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Why Signal Processing?

N

# Improve/restore media content
s Compression/Decompression
= Audio filtering (bass, treble, equalization)
= Video filtering (enhancement, contours, ..)
= Noise suppression (accel, gyro data)
= Data fusion (mixing accel + gyro data)

# By digital means: DSP
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Example: QR Sensor Signals phi, p
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After some low-pass filtering

%
4ﬁ phi
| ‘ ‘ H“ \ | ]
0 TV ] “‘ ’ " Ji muﬂh i w m )Z AR
2 ! I \" |
p [ pdt

In4073 Emb RT Sys (2017-2018)



N

DSP is Everywhere

# Cell Phone
& TV
# Plant Control

# Climate Control
® Automotive

# Copiers, Wafer Scanners
# Model Quad Rotors ...
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Objectives of this Crash Course

# Appreciate the benefits of Digital Filtering
# Understand some of the basic principles
# Communicate with DSP engineers

# Implement your own filters for the QR
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Signals and Frequency Synthesis

N

Usually signals (such as s) are composed of signals with many frequencies.
For instance, s contains

e 0 Hz component (green dashed line)

e lowest freq component (purple dashed line)

e higher freq component (yellow dashed line)

e and others

Fourier: Any periodic signal with base frequency f,
can be constructed from sine waves with frequency f,, 2f,, 3f,, ...
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Frequency Spectrum

N

v

The frequency spectrum of s is:

A

v

0 fy f,
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Filter: Frequency Response

N

L

Often filters are designed to filter frequency components in a signal
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Filter's Frequency Response

In4073 Emb RT Sys (2017-2018)




Sampling A Signal

N
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s sampled at discrete time intervals (sample frequency f,): x[n]
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Sampling: Avoid Aliasing

X
A f, > 2 * highest freq in s: OK

T Y N
W

f, < highest freq in s: you see non-existing low-freq signal(s)!
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Example Filter: Moving Average

N

L

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

X[n] —

MA Filter

— y[n]

x[0] = get sample();
y[0] = (x[0]+x[1]+x[2])/3;
put sample(y[0]);

x[2] = x[1]; x[1] = x[O0];

MA filter filters (removes) signals of certain frequency:

X, freq f, amplitude 1 —{ MA Filter

vy, freq f, amplitude ???
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Frequency Behavior MA

N

lower frequency x: amplitude y = 0.77
x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33, 0.00
y = 0.33, 0.66, 0.77, 0.66, 0.33, 0.00, -0.33, -0.66, -0.77, -0.66, -0.33

higher frequency x: amplitude y = 0.33
x = 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00
y = 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33

<

steady-state

i x = 0.00, 0.87, -0,87, 0.0, 0.87, -0.87, 0.00
1 [ y = 0.00, 0.00, 0.00, 0.00, 0.00
* > f/f,
0 1/6 1/4 1/3 1/2
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Analysis: Z Transform

N

e We can numerically evaluate frequency behavior (see C programs)
e Rather analyze frequency behavior through analytic means
e For this we introduce Z transformation

e Let x[n] be a signal in the time domain (n)
e The Z transform of x[n] is given by

X(z) =X, X[n] z"

where z is a complex variable.

e Example:
x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X=0+0.332z1 + 0.66z2 + z3 + 0.66z% + ...
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Z Transform

L

e Z transforms make life easy
e Properties of the Z transform:

o Let y[n] = x[n-1] (i.e., signal delayed by 1 sample)
Y(z) = z1 X(2)
e Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..

X=0+0.33z1 + 0.66z2 + z3 + 0.66z4% + ...

y = 0.00, 0.00, 0.33, 0.66, 1.00, ..

Y=0+0z!+0.33z2+ 0.6623 + z% + ...
=z1X
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Z Transform

L

e Other properties of the Z transform:

e Z transform of K a[n] = K A(2)
e Z transform of a[n] + b[n] = A(z) + B(2)

e Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X=0+0.33z1 + 0.66z2 + z3 + 0.662% + ...
y = 0.00, 0.66, 1.32, 2.00, 1.32, ..

Y=0+0.66z1 + 1.3222 + 2.00z3 + 1.32z% + ...

