequency behavior (see C programs)
- Rather analyze frequency behavior through *analytic* means
- For this we introduce Z transformation
- Let x[n] be a signal in the time domain (n)
- The Z transform of x[n] is given by

 $X(z) = \Sigma_n x[n] z^{-n}$

where z is a complex variable.

• Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, .. X = 0 + 0.33z⁻¹ + 0.66z⁻² + z^{-3} + 0.66z⁻⁴ + ...

Z Transform

- Z transforms make life easy
- Properties of the Z transform:
- Let y[n] = x[n-1] (i.e., signal delayed by 1 sample)

 $Y(z) = z^{-1} X(z)$

• Example:

 $\begin{array}{l} x = 0.00, \, 0.33, \, 0.66, \, 1.00, \, 0.66, \, .. \\ X = 0 + \, 0.33z^{-1} + \, 0.66z^{-2} + z^{-3} + \, 0.66z^{-4} + \, ... \\ y = 0.00, \, 0.00, \, 0.33, \, 0.66, \, 1.00, \, .. \\ Y = 0 + \, 0z^{-1} + \, 0.33z^{-2} + \, 0.66z^{-3} + z^{-4} + \, ... \\ = z^{-1} \, X \end{array}$

Z Transform

- Other properties of the Z transform:
- Z transform of K a[n] = K A(z)
- Z transform of a[n] + b[n] = A(z) + B(z)
- Example:

 $\begin{array}{l} x = 0.00, \, 0.33, \, 0.66, \, 1.00, \, 0.66, \, ... \\ X = 0 + 0.33z^{-1} + 0.66z^{-2} + z^{-3} + 0.66z^{-4} + \, ... \\ y = 0.00, \, 0.66, \, 1.32, \, 2.00, \, 1.32, \, ... \\ Y = 0 + 0.66z^{-1} + 1.32z^{-2} + 2.00z^{-3} + 1.32z^{-4} + \, ... \\ = 2 \ X \end{array}$

Apply Z transform to MA Filter

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

In terms of the Z transform we have:

 $\begin{aligned} \mathsf{Y}(z) &= 1/3 \; \mathsf{X}(z) + 1/3 \; z^{-1} \; \mathsf{X}(z) + 1/3 \; z^{-2} \; \mathsf{X}(z) \\ &= (1/3 + 1/3 \; z^{-1} + 1/3 \; z^{-2}) \; \mathsf{X}(z) \\ &= \mathsf{H}(z) \; \mathsf{X}(z) \end{aligned}$

 $X(z) \longrightarrow H(z) \longrightarrow Y(z)$

- It holds Y(z) = H(z) X(z), where H(z) is filter transfer function
- Frequency response of filter can be read from H(z)

Frequency Response H(z)

H(z) reveals frequency response (H(f)=H(z)| $z=e^{j2\pi f}$): As Y(z) = H(z) X(z), |H(z)| determines *amplification* of X(z)

Fourier Interpretation H(z)

Why let z take values $z = e^{j2\pi f}$ where f is frequency?

Recall Z transform of x[n] equals $X(z) = \sum_n x[n] z^{-n}$

The Fourier transform of x[n] equals $X(f) = \sum_n x[n] e^{-j2\pi nf}$

For a filter with transfer function H(f) its frequency response for a signal with frequency f is |H(f)|

By substituting $z = e^{j2\pi f}$ in H(z) we essentially obtain the Fourier transform H(f) of which we know |H(f)| is the frequency response. So let $z = e^{j2\pi f}$ and evaluate |H(z)| !

Frequency Response MA Filter

The transfer function of the MA filter is given by:

im(z)

 $H(z) = (1/3 + 1/3 z^{-1} + 1/3 z^{-2})$ = (1/3 z² + 1/3 z + 1/3) / z² (normalized)

Determine poles and zeros of H(z):

zero (= root of numerator): $z_1 = -\frac{1}{2} + \frac{1}{2}\sqrt{3}j$, $z_2 = -\frac{1}{2} - \frac{1}{2}\sqrt{3}j$ (H($z_{1,2}$) = 0) *pole* (= root of denominator): z_3 , $z_4 = 0$ (H($z_{3,4}$) = ∞)

Simply inspect distance z to poles/zeros.

