/X/

Embedded Software

CSE2425

2. C programming

) B e Koen Langendoen
% ¢ & F PEmbedded and Networked Systems

C crash course

For Java programmers
e Main differences
e Common pitfalls

Language + tools // next3 lecture
Learning by doing

* Online — Weblab
e TA support — Queue

C for Java Programmers™

Henning Schulzrinne
Dept. of Computer Science
Columbia University

*Selection and editing by Koen Langendoen

C history

= C
= Dennis Ritchie in late 1960s and early 1970s
= systems programming language
= make OS portable across hardware platforms

= not necessarily for real applications — could be written in
Fortran or PL/I

= C++
= Bjarne Stroustrup (Bell Labs), 1980s
= object-oriented features

= Java

= James Gosling in 1990s, originally for embedded systems
= object-oriented, like C++
= jdeas and some syntax from C

Henning Schulzrinne Advanced Programming

Why learn C (after Java)?

—_

= Both high-level and low-level language
= (OS: user interface to kernel to device driver

= Better control of low-level mechanisms Ideal for
= memory allocation, specific memory locations | embedded

= Performance sometimes better than Java systems
= usually more predictable

= Most older code is written in C
= Being multi-lingual is good!

—_

= But,....
= Memory management responsibility
= Explicit initialization and error detection
= generally, more lines for same functionality

_ More room
for errors

—_—

Henning Schulzrinne Advanced Programming 7

Prog. language popularity

Ratings (%)

30

25

20

15

10

TIOBE Programming Community Index

2008

Source: www.tiobe.com

2010

2016

== Java

= C

e CH+

== Python

=== V/isual Basic .NET
w— CH#

= JavaScript

=== PHP

= SQL

= Go

C vs. Java

Java C
object-oriented function-oriented
strongly-typed can be overridden

polymorphism (+, ==

very limited (integer/float)

classes for name space

(mostly) single name space

macros are external, rarely
used

macros common
(preprocessor)

layered I/O model

byte-stream I/O

Henning Schulzrinne

Advanced Programming 12

C vs. Java

Java C

automatic memory By hand: function calls
management (malloc, free)

no pointers (only pointers (memory
references) addresses) common

by-reference, by-value

by-value parameters

exceptions, exception
handling

if (f() < 0) {error}
OS signals

concurrency (threads)

library functions

Henning Schulzrinne

Advanced Programming 13

C vs. Java

Java

C

length of array

on your own

string as type

just bytes (char []), with O
end

dozens of common libraries | OS-defined

Henning Schulzrinne

Advanced Programming

14

Java program

= collection of classes

= class containing main method is starting class

= running java StartClass invokes
StartClass.main method

= JVM loads other classes as required

Henning Schulzrinne Advanced Programming 15

C program

= collection of functions
= one function —main () —is starting function

= running executable (default name a.out) starts
main function

= typically, single program with all user code
linked in — but can be dynamic libraries (.dll, .s0)

Henning Schulzrinne Advanced Programming 16

C vs. Java

public class hello
{

public static void main (String args [])

System.out.println (“Hello world”) ;

{

#include <stdio.h>

int main(int argc, char *argv|[])

{

return 0;

puts (“Hello world\n”);

Henning Schulzrinne

Advanced Programming

19

C vs. Java

public class hello
{

public static void main (String args [])

System.out.println (“Hello world”) ;

{

_— T

<:#Hjmﬂude <stdio.h>
\

int main(int argc, char *argvl[])

{
puts (Y“Hello wor

return 0O;

Henning Schulzrinne Advanced Programming

23

Executing C programs

= Scripting languages are usually interpreted

= perl (python, Tcl) reads script, and executes it

= sometimes, just-in-time compilation — invisible to user
= Java programs semi-interpreted:

= javac converts foo.java INtO foo.class

= not machine-specific

= pyte codes are then interpreted by JVM
= C programs are normally compiled and linked:

= gcc converts foo.c into a.out

= a.out is executed by OS and hardware

Henning Schulzrinne Advanced Programming 26

The C compiler gcc

= gcc invokes C compiler

= gcc translates C program into executable for
some target

= default file name a.out

= also “cross-compilation”
$ gcc hello.c

$ a.out

Hello, World!

