
Embedded Software

Koen Langendoen
Qing Wang

Embedded & Networked Systems Group

CSE2425

1. Introduction

Embedded System – Definition
 Many different definitions, some of them:

 A computer system with a dedicated function within a
larger mechanical or electrical system

 …, often with real-time computing constraints
 A computing system that fulfills the task of monitoring and

controlling the technical context
 Without the computing system, the whole system is useless

3

Examples

???
4

Embedded Software – Definition

 Many different definitions, some of them:
 Computer software with a dedicated function within a

larger mechanical or electrical system
 …, often with real-time computing constraints
 A computer program that fulfills the task of monitoring and

controlling the technical context
 Without the right firmware, the whole system is useless

5

In this course …
 You will learn about:

 Programming of embedded system
 Real-time programming with RTOSs

 We will explore:
 Principles of “good” embedded systems design
 Time and complexity

 You will engage in low-level programming:
 C language
 STM32F103C8T6 microcontroller platform

6

Course setup
CSE2425 2021-2022
Credit points 5 EC
Lectures 11
Exam Chap 1, 4-10 + lect. notes C, FSM
Lab work C + Robot

7

The book

 Chapter 1 – Introduction to embedded systems (today)
 Chapter 4 – Interrupts
 Chapter 5 – Survey of software architectures
 Chapter 6 – Introduction to RTOS
 Chapter 7 – More OS services
 Chapter 8 – Basic design with RTOS
 Chapter 9 – Toolchain
 Chapter 10 – Debugging

8

ES Example – Telegraph

9

ES Example – Telegraph
 Out-of-order data
 Negotiate with multiple clients (print jobs) + status reqs.
 Adapt to different printers
 Response time to certain requests
 Data throughput / buffering
 Debugging and software updates

Telegraph is
more

complex than
anticipated!

10

Underground Tank Monitoring Sys.

 Guard levels, detect leaks
 Extremely low-cost design (proc)
 Very simple arithmetic CPU - response time problem
 Model of normal drainage vs. leaking drainage

tank 1 tank N

Emb Sys

buttons LCD
disp

printer. . .

level CH
level H2O
temperature

11

Cruise Control System

 Stabilize car speed when engaged
 Extremely low processor cycle budget
 Small control loop jitter due to other activities
 Reliable operation

speedo
meter

gas
pedal

Embedded
CC System

buttons SSD

Current speed

Set/release cc
Step up/down

current speed
set speed

Motor/
Drivetrain

Adjust
Speed

Throttle

Speed

12

Characteristics of Embedded Sys.
 No / restricted user interface
 Specific connectors for sensors/actuators
 Restricted memory size and processing power
 Predictable timing behavior
 Suitable for extreme operation environments

13

Typical Platform for ES

 Microcontroller
 8 bit RISC Processor
 EEPROM & RAM
 UART (serial line)
 Timer
 A/D converter
 Digital I/O Lines

14

Typical Platform for ES

 PC/104
 Typical PC platform
 Flash, RAM, Drives
 Many possible connectors

and interfaces
 Many available OSs

15

A different example - kilobot

16M. Rubenstein - KiloBot: A Robotic Modules for Demonstrating Collective Behaviors, ICRA2010

Another Typical Platform for ES

17

 FPGA
 Build your own hardware (I/O)
 High performance
 High-level programming

Embedded Systems Boom
 Provides functionality (intelligence) of almost everything
 Annual growth 25-60% (Emb Linux > 60%)
 100 x PC market
 Accounts for 25-40% costs in automotive
 Very large societal dependence
 Very high performance demands
 More and more integration of systems

www.linuxdevices.com

19

Embedded Software Boom

 Software
 is more and more executed on standard hardware

 Accounts to a large extent for the
 Product functionality
 Intelligence / smartness
 User ergonomics & look and feel

 Has an increasing added value
 Increased volume and complexity

50% Development
Cost for Software

alone!

90% of the Innovations
Coming from Electronics

& Software
20

CAN-Netw. Devices in a VW Phaeton

21

Embedded Software Crisis
 Functionality migrates from HW to SW
 Standard cores combined with FPGAs, rather than ASICs
 Programming-centred design (incl. HDLs)
 TV, mobile, car, .. 10+ MLOC code, exp. growth!
 Despite SW engineering: 1 – 10 bug / KLOC
 100 Billion $ / yr on bugs (Mars Polar Lander, Mars

Climate Orbiter, Ariane 5, Patriot, USS Yorktown,
Therac-25, ...)

22

A new Embedded Software crisis?

23

Embedded Programming

 More difficult than “classical” programming
 Interaction with hardware
 Real-time issues (timing)
 Concurrency (multiple threads, scheduling, deadlock)
 Need to understand underlying RTOS principles
 Event-driven programming (interrupts)

 Lots of (novice) errors (hence the crisis)
 That’s why we have this course

already in 2nd year!

24

Embedded Programming Example
 Automatic sliding gate task (thread):

for (;;) {
// wait to open
while (inp(sensor) != 1) ;
out(door,OPEN);
// wait to close
while (inp(sensor) == 1) ;
sleep(1000);
// close after timeout
out(door,CLOSE);

}

 Any issues with this code?

