
Embedded Software

Koen Langendoen
Qing Wang

Embedded & Networked Systems Group

CSE2425

1. Introduction

Embedded System – Definition
 Many different definitions, some of them:

 A computer system with a dedicated function within a
larger mechanical or electrical system

 …, often with real-time computing constraints
 A computing system that fulfills the task of monitoring and

controlling the technical context
 Without the computing system, the whole system is useless

3

Examples

???
4

Embedded Software – Definition

 Many different definitions, some of them:
 Computer software with a dedicated function within a

larger mechanical or electrical system
 …, often with real-time computing constraints
 A computer program that fulfills the task of monitoring and

controlling the technical context
 Without the right firmware, the whole system is useless

5

In this course …
 You will learn about:

 Programming of embedded system
 Real-time programming with RTOSs

 We will explore:
 Principles of “good” embedded systems design
 Time and complexity

 You will engage in low-level programming:
 C language
 STM32F103C8T6 microcontroller platform

6

Course setup
CSE2425 2021-2022
Credit points 5 EC
Lectures 11
Exam Chap 1, 4-10 + lect. notes C, FSM
Lab work C + Robot

7

The book

 Chapter 1 – Introduction to embedded systems (today)
 Chapter 4 – Interrupts
 Chapter 5 – Survey of software architectures
 Chapter 6 – Introduction to RTOS
 Chapter 7 – More OS services
 Chapter 8 – Basic design with RTOS
 Chapter 9 – Toolchain
 Chapter 10 – Debugging

8

ES Example – Telegraph

9

ES Example – Telegraph
 Out-of-order data
 Negotiate with multiple clients (print jobs) + status reqs.
 Adapt to different printers
 Response time to certain requests
 Data throughput / buffering
 Debugging and software updates

Telegraph is
more

complex than
anticipated!

10

Underground Tank Monitoring Sys.

 Guard levels, detect leaks
 Extremely low-cost design (proc)
 Very simple arithmetic CPU - response time problem
 Model of normal drainage vs. leaking drainage

tank 1 tank N

Emb Sys

buttons LCD
disp

printer. . .

level CH
level H2O
temperature

11

Cruise Control System

 Stabilize car speed when engaged
 Extremely low processor cycle budget
 Small control loop jitter due to other activities
 Reliable operation

speedo
meter

gas
pedal

Embedded
CC System

buttons SSD

Current speed

Set/release cc
Step up/down

current speed
set speed

Motor/
Drivetrain

Adjust
Speed

Throttle

Speed

12

Characteristics of Embedded Sys.
 No / restricted user interface
 Specific connectors for sensors/actuators
 Restricted memory size and processing power
 Predictable timing behavior
 Suitable for extreme operation environments

13

Typical Platform for ES

 Microcontroller
 8 bit RISC Processor
 EEPROM & RAM
 UART (serial line)
 Timer
 A/D converter
 Digital I/O Lines

14

Typical Platform for ES

 PC/104
 Typical PC platform
 Flash, RAM, Drives
 Many possible connectors

and interfaces
 Many available OSs

15

A different example - kilobot

16M. Rubenstein - KiloBot: A Robotic Modules for Demonstrating Collective Behaviors, ICRA2010

Another Typical Platform for ES

17

 FPGA
 Build your own hardware (I/O)
 High performance
 High-level programming

Embedded Systems Boom
 Provides functionality (intelligence) of almost everything
 Annual growth 25-60% (Emb Linux > 60%)
 100 x PC market
 Accounts for 25-40% costs in automotive
 Very large societal dependence
 Very high performance demands
 More and more integration of systems

www.linuxdevices.com

19

Embedded Software Boom

 Software
 is more and more executed on standard hardware

 Accounts to a large extent for the
 Product functionality
 Intelligence / smartness
 User ergonomics & look and feel

 Has an increasing added value
 Increased volume and complexity

50% Development
Cost for Software

alone!

90% of the Innovations
Coming from Electronics

& Software
20

CAN-Netw. Devices in a VW Phaeton

21

Embedded Software Crisis
 Functionality migrates from HW to SW
 Standard cores combined with FPGAs, rather than ASICs
 Programming-centred design (incl. HDLs)
 TV, mobile, car, .. 10+ MLOC code, exp. growth!
 Despite SW engineering: 1 – 10 bug / KLOC
 100 Billion $ / yr on bugs (Mars Polar Lander, Mars

Climate Orbiter, Ariane 5, Patriot, USS Yorktown,
Therac-25, ...)