Henning Schulzrinne Advanced Programming 30

gcc

= Behavior controlled by command-line switches:

-0 file output file for object or executable

-Wall all warnings — use always!

-C compile single module (non-main)

-g insert debugging code (gdb)

-p insert profiling code

-| library

-E preprocessor output only

-std=c99 C++ style comments, local vars in for loops, ...

Henning Schulzrinne Advanced Programming 31

Using gcc

= Two-stage compilation
= pre-process & compile: gcc -c hello.c
= |ink: gcc —-o hello hello.o

= Linking several modules:
gcc -c a.c =2 a.0
gcc -c b.c 2 b.o

gcc —o hello a.o b.o

= Using math library

"= gcc —o calc calc.c -1m

Henning Schulzrinne Advanced Programming

32

Error reporting in gcc

= If gcc gets confused, hundreds of messages
= fix first, and then retry — ignore the rest
= gcc Will produce an executable with warnings

= don't ignore warnings — compiler choice is often
not what you had in mind

= Does not flag common mindos
= if (x = 0) VS. 1if (x == 0)

Henning Schulzrinne Advanced Programming 34

C preprocessor

= The C preprocessor (cpp) is a macro-
processor that
= manages a collection of macro definitions
= reads a C program and transforms it
= Example:

#tdefine MAXVALUE 100
#define check(x) ((x)

const int MAXVALUE = 100;

int check (int x) {
if (check (1)) return x < MAXVALUE;

}

beco
' (((1) < 100)) {..}

Henning Schulzrinne Advanced Programming 38

C preprocessor

= Preprocessor directives start with # at
beginning of line:
= define new macros (don‘t try this at home! ©)
= input files with C code (typically, definitions)
= conditionally compile parts of file

= gcc -E shows output of preprocessor
= Can be used independently of compiler

Henning Schulzrinne Advanced Programming

39

C preprocessor -file inclusion

#include “filename.h”

#include <filename.h>

= jnserts contents of filename into file to be compiled
= “filename” relative to current directory

= <filename> relative to /usr/include

= gcc -I flag to re-define default

= import function prototypes (cf. Java import)

= Examples:
#include <stdio.h>
#include “mydefs.h”
#include “/home/alice/program/defs.h”

Henning Schulzrinne Advanced Programming 40

C preprocessor - conditional
compilation

#if expression

code segment 1

#else

code segment 2
#endif

preprocessor checks value of expression
if true, outputs code segment 1, otherwise code segment 2
machine or OS-dependent code

can be used to comment out chunks of code — bad!
#tdefine 0S linux

#1f OS == linux

puts (“Linux!”);
#else

puts (“"Something else”);
#endif

Henning Schulzrinne Advanced Programming

41

C language

= Data model

simple, low-level

= Control structures

syntax quite similar to Java
sequencing: ;

grouping: {...}

selection: if, switch
iteration: for, while
operators: =, ==, +=, ++,

Henning Schulzrinne Advanced Programming

consistent indentation
please!

&&, &

44

Numeric data types

type precision #include <stdint.h>

char 8 bits int8 t

short > 16 bits intl6 t

int > 16 bits int32_t

long > 32 bits inté4 _t

long long > 64bits int128_t

float > 32 bits IEEE 754 single prec.

double f > 64fbits IEEE 754 double prec.
it

Architecture dependent

Henning Schulzrinne

preferred

Advanced Programming

Unsigned integers

= Also, unsigned versions of integer types
= e.d., unsigned short, uint16_t

—_

= same bits, different interpretation
= shift right (>>) with(out) sign extension

= ((int8_t)OxFF) >> 4 == OxFF thou shalt
= ((uint8_t)OxFF) >> 4 == OxOF —{ avoid

= overflow is undefined for signed ints, but | | Unsigneds

wrap-around for unsigned ints
= ((uint8_t)OxFF) + 1 == 0x00

Henning Schulzrinne Advanced Programming 50

Type conversion

#include <stdio.h>
void main (void)
{
int i, = 12;
float f1,f2 = 1.2;

i = (int) £2;
fl = 1i;

fl = £2 + (float) j; /* explicit:
/* implicit:

f1

£f2 + j;

Henning Schulzrinne

/* i not initialized, only j */

/* explicit:
/* implicit:

Advanced Programming

i<-1,

fl
f1l

<_
<_

1.
.2

1

0.2 lost
fl <- 1.0 */

2

+
+

12.
12.