=2X

In4073 Emb RT Sys (2017-2018)
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Apply Z transform to MA Filter

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]
In terms of the Z transform we have:

Y(z) = 1/3 X(2) + 1/3 71 X(z) + 1/3 2 X(2)
=(1/3+ 1/3 71+ 1/3 z2) X(2)

= H(2) X(2)

X(z) — H(z) - Y(2)

e It holds Y(z) = H(z) X(z), where H(z) is filter transfer function
e Frequency response of filter can be read from H(z)

In4073 Emb RT Sys (2017-2018)
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Frequency Response H(z)

N

H(z) reveals frequency response (H(f)=H(z)| z=ei?*):
As Y(z) = H(z) X(z), |[H(z)| determines amplification of X(z)

The variable z is a complex variable and
encodes frequency f according to

Imfz) f/f, = 1/8
7 = @j2nf ! z=0.7+0.7]
= cos(2xnf) + j sin(2xf) /
y4
This corresponds to traversing B > Re(2)
the unit circle in the
complex z plane:
f/fs= 1/2 i f/fs=0
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Fourier Interpretation H(z)

N

L

Why let z take values z = €12™ where f is frequency?
Recall Z transform of x[n] equals X(z) = %, x[n] z™

The Fourier transform of x[n] equals X(f) = X, x[n] eJ2=nf

For a filter with transfer function H(f) its frequency response
for a signal with frequency f is |H(f)]|

By substituting z = €2 in H(z) we essentially obtain
the Fourier transform H(f) of which we know |H(f)]| is

the frequency response. So let z = e12™ and evaluate |H(z)| !

In4073 Emb RT Sys (2017-2018)

21




N

Frequency Response MA Filter

The transfer function of the MA filter is given by:

H(Z) = (1/3 + 1/3 21 + 1/3 7?)
=(1/3z22+1/3z+ 1/3) /2 (normalized)

im(z)

Determine poles and zeros of H(z):

f/f, = 1/3
(H(z) = 0)

zero (= root of numerator):
z, = -V2+12\3j, z, = -V2-123;
(H(z, ;) = 0)

pole (= root of denominator): ~ ---{--------- K-----nmne -

Z5, 2, =0
(H(z3 4) = =)

Simply inspect distance z to poles/zeros.

In4073 Emb RT Sys (2017-2018)
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Frequency Response MA Filter

Interpret H(z) while
traversing the unit circle
(upper half only):

im(z)

’
¥

0 1/6 1/4 1/3 1/2

In4073 Emb RT Sys (2017-2018) 23




Outline

N

# Introduction

#® / Transform

# FIR Filters

# IIR Filters

# Fixed-point Implementation
# Kalman Filter

In4073 Emb RT Sys (2017-2018) 24




Impulse Response

N

Impulse signal 5[n] =1, 0, 0, O, ... (a spike, Dirac pulse)

Impulse response (IR) of a filter:

6[”] —

> y[n], characteristic for H

MA filter: y

n] = 1/3 x[n]

+ 1/3 x[n-1] + 1/3 x[n-2]

Let x[n] = o[n], then y[n] = 1/3, 1/3, 1/3,0, 0, 0O, ...

Z Transform: X(z) = 1,Y(z2) =H(z) .1 =H(2) = 1/3 + 1/3z1 + 1/3z2
Impulse signal & reveals H(z) in terms of h[n]

In4073 Emb RT Sys (2017-2018)
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Impulse Response

MA filter: h[n] = 1/3, 1/3, 1/3,0, 0, O, ...
The IR is finite.

Filters defined by

y[n] = g, X[n] + a; x[n-1] + a, x[n-2] + ...

always have a finite IR and are therefore called FIR filters
(the equation is non-recursive in y)

Although any filter can be designed, FIR filters are
costly in terms of computation (often many terms needed)

In4073 Emb RT Sys (2017-2018)
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Averaging Filter

N

Suppose we want to extend MA filter to N terms:
y[n] = 1/N x[n] + 1/N x[n-1] + ... 1/N X[n-N-1]

Suppose we don’t want to implement an N-cell FIFO + 2N ops
and experiment with the following “short cut”:

y[n] = (N-1)/N y[n-1] + 1/N x[n]

(1st term approximates contents of FIFO after x[n-N-1]
has been shifted out, 2nd term is hewest sample shifted in)

Let’s analyze the frequency response of this filter
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Frequency Response Filter

y[n] = (N-1)/N y[n-1] + 1/N x[n]
Y(z) = (N-1)/N z1 Y(z2) + 1/N X(2)
H(z) = (1/N) / (1 = (N-1)/N z1)
= (z/N) / (z = (N-1)/N)
cf. MA filter:
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Frequency Response Comparison

