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Embedded System — Definition

Many different definitions, some of them:

e A computer system with a dedicated function within a
larger mechanical or electrical system

e ..., often with real-time computing constraints

e A computing system that fulfills the task of monitoring and
controlling the technical context

e Without the computing system, the whole system is useless



Examples



Embedded Software — Definition

Many different definitions, some of them:

e Computer software with a dedicated function within a
larger mechanical or electrical system

e ..., often with real-time computing constraints

e A computer program that fulfills the task of monitoring and
controlling the technical context

e Without the right firmware, the whole system is useless



In this course ...

You will learn about:
* Programming of embedded system
e Real-time programming with RTOSs
We will explore:
* Principles of “good” embedded systems design
e Time and complexity
You will engage in low-level programming:
e Clanguage
e STM32F103C8T6 microcontroller platform
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" ES Example — Telegraph




ES Example — Telegraph

Out-of-order data

Negotiate with multiple clients (print jobs) + status regs.
Adapt to different printers

Response time to certain requests
Data throughput / buffering

Telegraph is
more
complex than

anticipated!

Debugging and software updates
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nitoring Sys.

Underground Tank Mo

level CH > Emb Sys
level H,O
temperature
tank 1| - -+« |tank N buttons LCD printer
disp

Guard levels, detect leaks
Extremely low-cost design (proc)

Very simple arithmetic CPU - response time problem

Model of normal drainage vs. leaking drainage
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Cruise Control System

Current speed

| Embedded ~Adust . Motor/
ee
CC System P Drivetrain

Set/release cc‘ current speed | Throttle

Step up/down | set speed
speedo buttons SSD gas
meter pedal

Speed

Stabilize car speed when engaged

Extremely low processor cycle budget

Small control loop jitter due to other activities
Reliable operation

12



Characteristics of Embedded Sys.

No / restricted user interface
Specific connectors for sensors/actuators

Restricted memory size and processing power
Predictable timing behavior
Suitable for extreme operation environments

13



~ Typical Platform for

® Microcontroller

8 bit RISC Processor
EEPROM & RAM
UART (serial line)
Timer

A/D converter
Digital I/O Lines
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~ Typical Platform for ES

* PC/104
e Typical PC platform
e Flash, RAM, Drives

e Many possible connectors
and interfaces

e Many available OSs
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M. Rubenstein - KiloBot: A Robotic Modules for Demonstrating Collective Behaviors, ICRA2010
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°* FPGA
e Build your own hardware (1/0)

e High performance
e High-level programming
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Embedded Systems Boom

® Provides functionality (intelligence) of almost everything

® Annual growth 25-60% (Emb Linux > 60%
® 100 x PC market WWW.Iinuxdevic@

® Accounts for 25-40% costs in automotive

* Very large societal dependence
* Very high performance demands
®* More and more integration of systems
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Embedded Software Boom

e Software
e is more and more executed on standard hardware

® Accounts to a large extent for the
e Product functionality

50% Development
Cost for Software
alone!

e |ntelligence / smartness

e User ergonomics & look and feel

® Has an increasing added value

® Increased volume and complexity 0% of the Innovations
: (0}

Coming from Electronics

& Software
20
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Embedded Software Crisis

Functionality migrates from HW to SW

Standard cores combined with FPGAs, rather than ASICs
Programming-centred design (incl. HDLs)

TV, mobile, car, .. 10+ MLOC code, exp. growth!

Despite SW engineering: 1 — 10 bug / KLOC

100 Billion S / yr on bugs (Mars Polar Lander, Mars
Climate Orbiter, Ariane 5, Patriot, USS Yorktown,
Therac-25, ...)







Embedded Programming

IH

More difficult than “classical” programming

e |nteraction with hardware

e Real-time issues (timing)

e Concurrency (multiple threads, scheduling, deadlock)

* Need to understand underlying RTOS principles

e Event-driven programming (interrupts) ; 9 | V

Lots of (novice) errors (hence the crisis) =~ (

That’s why we have this course | B e
already in 2nd year! Wi d\



Embedded Programming Example

* Automatic sliding gate task (thread):
for (G;) {

// wait to open

while (inp(sensor) 1= 1) ;

out(door,OPEN);
// wait to close

while (inp(sensor) == 1) ;

sleep(1000);
// close after timeout
out(door,CLOSE);

® Any issues with this code?
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S’ . S ¢ S

wait to open
// P sleep(1000)

out(door,open //wait to close

t
out(door,close)

timin

® Red arc missing from the specification
® Door can slam in your face!
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Door Controller in VHDL