0
0

*/

*/

o1

Explicit and implicit conversions

= Implicit: e.g.,, s = 1 + ¢
= Promotion: char -> short -> int -> ...

= If one operand is double, the other is made
double

= If either is f10at, the other is made fioat,
etc.

= Explicit: type casting — (type)

= Almost any conversion does something — but
not necessarily what you intended

Henning Schulzrinne Advanced Programming 52

Type conversion

int x = 100000;

short s;

S = Xy

printf (“%d %d\n”, x, s);

100000 -31072

Henning Schulzrinne

Advanced Programming

53

C - no booleans

= C doesnt have booleans

= Emulate as int or char, with values 0 (false)
and non-zero (true)

= Allowed by flow control statements:
if (n = 0) {
printf (Y“something wrong”) ;

}
= Assignment returns zero -> false

Henning Schulzrinne Advanced Programming 54

User-defined types

= typedef gives names to types:

typedef short int smallNumber;
typedef unsigned char byte;
typedef char String[100];

smallNumber x;

byte b;

String name;

Henning Schulzrinne Advanced Programming

55

Defining your own boolean

typedef char boolean;
#define FALSE 0
#define TRUE 1

= Generally works, but beware:

check = x > 0;
if (check == TRUE) {..}

= If x is positive, check will be non-zero, but
may not be 1.

Henning Schulzrinne Advanced Programming

56

Enumerated types

Define new integer-like types as enumerated types:

typedef enum {
Red, Orange, Yellow, Green, Blue, Violet
} Color;

enum weather {rain, snow=2, sun=4};

look like C identifiers (names)
are listed (enumerated) in definition

treated like integers
= can add, subtract — even color + weather

= can't print as symbol (unlike Pascal)
= but debugger generally will

Henning Schulzrinne Advanced Programming

S7

Enumerated types

= Just syntactic sugar for ordered collection of
iInteger constants:

typedef enum {
Red, Orange, Yellow
} Color;

is like
#define Red O
#define Orange 1
#define Yellow 2

= typedef enum {False, True} boolean;

Henning Schulzrinne Advanced Programming

58

Objects (or lack thereof)

= C does not have objects / classes
= but does support abstract data types through separate files
= declaration (xxx.h) vs. implementation (xxx.c)

= Variables for C’s primitive types are defined similarly:
short int x;
char ch;
float p1 = 3.1415;
float £, g;

= Variables defined in {} block are active only in block

= Variables defined outside a block are global (persist
during program execution), but may not be globally
visible (static)

Henning Schulzrinne Advanced Programming 61

Data objects

= Variable = container that can hold a value
= in C, pretty much a CPU word or similar

= default value is (mostly) undefined — treat as
random

= compiler may warn you about uninitialized
variables

" ch = ‘Ya’"; x = x + 4;

= Always pass by value, but can pass address

to function:
scanf (“3sd%t”, &x, &f);

Henning Schulzrinne Advanced Programming 62

Data objects

= Every data object in C has
= a name and data type (specified in definition)
= an address (its relative location in memory)
= 3 size (number of bytes of memory it occupies)
= visibility (which parts of program can refer to it)
= [ifetime (period during which it exists)

Henning Schulzrinne Advanced Programming

63

Data objects

= Unlike scripting languages and Java, all C
data objects have a fixed size over their
lifetime

= except dynamically created objects

= size of object is determined when object is
Created:
= global data objects at compile time (data)
= |ocal data objects at run-time (stack)
= dynamic data objects by programmer (heap)

Henning Schulzrinne Advanced Programming

64

Memory layout of programs

1200

___________________________________ Function call
local vars — | Stack | stack (activation
1010 l FECOFdS)
560 T
malloc() —— Heap > Dynamic memory
420
global vars —» Data Static memory
300
Code
0

Data objects

= Every data object in C has

= a name and data type (specified in definition)
an address (its relative location in memory)
a size (number of bytes of memory it occupies)
visibility (which parts of program can refer to it)
lifetime (period during which it exists)

= Warning:
int *foo(char x) { dangling pointer
return é&x; (Ouch!)

