NI

INn4073
Embedded Real-Time Systems

Embedded Programming

I

P N

Embedded Software

T12726-B

e 2nd year BSc course
* Fast forward (10:1)

An Embedded
Software Primer

f‘&

David E. Simon

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOrTHeAAE S

| S e

Embedded Programming

I”

* More difficult than “classical” programming

e |nteraction with hardware

e Real-time issues (timing)

e Concurrency (multiple threads, scheduling, deadlock)

e Need to understand underlying RTOS principles

e Event-driven programming (interrupts) = 3
* Lots of (novice) errors (hence the crisis)

| S e

Embedded Programming Example

* Automatic sliding gate task (thread):

for (53) {

// wait to open
while (inp(sensor) 1= 1) ;
out(door,0OPEN) ;
// wait to close
while (inp(sensor) == 1) ;
sleep(1000);

// close after timeout
out(door,CLOSE);

® Any issues with this code?

”

Specification: Finite State Machine

S’ . S ¢ S

wait to open
/! . sleep(1000)

out(door,open //wait to close

t
out(door,close)

timin

® Red arc missing from the specification
® Door can slam in your face!

Programming State Machines

’ 7
S s’
out(door,ope /\ sleep(1000)

standby timing

® Finite State Machines

e prime design pattern t(dt -
in embedded systems ’

® Transitions initiated by events
e interrupts (timers, user input, ...)
e polling
® Actions
e output
e modifying system state (e.g., writing to global variables)

o el

Running example

* See Wikipedia: Automata-based programming?

® Consider a program in C that reads a text from the
standard input stream, line by line, and prints the first
word of each line. Words are delimited by spaces.

Ihttps://en.wikipedia.org/wiki/Automata-based programming -

o el

Exercise (5 min)

Code

® Caonsider a program in C that reads a text from the
standard input stream, line by line, and prints the first
word of each line. Words are delimited by spaces.

-1

© 0 ~NOoO O b WDN PP

e o o
O UM WNER O

17.
18.
19.}

. #include <stdio.h>

. #include <ctype.h>
- 1Int main(void)

int c;
do {
do
c = getchar(Q);
while(c == " 7);

Ad-hoc solution

e too many loops

e duplicate EOF corner casing

while(lisspace(c) && ¢ = "\n“ && c != EOF)-f

putchar(c);

c = getchar();
}
putchar(*\n");

while(c = "\n“ && c = EOF)

c = getchar();
} while(c '= EOF);
return O;

)\

skip
- leading
spaces

print
word

skip
— trailing

chars

FSM

N#* N *

A K o o
—=| hefore = | J1side =

S = space
N = newline

A = all other chars
* = print

10

© 0 ~NO O b WDN P

N o o
N~ O DN WNRER O

. int main(void)

-1

FSM-based solution

enum states { ¢

1 loop
1 case for EOF checking

before, Inside, after
} state;
int c;
state = before;
while((c = getchar()) = EOF) {
switch(state) {
case before:
if(c 1= " ") {
putchar(c);
if(c = "\n")
state = iInside;
+
break;
case inside:

11

17.
18.
19.
20.
21.
22.
23.
24 .
25.
26 .
27 .
28.
29.
30.
31.
32.
33.
34.

FSM-based solution

case iInside:
iIf(lisspace(c))

putchar(c);

else if(c == "\n") {
putchar(*\n");
state = before;

} else
state = after;

break;

case after:

1If(c == "\n") {

putchar(“\n?);

state = before;

} _ :
break; defensive programming!

default:
fprintf(stderr, ’unknown state %p\n”, state);
abort();

12

Refactored solution

1. enum states { before, inside, after };

2. void step(enum states *state, Int c¢)

3. 4

4 switch(*state) {

5. case before: ... *state = iInside;
6 case iInside: ... *state = after;
7 case after: ... *state = before;
8. +

9. %}

10.1nt main(void)

11.4

12. int c;

13. enum states state = before;

14. while((c = getchar()) = EOF) {

15. step(&state, c);

16. }

17. return O;

18}

lifted loop

13

FSM: table-based solution

® Transition:

e action
e next state

N
@ S
Ak

A, B

1. 1nt main(void)
S = space

2. { N = newline
3 int c:- A = all other chars

i ? * = print
4. states state = before;
5. while((c = getchar()) = EOF) {
6. edges edge = lookup(state, c);
7. edge.action();
8. state = edge.next;
9. }
10. return O;

11.}

14

FSM: table-based solution

® Transition:

e action
e next state

N
@ S
Ak

A, B

1. 1nt main(void)
S = space

2. { N = newline
3 int c:- A = all other chars

- i * = print
4. states state = before;
5. while((c = getchar()) = EOF) {
6. edges *edge = &lookup[state, c];
7. edge->action(c);
8. state = edge->next;
9. +
10. return O;

11.}

15

What's in the assignment?