- fIf,
0 1/6 1/4 1/3 1/2
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Comparison of both Filters

N

New filter is much more different than perhaps assumed

Pole-zero plot is quite different:
now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N),
the sooner is the cut-off (in terms of frequency f),
this generally corresponds to MA filter but this would take large FIFO!
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Impulse Response

Filter equation: y[n] = (N-1)/N y[n-1] + 1/N x[n]
IR (N = 3): h[n] = 1/3, (2/3)1/3, (2/3)%/3, ..., (2/3)"/3, ...

The IR is infinite.

Filters defined by
by Y[n] + by y[n-1] + ... = a5 x[n] + a; x[n-1] + ...

always have an infinite IR and are therefore called IIR filters
(the equation is recursive in y)

Filter order determined by # coeficients. Our case: 1t order.
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Designing Filters

Looking at the pole-zero plot, the IIR filter can be improved
by moving zero to left:

now |H(z)| even becomes zero for f = f,/2 A

so sharper cut-off. i

This plot corresponds to the '\ Z
well-known class of Butterworth filters ___ 4 i
(our case: 1st-order Butterworth):

The zero is created by adding x[n-1]:

y[n] = (N-1)/N y[n-1] = 1/2N x[n] + 1/2N x[n-1]

H(z) = ((z+1)/2N) / (z-(N-1)/N)
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Enhancing Filters

N

L

Frequency response 1st-order Butterworth:

log2 [H(z)|

log2(1)

slope -1 .. would like, e.g., slope -2

(sharper filtering)
og2(V2) [N

l0g2(Va) [

. — 5 . log2 (f/f.)
nf f 2f ‘4f
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Second-order Butterworth

N

L

Looking at the pole-zero plot, the IIR filter
can be further improved by introducing
more poles & zeros. A
now |H(z)| has same cut-off freq f. ’
but sharper slope!

Computing h[n] (the a; and b;)

is difficult, so use a tool to compute
coefficients, given f, and f.

(Matlab or Web sites)

Just insert found coefficients in IIR equation
by Y[Nn] + by y[n-1] + b, y[n-2] = a, x[n] + a; X[n-1] + a, X[n-2]

In4073 Emb RT Sys (2017-2018)
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Fixed-point Arithmetic

N

e Many microcontrollers have no floating-point unit
e Software floating-point often (too) slow
e Need to implement filters in fixed-point arithmetic

2's-complement bit representation (e.g., 32 bits, 14 bits fraction):

21 20 2:122

\

3.75:  000000000000000011 11000000000000

0.02: 000000000000000000 00000101001001

-1.5:  000000000000000001 10000000000000 ™ -1 +1 =>
111111111111111110 10000000000000
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Fixed-point Arithmetic

N

e Addition, subtraction as usual

e Multiplication: result must be post-processed:
e make sure intermediate fits in variable! (e.g., 32 bits)
o shift right by |fraction]

Example multiplication (32 bits, 14 bits fraction):

3.75:  00000000000000001111000000000000 times:
-1.5: 11111111111111111010000000000000 equals:
10100110000000000000000000000000

(value just fits in 32 bits!)

(now shift right by 14 bits and sign-extend):

11111111111111101001100000000000 which is:
-5.625 111111111111111010 01100000000000

In4073 Emb RT Sys (2017-2018)
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Filter Example

N

L

e Second-order Butterworth LP Filter f. = 10Hz, f, = 1250Hz
e Coefficients:

a, = 0.0006098548 a; = 2 a, a, = q,
by =1 b, = -1.9289423 b, = 0.9313817

Bit representation (e.g., 32 bits, 14 bits fraction):

000000000000000000 00000000001010 (a, << 14)
000000000000000000 00000000010100
000000000000000000 00000000001010
000000000000000001 11101101110100 ~ -1+ 1
000000000000000000 11101110011100

OO0 oL O
N =N = O
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Implementation (high-cost)

int mul (int ¢, int d) {
int result = ¢ * 4;
return (result >> 14);

}

void filter () {

y0 = mul (a0,x0) + mul (al,xl) + mul(a2,x2) -
mul (bl,yl) - mul(b2,y2);
x2 = x1; x1 = x0; y2 = yl; yl = yO0;