Henning Schulzrinne Advanced Programming 70

Data objects

= Warning:

int *foo(char x) {
return &x;

}

volid main () {
char *pt;
pt = foo(‘a’);
*pt = ‘b';
foo('c’);

}

Output
= A-abb
= B—abc

= C — <segmentation fault>

putc (*pt) ;
putc (*pt) ;
putc (*pt) ;

dangling pointer
(ouch!)

72

Data object creation

int x;

int arr[20];

vold main (int argc, char *argv[]) {
int 1 = 20;
{int x; x =1 + 7;}

}
volid f (int n)
{
int a, *p;
a = 1;

p = (int *)malloc(sizeof int);

Henning Schulzrinne Advanced Programming 73

Data object creation

= malloc () allocates a block of memory
= |ifetime until memory is freed, with free ()

= Memory /eakage — memory allocated is never
freed:

char *combine (char *s, char *t) {

U = (char *)malloc(strlen(s) + strlen(t) + 1);
if (s !'= t) |
strcpy(u, s); strcpy(utstrlen(s), t);

return u;
} else {
return NULL;
}
}

Henning Schulzrinne Advanced Programming 74

Memory allocation

= Note: malloc () does not initialize data

= vo1d *calloc(size t nmemb, size t size)
does initialize (to zero)
" malloc(sz) = calloc(sz, 1)

Henning Schulzrinne Advanced Programming 75

Data objects and pointers

= The memory address of a data object, e.g., int x
= can be obtained via &x
= has a data type int * (in general, type *)

= has a value which is a large (4/8 byte) unsigned integer
= can have pointers to pointers: int *x*

= The size of a data object, e.qg., int x

= can be obtained via sizeof x or sizeof(x)

= has data type size t, butis often assigned to int (bad!)
= has a value which is a small(ish) integer

= js measured in bytes

Henning Schulzrinne Advanced Programming

77

Data objects and pointers

= Every data type T in C has an associated
pointer type T *

= Avalue of type T * is the address of an
object of type T

= If an object int *xp has value &x, the
expression *xp dereferences the pointer and
refers to x, thus has type int

XP X

&X > 42

int * int

Henning Schulzrinne Advanced Programming

Data objects and pointers

= If p contains the address of a data object
then *p allows you to use that object

= *p is treated just like normal data object

-

int a, b, *c, *d;
d = 17; / BAD idea */
a =2; b=23; c¢c= &a; d = &b;

1f (*c == *d) puts(“Same value”);

*c = 35

1if (*c == *d) puts(“Now same value”);
c = d;

1f (¢ == d) puts (“"Now same address”);

Henning Schulzrinne Advanced Programming

79

void pointers

= (Generic pointer
vold *malloc(size t size);
volid free(void *ptr);

= Unlike other pointers, can be assigned to any
other pointer type:

vold *v = malloc (13);
char *s = v;

= Acts like char * otherwise:
v++, sizeof (*v) = 1;

Henning Schulzrinne Advanced Programming 80

Structured data objects

= Structured data objects are available as

object property

array [] enumerated,
numbered from 0

struct names and types of
fields

union OCCUpy same space
(one of)

Henning Schulzrinne

Advanced Programming

81

Arrays

= Arrays are defined by specifying an element

type and number of elements
= 1nt vec[1l00];

= char str[30];
= float m[10][107];

= Stored as linear arrangement of elements

= For array containing NV elements, indexes are
0../-1

" 1nt sum =

°
4

o

for (int 1 0, 1 < N; i++)

sum += vec[1i];

Henning Schulzrinne Advanced Programming

82

Arrays

= C does not remember how large arrays are (i.e., no
length attribute)