BACK TO QUADCOPTERS

In4073 Emb RT Sys (2016-2017)

16

Controller Modes

N

L

e controller mode: manual
e controller model: calibrate
e controller mode: control (yaw, pitch, roll)

A\ 4

yaw

controller

— ael-4

A

+ .
Sr LD 7r —| filter

Ve
N

cal — srO

A\ 4

mode

In4073 Emb RT Sys (2016-2017)

17

N

Quadrupel: FSM

PC \ drone
joystick / - /
/ﬂ\ [keyboard | \

|

| PC link

From the assignment

e Safe Safe r * Calib
e Panic f

e (Calibrate

e Full control Panic k Full

In4073 Emb RT Sys (2016-2017) 18

Quadrupel: Control Loop

N

phi
ael theta
. ae2 p
lift ae3 q sax
rold _____________ aed ---------- r i say
. ' pitch T — — | saz
,ngfﬂfkﬂﬂ’ ES ™ actuators > sensors [| 23
i i 3 “ sr
""""""""""" drone "ttt
Loop
e Read sensors
e Compare with set points
e Set motor values
In4073 Emb RT Sys (2016-2017)

19

N

Quadrupel: FSM + control loop

gyro/accel (6)

PC | > FCB > motors (4)

barometer

concurrency!

In4073 Emb RT Sys (2016-2017)

20

Communication protocol (lab 1)

N

L

@®PC -> Drone (send)

= periodic: pilot control
= ad hoc: mode changing, param tuning

®Drone -> PC (receive)
m periodic: telemetry (for visualization)
= ad hoc: logging (for post-mortem analysis)

® Dependable, robust to data loss
= header synch

In4073 Emb RT Sys (2017-2018)

Design your protocol (today!)

N

® Packet layout
m Start/stop byte(s)
= header, footer?
s fixed/variable length

@ Message types

= values (sizes) BW + processing
= frequency constraints?!

In4073 Emb RT Sys (2017-2018)

N

System Architecture (today!)

@ Functional decomposition

®\Who does what?

@ Interfaces

In4073 Emb RT Sys (2017-2018)

Software Architecture Survey

N

L

@ Round-Robin (no interrupts)
@ Round-Robin (with interrupts)
@ Function-Queue Scheduling
® Real-Time OS

@ Motivates added value of RTOS

@ At the same time demonstrates you don’t always
need to throw a full-fledged RTOS at your problem!

In4073 Emb RT Sys (2016-2017) 24

Round-Robin

S
void main(void)
{
while (TRUE) {
11 poll device A
11 service 1T needed
11 poll device Z
1l service 1T needed
s
s

@ polling: response time slow and stochastic
@ fragile architecture

In4073 Emb RT Sys (2016-2017) 25

Round-Robin with Interrupts

N

L

void i1sr_deviceA(void)

{
¥

11 service immediate needs + assert flag A

void main(void)

{
while (TRUE) {
11 poll device flag A
11 service A 1T set and reset flag A
+

@ ISR (interrupt vs. polling!): much better response time
@ main still slow (i.e., lower priority then ISRS)

In4073 Emb RT Sys (2016-2017) 26

RR versus RR+1

N

L

@ Interrupt feature introduces priority mechanism

Round-Robhin Round-Robin
with interrupts

high prio
! devA ISR
devB ISR
everything i
devZ ISR
! task code
low prio

In4073 Emb RT Sys (2016-2017) 27

N

link A

@ IRQs on char rx and tx devices (UART)

Example: Data Bridge

tX

decrypt

I'X

I'X

> encrypt

> IX

® rx ISR reads UART and queues char

@ tx ISR simply asserts ready flag

link B

@ main reads queues, decrypt/encrypts, writes queues,
writes char to UART & de-asserts flag (critical section!)

@ architecture can sustain data bursts

In4073 Emb RT Sys (2016-2017)

28

RR with Interrupts: Evaluation

N

L

@ simple, and often appropriate (e.g., data bridge)
@ main loop still suffers from stochastic response times

@ interrupt feature has even aggravated this problem:
fast ISR response at the expense of even slower main
task (ISRs preempt main task because of their higher
priority)

@ this rules out RR+1 for apps with CPU hogs

@ moving workload into ISR is usually not a good idea as
this will affect response times of other ISRs

In4073 Emb RT Sys (2016-2017) 29

Function-Queue Scheduling

N

L

void 1sr_deviceA(void)

1l service immediate needs + queue A() at prio A

void main(void)

while (TRUE) {
11 get function from queue + call 1t

}

void function_A(void) { !! service A }

In4073 Emb RT Sys (2016-2017)

30

Function-Queue Sched: Evaluation

N

L

@ task priorities no longer hardwired in the code (cf. RR
architectures) but made flexible in terms of data

@ each task can have its own priority
@ response time of task T drops dramatically:
from ZI cal\T t_l (RR) {0 max icall\T t_l (FQS)

@ still sometimes not good enough: need preemption at
the 7ask level, just like ISRs preempt tasks (in FQS a
function must first finish execution before a context
switch can be made)