 $f/f_{s} = 1/3$

(H(z) = 0)

Ζ

Frequency Response MA Filter

Outline

Fixed-point Implementation

Impulse Response

Impulse signal $\delta[n] = 1, 0, 0, 0, ...$ (a spike, Dirac pulse)Impulse response (IR) of a filter:

 $\delta[n] \rightarrow H \rightarrow y[n]$, characteristic for H

MA filter: y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]Let $x[n] = \delta[n]$, then y[n] = 1/3, 1/3, 1/3, 0, 0, 0, ...

Z Transform: X(z) = 1, Y(z) = H(z). $1 = H(z) = 1/3 + 1/3z^{-1} + 1/3z^{-2}$ Impulse signal δ reveals H(z) in terms of h[n]

Impulse Response

MA filter: h[n] = 1/3, 1/3, 1/3, 0, 0, 0, ...

The IR is finite.

Filters defined by

 $y[n] = a_0 x[n] + a_1 x[n-1] + a_2 x[n-2] + ...$

always have a finite IR and are therefore called FIR filters (the equation is non-recursive in y)

Although any filter can be designed, FIR filters are costly in terms of computation (often many terms needed)

Outline

IIR Filters

Fixed-point Implementation

Kalman Filter

Averaging Filter

Suppose we want to extend MA filter to N terms:

y[n] = 1/N x[n] + 1/N x[n-1] + ... 1/N x[n-N-1]

Suppose we don't want to implement an N-cell FIFO + 2N ops and experiment with the following "short cut":

y[n] = (N-1)/N y[n-1] + 1/N x[n]

(1st term approximates contents of FIFO after x[n-N-1] has been shifted out, 2nd term is newest sample shifted in)

Let's analyze the frequency response of this filter

Frequency Response Filter

y[n] = (N-1)/N y[n-1] + 1/N x[n] $Y(z) = (N-1)/N z^{-1} Y(z) + 1/N X(z)$ $H(z) = (1/N) / (1 - (N-1)/N z^{-1})$ = (z/N) / (z - (N-1)/N)

Frequency Response Comparison

In4073 Emb RT Sys (2017-2018)

Comparison of both Filters

New filter is much more different than perhaps assumed

Pole-zero plot is quite different: now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N), the sooner is the cut-off (in terms of frequency f), this generally corresponds to MA filter but this would take large FIFO!

Impulse Response

Filter equation: y[n] = (N-1)/N y[n-1] + 1/N x[n]

IR (N = 3): h[n] = 1/3, $(2/3)^1/3$, $(2/3)^2/3$, ..., $(2/3)^n/3$, ...

The IR is infinite.

Filters defined by

 $b_0 y[n] + b_1 y[n-1] + ... = a_0 x[n] + a_1 x[n-1] + ...$

always have an infinite IR and are therefore called IIR filters (the equation is recursive in y)

Filter order determined by *#* coeficients. Our case: 1st order.

Designing Filters

Looking at the pole-zero plot, the IIR filter can be improved by moving zero to left: now |H(z)| even becomes zero for $f = f_s/2$ so sharper cut-off.

This plot corresponds to the well-known class of **Butterworth** filters (our case: 1st-order Butterworth):

The zero is created by adding x[n-1]:

y[n] - (N-1)/N y[n-1] = 1/2N x[n] + 1/2N x[n-1]

H(z) = ((z+1)/2N) / (z-(N-1)/N)

X

Enhancing Filters

Frequency response 1st-order Butterworth:

Second-order Butterworth

Looking at the pole-zero plot, the IIR filter can be further improved by introducing more poles & zeros. now |H(z)| has same cut-off freq f_c but sharper slope!

Computing h[n] (the a_i and b_i) is difficult, so use a tool to compute coefficients, given f_s and f_c (Matlab or Web sites)

Just insert found coefficients in IIR equation $b_0 y[n] + b_1 y[n-1] + b_2 y[n-2] = a_0 x[n] + a_1 x[n-1] + a_2 x[n-2]$

X

Outline

FIR Filters

Fixed-point Arithmetic

- Many microcontrollers have no floating-point unit
- Software floating-point often (too) slow
- Need to implement filters in fixed-point arithmetic

2's-complement bit representation (e.g., 32 bits, 14 bits fraction):

2¹ 2⁰ 2⁻¹ 2⁻²

3.75: 0000000000000011 110000000000 0.02: 0000000000000 00000101001001 -1.5: 000000000000001 10000000000 ^ -1 + 1 => 111111111111111110 1000000000000