= no out-of-bounds checking
= int x[10]; x[10] = 5; may work (for a while)

= In the block where array A is defined:
= sizeof A gives the number of bytes in array
= can compute length via sizeof A /sizeof A[0]

= When an array is passed as a parameter to a function
= the size information is not available inside the function

= array size is typically passed as an additional parameter
= PrintArray (A, VECSIZE);

= or globally
= #define VECSIZE 10

Henning Schulzrinne Advanced Programming 83

Copying arrays

= Copying content vs. copying pointer to content
volid copy(int A[], int B[], int N)

{
A = B;
}

= Swizzling pointers has no effect, copy contents

element-wise instead
void copy(int A[], int B[], int N) {
for (int 1 = 0; 1 < N; 1++) {
Ali] = B[i];
}

Henning Schulzrinne Advanced Programming

85

Strings

= In Java, strings are regular objects

= In C, strings are just char arrays with a NUL
(*\0’) terminator

» “acat"= | @ cCla | t[\0

= A literal string (“a cat”)

= js automatically allocated memory space to contain it and
the terminating \0

= has a value which is the address of the first character
= can't be changed by the program (common bug!)

= All other strings must have space allocated to them
by the program

Henning Schulzrinne Advanced Programming

Strings

= We normally refer to a string via a pointer to its first
character:

char str[] = “my string”;
char *s;
s = &str[0]; s = str;

= C functions only know string ending by \0:

char *str = “my string”;

for (int 1 = 0; str[i] !'= “\0’; 1i++)
putchar (str[i]);

for (char *s = str; *s != “\0’; s++)

putchar (*s) ;

= String Iibrary: #include <strings.h>
= strlen, strcpy,

Henning Schulzrinne Advanced Programming

87

structs

= Similar to fields in Java object/class definitions

= components can be any type (but not recursive)
= accessed using the same syntax struct.field

= Example:

struct {int x; char y; float z;} rec;

rec.x = 3; rec.y = ‘a’; rec.z= 3.1415;

Henning Schulzrinne Advanced Programming 88

structs

Record types can be defined
= using a tag associated with the struct definition
= wrapping the struct definition inside a typedef

Examples:

struct complex {double real; double 1imag;};

struct point {double x; double vy;} corner;
typedef struct {double real; double imag;} Complex;
struct complex a, b;

Complex c,d;

a and b have the same size, structure and type

a and c have the same size and structure, but
different types

Henning Schulzrinne Advanced Programming 89

Dereferencing pointers to
struct elements

= Pointers commonly to structs
Complex *p;
double 1i;

(*p) .real = 42.0;
1 = (*p).1imag;
= Note: *p.real doesnt work

= Abbreviated alternative:
p->real = 42.0;

1 = p->1imag;

Henning Schulzrinne Advanced Programming

90

Functions

= Prototypes and functions (cf. Java interfaces)

= extern 1nt putchar (int c);
= putchar (‘A");
= int putchar (int c) {
do something i1nteresting here

}

= If defined before use in same file, no need for
prototype

= Typically, prototype defined in .h file
= Good idea to include <.h> in actual definition

Henning Schulzrinne Advanced Programming 95

Functions

= static functions and variables hide them to
those outside the same file:

static int x;
static int times2 (int c) {

return c*2;

}
= compare protected class members in Java.

Henning Schulzrinne Advanced Programming

96

Program with multiple files

» #include <stdio.h>

#include “mypgm.h”

void main (void)
{

myproc () ;
}

void myproc (void) ;

mypgm. h

main.c

= Library headers
= Standard

= User-defined

#include “mypgm.h”
static int mydata;

void myproc (void)

{

mydata=2;

/* some code */

mypgm. C

Henning Schulzrinne Advanced Programming 97

Data hiding in C

= C doesn’t have classes or private members, but this can be
approximated

= Header file defines public data:
typedef struct queue t *queue t;
queue t NewQueue (void) ;

= Implementation defines real data structure:

#include “queue.h” // good practice
typedef struct queue t

struct queue t *next;

int data;
} *queue t;

queue t NewQueue (void) {
return calloc(l, sizeof(struct queue t)); // with 0 contents