VHDL: FSM in entity door_controller

Advantages

e Separate hardware: no sharing of a processor
(no scheduling, no priorities)

e Fast and synchronous programming model: high frequency
clocked process with simple polling for sand t

Disadvantages
e VHDL too cumbersome / prohibitive for large applications
e Lots of legacy code written in C

27



A VHDL Solution
process -- fsm
begin

wait until rising edge(clk);
case state 1s
when SO => 1f (s = “17) then
state <= S51;
when S1 => 1f (s = “0”) then
state <= S52;
when S2 => 1f (s = “1”) then — red arc 1In FSM
state <= S1;
iIfT (t = “1” and s = “0”) then
state <= S0;
end case;
door <= “1” when (state != S0) else “07;
timer_enable <= “1” when (state = S2) else “07;

end process;
28



~ A C Implementation

C: FSM in a task door_controller
Advantages

e simple (sequential) programming model
Disadvantages

e can’t be invoked periodically by a high-frequency clock (timer)
because of polling overhead

e busy waiting (polling) is not an option (see above) -> concurrent
(event) programming (e.g., using interrupts and semaphores)

So the while loops in the example code are wrong
Only use a delay that is not based on busy wait
Ergo: interrupt programming, using an RTOS

29



A better (but not ideal) C Solution

void 1sr_sensor(void) // process sensor IRQ
{
0OS_Post(semaphore_event on_s); // signal s changed
+
void task door_controller(void)
{
for (G3) {
0OS_Pend(semaphore_event on_s); // wait for s = 1
out(door,0OPEN) ;
do {
0S_Pend(semaphore _event on_s); // wait for s = 0
0S_Delay(1000);
} while (inp(sensor) = 0); // timeout
out(door,CLOSE);
}

}

30



/ R 77777\\% //

Issues

Efficient, no busy waiting any more (OS_Pend, OS_Delay)

Still, code is not correct: interrupts (entering/leaving
persons within delay period are not properly handled,
and are only accumulated in semaphore (wrong)

Cannot afford to just “sit” in a delay, AND ...
The ability to simultaneously wait for two events (s or t):

voild i1sr_sensor_and timer(void) { // handle both IRQs

OS_Post(s or t); // either s or t
} // changed

31



Alternative C Solution

void task door_controller(void) {

for (G3) {
switch (state) {

STDBY: OS Pend(s_or_t); // wait for 0O-1
out(door,0PEN);
state = OPEN;

OPEN: OS_Pend(s _or_t); // wait for 1-0
timer_enable();
state = TIMING;

TIMING: OS_Pend(s _or t); // wait 0-1 || t
iIT (inp(sensor) == 0) { // timeout

out(door,CLOSE) ;

timer_disable();
state = STDBY;
} else state = OPEN;

i34, 2



Course Organization

Grade =0.5 exam + 0.5 lab

Lectures (hall Boole): weeks 2.1 — 2.8
e Tuesday, 15:45—-17.45 queue.tudelft.nl
e Thursday, 15:45 — 17.45 weblab.tudelft.n|

C programming: weeks 2.2 — 2.4

e Wednesday, 13:45—-17.45 pick up: Dec 8, 08:45 — 12:30

Robot Lab: weeks 2.5-2.9
return
e Wednesday, 13:45—-17.45 i & demo
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Example exam questions

The “Embedded Software Crisis” refers to the “year 2000” bug.
true/false?

An embedded program can be coded as a finite state machine
where interrupts trigger state transitions.

true/false?
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Lab: C programming

Language
e C-syntax, pointers, memory management, ...

TOOlS 0 |[—={ Al —=] John
e Gdb, valgrind

2 —=| Fred —® Zak —={ Amy

Assignment (graded) )

e Hash table with bucket lists s | cal

7 | Sam —= Ted

35



I-a b : RO bOt hidden agenda:

“n - f()l |0we I promote minor robotics

* Hardware [3mE]
e Sensors: IR, ultrasonic ranging (2x)
e Control: STM32F103C8T6
e Actuators: motors (2x), LEDs

* Software
o C
e Arduino IDE
e ROS — Robotic Operating System (not!)

36



- Conclusion

Embedded programming is not so easy

Neither in C nor VHDL
e Event programming needed: interrupts + RTOS support
e Concurrency needed (seq. prog. model): RTOS support

Learn the basics of interrupt programming & RTOS (in C)

Learning is (lots of) programming!
Sharing code is plagiarism
Lab C (3 WGEkS) + RObOt (5 WEEkS) ...and so is Coleng from

the Internet / YouTube
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