Fixed-point Arithmetic

- Addition, subtraction as usual
- Multiplication: result must be post-processed:
 - make sure intermediate fits in variable! (e.g., 32 bits)
 - shift right by |fraction|

Example multiplication (32 bits, 14 bits fraction):

Filter Example

- Second-order Butterworth LP Filter $f_c = 10Hz$, $f_s = 1250Hz$
- Coefficients:
 - $a_0 = 0.0006098548$ $a_1 = 2 a_0$ $a_2 = a_0$ $b_0 = 1$ $b_1 = -1.9289423$ $b_2 = 0.9313817$

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0]	000000000000000000000000000000000000000	0000000001010 (a ₀ << 14)
a[1]	000000000000000000000000000000000000000	0000000010100
a[2]	00000000000000000000000	0000000001010
b[1]		11101101110100 ^ -1 + 1
b[2]	000000000000000000000	11101110011100

Implementation (high-cost)

int mul(int c, int d) {
 int result = c * d;
 return (result >> 14);
}

void filter() {
 y0 = mul(a0,x0) + mul(a1,x1) + mul(a2,x2) mul(b1,y1) - mul(b2,y2);
 x2 = x1; x1 = x0; y2 = y1; y1 = y0;

Filter Approximation Example

- Second-order Butterworth LP Filter $f_c = 10Hz$, $f_s = 1250Hz$
- Coefficients:

 $a_0 = 0.0006098548 * 8/10$ $a_1 = 2 a_0$ $a_2 = a_0$ $b_0 = 1$ $b_1 = -2$ $b_2 = 1$

Bit representation (e.g., 32 bits, 14 bits fraction):

Cascade two 1st-order filters

- First-order Butterworth LP Filter $f_c = 10Hz$, $f_s = 1250Hz$
- Coefficients:
 - $a_0 = 0.0245221$ $a_1 = a_0$ $b_0 = 1$ $b_1 = -0.95095676$

Bit representation (e.g., 32 bits, 14 bits fraction):

Approx: a[0] = 512 (was 402), b[1] = 16384 (was 15580)

Results

Approx bit better But still bad for very low frequencies

So add more powers of two until good approx (see matlab demo)

In4073 Emb RT Sys (2017-2018)

Scaling: tips and tricks

- One size fits all? NO!
 - number of bits depends on needed precision (sensor vs. joystick)
 - special case for proportional controller: P * ϵ
 - $fp_n * fp_n = fp_{2n}$ (overflow! requires an additional shift)
 - scalar * $fp_n = fp_n$ (overflow? no shift needed)
 - $fp_m * fp_n = fp_{m+n}$ (when P can't be represented as a scalar)
 - document precision for every data type (part of softw arch)
- fp_n to scalar
 - be patient, shift at last instant (when feeding the engines)

Outline

Fixed-point Implementation

Recall QR Sensor Signals phi, p

In4073 Emb RT Sys (2017-2018)

After 2nd-order Low-pass (10Hz)

In4073 Emb RT Sys (2017-2018)

Bias in p: Integration drift in phi

Problem Analysis

Noise is still considerable Still little correlation between (filtered) phi and p More aggressive filtering -> more phase delay 10 Hz signals already 90 deg phase lag with 2nd-order In our particular case we might apply *notch filter* In general though, too many noise frequencies sphi: negligible drift, too high noise sp: low noise, drift -> prohibits integration to phi

Kalman Filter: combine the best of both worlds!

Kalman Filter (near-hover)

Sensor Fusing: gyro and accel share same information

Integrate sp to phi
 Adjust integration for sp (drift) bias *b* by comparing phi to sphi, averaged over *long* period (phi ~ constant)
 Return phi, and p (= sp - bias)

Algorithm

- p = sp − b // estimate real p
 phi = phi + p * P2PHI // predict phi
 e = phi − sphi // compare to measured phi
 phi = phi − e / C1 // correct phi to *some* extent
 b = b + (e/P2PHI) / C2 // adjust bias term
- P2PHI: depends on loop freq -> compute/measure
 C1 small: believe sphi ; C1 large: believe sp
 C2 large (typically > 1,000 C1): slow drift

Summary

DSP is everywhere

Get a feel for it when applying to QR