In4073 Emb RT Sys (2016-2017) 31

N

Real-Time OS

void i1sr_deviceA(void)

{
¥

11 service immediate needs + set signal A

void taskA(void)
{

1T wait for signal A
11 service A

@ includes task preemption by offering thread scheduling
@ stable response times, even under code modifications

In4073 Emb RT Sys (2016-2017) 32

Performance Comparison

N

L

Round-Robin Round-Robin RTOS
with interrupts

high prio
1 devA ISR
devA ISR devB ISR
devB ISR |
everything | § devZ ISR
devZ ISR task code A
task code task code B
! task code Z |
low prio

In4073 Emb RT Sys (2016-2017)

RTOS: Primary Motivation

N
\J

® Task switching with priority preemption
@ Additional services (semaphores, timers, queues, ..)

@ Better_codel
@E Interrupt facilities, one doesn’t always needD
throw a full-fledged RTOS at a problem
= However, In vast majority of the cases the code becomes

(1) cleaner, (2) much more readable by another
programmer, (3) less buggy, (4) more efficient

@ The price: negligible run-time overhead and small
footprint

In4073 Emb RT Sys (2016-2017) 34

| S e
S

Interrupts are evil

® Concurrent execution
® Shared data problem

35

| S e

Shared-Data Problem?

void i1sr_read temps(void)
{
1Temp[O]
1Temp[1]

peripherals|[..];
peripherals|[..];

}

void main(void)

{

while (TRUE) {
tmpO = 1Temp[O];.

NOT ATOMIC! tmpl = iTemp[1];
iIT (tmpO != tmpl)
panic();

Book: page 92 ...

Possible
Context

Switch

36

| S e

Finding this bug...

® Can be very tricky

e The bug does not occur always!
® Frequency depends on

e The frequency of interrupts

e Length of the critical section

® Problem can be difficult to reproduce

* Advise: double check the access on data used by ISR!

37

| S e

Solving the Data-Sharing Problem?

void

void

Isr_read temps(void) MOVE R1, (iTemp[O0])
MOVE R2, (iTemp[1l])
iTemp[0] = peripherals[..]; SUBSTRACT R1,R2

iTemp[1] = peripherals[..]: JCOND ZERO, TEMP_OK

)) TEMP_OK:
main(void)

while (TRUE) {
iIf (iTemp[O0] '= 1Temp[1])
panic();

38

Solution #1

* Disable interrupts for the ISRs that share the data

while (TRUE) {

11 DISABLE INT

tmp0 = 1Temp[O];

tmpl = 1Temp[1];

11 ENABLE INT

it (tmpO0 = tmpl)
panic();

The critical section is now atomic

39

Atomic & critical section

® A part of a program is atomic if it cannot be interrupted
e Interrupts and program code share data

® gtomic can also refer to mutual exclusion
e Two pieces of code sharing data
e They can be interrupted

® The instructions that must be atomic = critical section

40

Be careful!

static Int 1Seconds,

iIMinutes;

void interrupt vUpdateTime(void)

{

}

++1Seconds;

1T (1Seconds>=60) {
1Seconds=0;
++iIMinutes;

long ISeconds(void)

{

disable();

return (IMinutes*60+i1Seconds);

enable(); ﬁ\\\\\\\§~

too little, too late ®

41

| S e

Function calls and enable()

* enable() can be a source of bugs!

void functionl ()

int 2 O
{ {
// enter critical section disable();
disable(); "
" enable();
temp = F20); "
} \
// exit critical section
enable();
y should test if

this is fine

42

More on shared-data...

static long int ISecondsToday;

void interrupt vUpdateTime() MOVE R1, (I1SecondsToday)

{ MOVE R2, (ISecondsToday+1)
l+lSecondsToday; %ETURN

+

long IGetSeconds()

{

return (1SecondsToday);
}

43

Any issues here?

static long int 1SecondsToday;

void interrupt vUpdateTime()

{

++1SecondsToday;
by
long IGetSeconds()
{

long IReturn;

e

IReturn = ISecondsToday; : : d
while (IReturn!=ISecondsToday) L. [NGENIOUS COGE

IReturn = ISecondsToday; without interrupts

return (IReturn);

44

Any issues here?

volatile static long Int 1SecondsToday;

void interrupt vUp e
{

++1SecondsToday; Otherwise compiler
¥ might optimize this
long 1GetSeconds() code!
{

long IReturn;

IReturn = ISecondsToday;

while (IReturn!=1SecondsToday)
IReturn = ISecondsToday;

return (IReturn);

45

Interrupt Latency

® Quick response to IRQ may be needed

* Depends on previous rules:
e The longest period of time in which interrupts are disabled
e The time taken for the higher priority interrupts
e Overhead operations on the processor (finish, stop, etc.)
e Context save/restore in interrupt routine
e The work load of the interrupt itself

* worst-case latency =t_maxdisabled + t_higher prio ISRs +
t_myISR + context switches

46