In4073 Emb RT Sys (2017-2018)
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Filter Approximation Example

e Second-order Butterworth LP Filter f. = 10Hz, f, = 1250Hz
e Coefficients:
a, = 0.0006098548 * 8/10 a; =2 q, a, = Qq,
by=1 b, =-2 b,=1

Bit representation (e.g., 32 bits, 14 bits fraction):

000000000000000000 00000000001000 (was 10)
000000000000000000 00000000010000 (was 20)
000000000000000000 00000000001000 (was 10)
1] 000000000000000010 00000000000000 (was 31604)
000000000000000001 00000000000000 (was 15260)

D'O'_QJ aQ Q
NN = O
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Implementation (low-cost)

N

(x0 << 3) >> 14 + (x1 << 4) >> 14 +

(x2 << 3) >> 14 + (yl << 15) >> 14 -

(y2 << 14) >> 14; // assume compiler optimizes ...
x2 = x1; x1 = x0; y2 = yl; yl = yO0;

yO0

35

30~

25

Approx too coarse
(2nd-order FIR:
a, b, very sensitive!)

20~

15

10~

I L I I L I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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Cascade two 1st-order filters

N

L

e First-order Butterworth LP Filter f. = 10Hz, f, = 1250Hz
e Coefficients:

a, = 0.0245221 a; = q,

by =1 b, = -0.95095676

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000 00000110010010 (a, << 14)
a[l] 000000000000000000 00000110010010
b[1] 000000000000000000 11110011011100 ~ -1 + 1

Approx: a[0] = 512 (was 402), b[1] = 16384 (was 15580)
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Results

N

15

[y

0.

)]

o

-0.

[&)]

i « +— Approx bit better
) But still bad for very
‘ low frequencies
/ So add more powers
1 of two until good approx
(see matlab demo)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-1
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Scaling: tips and tricks

e One size fits all? NO!
e number of bits depends on needed precision (sensor vs. joystick)

e special case for proportional controller: P * €
e fp, * fp, = fp,,  (overflow! requires an additional shift)

e scalar * fp,, = fp,, (overflow? no shift needed)
e fp, * fp, = fPmsn  (When P can’t be represented as a scalar)

e document precision for every data type (part of softw arch)

e fp, to scalar
e be patient, shift at last instant (when feeding the engines)
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Recall QR Sensor Signals phi, p

N
\J

300

200 -

B | ‘ ’ ‘ phi
e

-100 -
p [ pdt
_300 [ [ 1 [ [ [ 1 1
2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 10°
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After 2nd-order Low-pass (10Hz)

N
\J

phi

il
(4
\
l Ludtll | i '

L’
i

p [ pdt

H‘

y 7 i
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a0

Bias in p: Integration drift in phi

25+

A0

1B

pd

,-ff//_
J pdt /// '

10 | // .

phi |
o ¥ _
| ¢ i
| P
429% E.IISEI 27 E.I?'1 2.;'2 E.I?E E.I?ﬂf 2.74 2.}5 ) 12:?
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Problem Analysis

N

L

Noise is still considerable

Still little correlation between (filtered) phi and p
More aggressive filtering -> more phase delay

10 Hz signals already 90 deg phase lag with 2"d-order
In our particular case we might apply notch filter

In general though, too many noise frequencies

sphi: negligible drift, too high noise

sp: low noise, drift -> prohibits integration to phi

® @ PP PePePe

Kalman Filter: combine the best of both worlds!
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Kalman Filter (near-hover)

N

L

# Sensor Fusing: gyro and accel share same information

Kalman

sphi — Filter . phi

# Integrate sp to phi
# Adjust integration for sp (drift) bias 6 by comparing

phi to sphi, averaged over /ong period (phi ~ constant)
# Return phi, and p (= sp — bias)
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Algorithm

N

® p=sp—-b // estimate real p

@ phi = phi + p * P2PHI  // predict phi

# e = phi— sphi // compare to measured phi
# phi =phi—-e/Cl // correct phi to some extent
# b=Db+ (e/P2PHI) / C2 // adjust bias term

P2PHI: depends on loop freq -> compute/measure
C1 small: believe sphi ; C1 large: believe sp
C2 large (typically > 1,000 C1): slow drift

¢ @ @
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Summary

L

# DSP is everywhere
# This was merely introduction into the field
# Get a feel for it when applying to QR

In4073 Emb RT Sys (2017-2018)
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