25

Specification: Finite State Machine

 Red arc missing from the specification
 Door can slam in your face!

s’sss’ s’

t

out(door,open)

out(door,close)

sleep(1000)
//wait to close

//wait to open

standby open timings

26

Door Controller in VHDL
 VHDL: FSM in entity door_controller
 Advantages

 Separate hardware: no sharing of a processor
(no scheduling, no priorities)

 Fast and synchronous programming model: high frequency
clocked process with simple polling for s and t

 Disadvantages
 VHDL too cumbersome / prohibitive for large applications
 Lots of legacy code written in C

27

A VHDL Solution
process -- fsm
begin
wait until rising_edge(clk);
case state is
when S0 => if (s = ‘1’) then

state <= S1;
when S1 => if (s = ‘0’) then

state <= S2;
when S2 => if (s = ‘1’) then – red arc in FSM

state <= S1;
if (t = ‘1’ and s = ‘0’) then
state <= S0;

end case;
door <= ‘1’ when (state != S0) else ‘0’;
timer_enable <= ‘1’ when (state = S2) else ‘0’;

end process;
28

A C Implementation
 C: FSM in a task door_controller
 Advantages

 simple (sequential) programming model
 Disadvantages

 can’t be invoked periodically by a high-frequency clock (timer)
because of polling overhead

 busy waiting (polling) is not an option (see above) -> concurrent
(event) programming (e.g., using interrupts and semaphores)

 So the while loops in the example code are wrong
 Only use a delay that is not based on busy wait
 Ergo: interrupt programming, using an RTOS

29

A better (but not ideal) C Solution
void isr_sensor(void) // process sensor IRQ
{
OS_Post(semaphore_event_on_s); // signal s changed

}

void task_door_controller(void)
{
for (;;) {
OS_Pend(semaphore_event_on_s); // wait for s = 1
out(door,OPEN);
do {
OS_Pend(semaphore_event_on_s); // wait for s = 0
OS_Delay(1000);

} while (inp(sensor) != 0); // timeout
out(door,CLOSE);

}
}

30

Issues

 Efficient, no busy waiting any more (OS_Pend, OS_Delay)
 Still, code is not correct: interrupts (entering/leaving

persons within delay period are not properly handled,
and are only accumulated in semaphore (wrong)

 Cannot afford to just “sit” in a delay, AND ...
 The ability to simultaneously wait for two events (s or t):

void isr_sensor_and_timer(void) { // handle both IRQs
OS_Post(s_or_t); // either s or t

} // changed
31

Alternative C Solution
void task_door_controller(void) {
for (;;) {
switch (state) {
STDBY: OS_Pend(s_or_t); // wait for 0-1

out(door,OPEN);
state = OPEN;

OPEN: OS_Pend(s_or_t); // wait for 1-0
timer_enable();
state = TIMING;

TIMING: OS_Pend(s_or_t); // wait 0-1 || t
if (inp(sensor) == 0) { // timeout
out(door,CLOSE);
timer_disable();
state = STDBY;

} else state = OPEN;
}}} 32

Course Organization
 Grade = 0.5 exam + 0.5 lab

 Lectures (hall Boole): weeks 2.1 – 2.8
 Tuesday, 15:45 – 17.45
 Thursday, 15:45 – 17.45

 C programming: weeks 2.2 – 2.4
 Wednesday, 13:45 – 17.45

 Robot Lab: weeks 2.5 – 2.9
 Wednesday, 13:45 – 17.45

33

pick up: Dec 8, 08:45 – 12:30

return
& demo

queue.tudelft.nl
weblab.tudelft.nl

Example exam questions

The “Embedded Software Crisis” refers to the “year 2000” bug.
 true/false?

An embedded program can be coded as a finite state machine
where interrupts trigger state transitions.
 true/false?

34

Lab: C programming
 Language

 C-syntax, pointers, memory management, …

 Tools
 Gdb, valgrind

 Assignment (graded)
 Hash table with bucket lists

35

 Hardware [3mE]
 Sensors: IR, ultrasonic ranging (2x)
 Control: STM32F103C8T6
 Actuators: motors (2x), LEDs

 Software
 C
 Arduino IDE
 ROS – Robotic Operating System (not!)

36

Lab: Robot
line follower

hidden agenda:
promote minor robotics

Conclusion

 Embedded programming is not so easy
 Neither in C nor VHDL

 Event programming needed: interrupts + RTOS support
 Concurrency needed (seq. prog. model): RTOS support

 Learn the basics of interrupt programming & RTOS (in C)
 Learning is (lots of) programming!
 Lab: C (3 weeks) + Robot (5 weeks)

37

Sharing code is plagiarism
... and so is copying from

the Internet / YouTube

	Embedded Software
	Embedded System – Definition
	Examples
	Embedded Software – Definition
	In this course …
	Course setup
	The book
	ES Example – Telegraph
	ES Example – Telegraph
	Underground Tank Monitoring Sys.
	Cruise Control System
	Characteristics of Embedded Sys.
	Typical Platform for ES
	Typical Platform for ES
	A different example - kilobot
	Another Typical Platform for ES
	Embedded Systems Boom
	Embedded Software Boom
	CAN-Netw. Devices in a VW Phaeton
	Embedded Software Crisis
	A new Embedded Software crisis?
	Embedded Programming
	Embedded Programming Example
	Specification: Finite State Machine
	Door Controller in VHDL
	A VHDL Solution
	A C Implementation
	A better (but not ideal) C Solution
	Issues
	Alternative C Solution
	Course Organization
	Example exam questions
	Lab: C programming
	Lab: Robot�line follower
	Conclusion