}

Henning Schulzrinne Advanced Programming 98

Function pointers

= functions can be used as values (i.e. passed by reference)

int foo () ; // function returning integer
int *bar ()

; // function returning pointer to int
int (*fp) (); // pointer to function returning int
)

int *(*fpp) () ;// pointer to func returning ptr to int
fp = foo;
frp = bar;

int 1 = fp();
int j = *(fpp());

Henning Schulzrinne Advanced Programming 99

Function pointers

= to install interrupt handlers (timers, etc)

#include <signal.h>
typedef void (*sighandler t) (int);

sighandler t signal (int signum, sighandler t handler);

= to register call back functions
= to implement polymorphism

Henning Schulzrinne Advanced Programming 100

Before we break

= Always initialize anything before using it (especially
pointers)

= Don't use pointers after freeing them
= Don't return a function’s local variables by reference

= No exceptions — so check for errors everywhere
= memory allocation
= gystem calls

= Murphy’s law, C version:|anything that can’t fail, will fail
= An array is also a pointer, but its value is immutable.

Henning Schulzrinne Advanced Programming 101

V

Programming State Machines

/

Finite State Machines

e prime design pattern
in embedded systems

/%/\% % sleep(1000)
out door,ope
standby

|m|n

t
out(door,close)

Transitions initiated by events

e interrupts (timers, user input, ...

e polling
Actions
® output

)

* modifying system state (e.g., writing to global variables)

102

Running example

See Wikipedia: Automata-based programming?

Consider a program in C that reads a text from the
standard input stream, line by line, and prints the first
word of each line. Words are delimited by spaces.

Lhttps://en.wikipedia.org/wiki/Automata-based programming 103

https://en.wikipedia.org/wiki/Automata-based_programming

/ I /

Exercise (5 min)

Code

Cansider a program in C that reads a text from the
standard input stream, line by line, and prints the first
word of each line. Words are delimited by spaces.

104

/

,/////////%44(

#include <stdio.h> .
#include <ctype.h> Ad-hOC SOlUtIOn
int main(void)
{ * too many loops
int c; * duplicate EOF corner casing
do {
do 1 skip
c = getchar() ; - leading
while(c == ' "); _| spaces
while(c '= ' ' && c '= '\n' && c '= EOF) {]
putchar (c) ; pﬁnt
} c = getchar(); —\Nord
quchar('\n'); B ﬂdp
while(c !'= '\n' && c '= EOF) .
¢ = getchar () ; — trailing
} while(c !'= EOF); ~ chars

return 0O;

111

—=| hefore

S = space
N = newline

A = all other chars
* = print

Inside

113

\//

/ |
FSM-based solution

int main (void)
{ 1loop
enum states { e 1 case for EOF checking
before, inside, after
} state;
int c;

state = before;
while((c = getchar()) !'= EOF) {
switch(state) {

case before:

if(c '= " ") {
putchar (c) ;
if(c '= '\n'")

state = inside;
}
break;

case inside:
114

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

FSM-based solution

case inside:
if(c == "' ")

state = after;
else if(c == '\n') {

putchar('\n');

state = before;

} else
putchar (c) ;

break;

case after:
if(c == '\n'") {

putchar('\n');

state = before;

}

break;

defensive programming!

default:
fprintf (stderr,
abort () ;

"unknown state %d\n”, state);

/ S /

Refactored solution

enum states { before, inside, after };

enum states step(enum states state, int c) o |Ifted IOOp
{
switch (state) {
case before: ... state = inside;
case inside: ... state = after;
case after: ... state = before;

}

return state;
}
int main (void)
{
int c;
enum states state = before;
while((c = getchar()) !'= EOF) {
state = step(state, c);
}

return 0;
117

/////&////// S l/////////%44(

Function pointers

enum states { before, inside, after };
enum states step(enum states state, int c)

{
switch (state) {

case before:

wanted: function per state

if(c !'= " ") {
putchar (c) ;
if(c '= '"\n'")

state = inside;
}
break;
case inside:

if(c == "' ")
state = after;

else if(c == '\n') {
putchar('\n') ;
state = before;

} else
118

/ ° °
I}:unctlon pointers

1. statefp before(int c) {

2. statefp inside(int c¢) { ... }

3. statefp after(int c) {

4. if(c == '\n') {

5. putchar('\n') ;

j' } return before; Provide a typedef for statefp
8. else

9. return after;

10.}

11.int main(void)

12 .4

13. int c¢;

14. statefp state = before;

15. while((c = getchar()) !'= EOF) {
16. state = (*state) (c);

17. }

18. return O;

122
19.}

//7////4§§;§;:

. typedef void (*voidfp) () // hack around recursive definition

O 00 Jd oo 1 & W NN B

=
(@) .

11

. voidfp after (int c) {

-}
.int main (void)
12.
13.
14.
15.
16.
17.
18.
19.

{

—

Function pointers

. typedef voidfp (*statefp) (int c);

if(c == '\n'") {

putchar('\n') ; .

return (voidfp) before; No recursive typedEfS; SO
} void * to the rescue!
else

return (voidfp) after;

int c¢;

statefp state = before;

while((c = getchar()) !'= EOF) {
state = (statefp) (*state) (c);

}

return 0; http://www.gotw.ca/gotw/057.htm 123

http://www.gotw.ca/gotw/057.htm

/ \/

FSM: table-based solution

Transition:
e action

N N*

(s jtm (o

e next state '
Ak

AR

int main(void)

S =space

{ N = newline
int c; A= aII' other chars @
* = print

states state = before;

while((c = getchar()) != EOF) {
edges edge = lookup(state, c);
edge.action(c) ;
state = edge.next;

}

return 0;
} 125

\\ /

 —
Lookup tables

Case dispatch

states inside(int c) {

e if-then-else if(c == ' ')
o SVV“CFI return after;
else if(c == '\n'") {
e table
return before;

states lookup[] = { } else {

/* space */ after,

/* newline */ before, return inside;

/* other */ inside}; }

states inside(int c) {
return lookup|c];

127

/ \/

FSM: table-based solution

Transition:
e action

N N*

(s jtm (o

e next state '
Ak

AR

int main(void)

S =space

{ N = newline
int c; A= aII' other chars @
* = print

states state = before;

while((c = getchar()) != EOF) {
edges edge = lookup[state] [c];
edge.action(c) ;
state = edge.next;

}

return 0;
} 129

/ \/

FSM: table-based solution

Transition:
e action

N N*

(s jtm (o

e next state '
Ak

AR

int main(void)

S =space

{ N = newline
int c; A= aII' other chars @
* = print

states state = before;

while((c = getchar()) != EOF) {
edges *edge = &lookup[state] [c];
edge->action(c) ;
state = edge->next;

}

return 0;
} 130

// —— //

Function per Transition

void skip(int c) {

}

void print(int c) {
putchar (c) ;

typedef void (*actions) (int c);
typedef enum {before, inside, after, num states} states;
typedef enum {space, newline, other, num inputs} inputs;

typedef struct {states next; actions act;} edges;

edges lookup[num states] [num inputs] = {
/* space newline other */
/* before */ {{before,skip}, {before,print}, {inside,print}},
/* inside */ {{after, skip}, {before,print}, {inside,print}},
/* after */ {{after, skip}, {before,print}, {after, skip} }

};
132

/

\\/

Function per Transition

edges lookup[num states] [num inputs] =

/* space
/* before */ {{before,
/* inside */ {{after,
/* after */ {{after,
};
int main (void)
{
int c;
states state
while((c = getchar())
inputs inp =
edges *edge =
edge->act(c) ;
state =

}

return 0O;

= before;

edge->next;

newline other */
skip}, {before,print}, {inside,print}},
skip}, {before,print}, {inside,print}},
skip}, {before,print}, {after, skip} }
inputs char2inp (char c)
{
if (¢ == "' ")
!= EOF) { return space;
char2inp (c) ; else if (c == '\n')
&lookup|[state] [inp]; return newline;
else
return other;
}

134