22

A new Embedded Software crisis?

23

Embedded Programming

 More difficult than “classical” programming
 Interaction with hardware
 Real-time issues (timing)
 Concurrency (multiple threads, scheduling, deadlock)
 Need to understand underlying RTOS principles
 Event-driven programming (interrupts)

 Lots of (novice) errors (hence the crisis)
 That’s why we have this course

already in 2nd year!

24

Embedded Programming Example
 Automatic sliding gate task (thread):

for (;;) {
// wait to open
while (inp(sensor) != 1) ;
out(door,OPEN);
// wait to close
while (inp(sensor) == 1) ;
sleep(1000);
// close after timeout
out(door,CLOSE);

}

 Any issues with this code?

25

Specification: Finite State Machine

 Red arc missing from the specification
 Door can slam in your face!

s’sss’ s’

t

out(door,open)

out(door,close)

sleep(1000)
//wait to close

//wait to open

standby open timings

26

Door Controller in VHDL
 VHDL: FSM in entity door_controller
 Advantages

 Separate hardware: no sharing of a processor
(no scheduling, no priorities)

 Fast and synchronous programming model: high frequency
clocked process with simple polling for s and t

 Disadvantages
 VHDL too cumbersome / prohibitive for large applications
 Lots of legacy code written in C

27

A VHDL Solution
process -- fsm
begin
wait until rising_edge(clk);
case state is
when S0 => if (s = ‘1’) then

state <= S1;
when S1 => if (s = ‘0’) then

state <= S2;
when S2 => if (s = ‘1’) then – red arc in FSM

state <= S1;
if (t = ‘1’ and s = ‘0’) then
state <= S0;

end case;
door <= ‘1’ when (state != S0) else ‘0’;
timer_enable <= ‘1’ when (state = S2) else ‘0’;

end process;
28

A C Implementation
 C: FSM in a task door_controller
 Advantages

 simple (sequential) programming model
 Disadvantages

 can’t be invoked periodically by a high-frequency clock (timer)
because of polling overhead

 busy waiting (polling) is not an option (see above) -> concurrent
(event) programming (e.g., using interrupts and semaphores)

 So the while loops in the example code are wrong
 Only use a delay that is not based on busy wait
 Ergo: interrupt programming, using an RTOS

29

A better (but not ideal) C Solution
void isr_sensor(void) // process sensor IRQ
{
OS_Post(semaphore_event_on_s); // signal s changed

}

void task_door_controller(void)
{
for (;;) {
OS_Pend(semaphore_event_on_s); // wait for s = 1
out(door,OPEN);
do {
OS_Pend(semaphore_event_on_s); // wait for s = 0
OS_Delay(1000);

} while (inp(sensor) != 0); // timeout
out(door,CLOSE);

}
}

30

Issues

 Efficient, no busy waiting any more (OS_Pend, OS_Delay)
 Still, code is not correct: interrupts (entering/leaving

persons within delay period are not properly handled,
and are only accumulated in semaphore (wrong)

 Cannot afford to just “sit” in a delay, AND ...
 The ability to simultaneously wait for two events (s or t):

void isr_sensor_and_timer(void) { // handle both IRQs
OS_Post(s_or_t); // either s or t

} // changed
31

Alternative C Solution
void task_door_controller(void) {
for (;;) {
switch (state) {
STDBY: OS_Pend(s_or_t); // wait for 0-1

out(door,OPEN);
state = OPEN;

OPEN: OS_Pend(s_or_t); // wait for 1-0
timer_enable();
state = TIMING;

TIMING: OS_Pend(s_or_t); // wait 0-1 || t
if (inp(sensor) == 0) { // timeout
out(door,CLOSE);
timer_disable();
state = STDBY;

} else state = OPEN;
}}} 32

Course Organization
 Grade = 0.5 exam + 0.5 lab

 Lectures (hall Boole): weeks 2.1 – 2.8
 Tuesday, 15:45 – 17.45
 Thursday, 15:45 – 17.45

 C programming: weeks 2.2 – 2.4
 Wednesday, 13:45 – 17.45

 Robot Lab: weeks 2.5 – 2.9
 Wednesday, 13:45 – 17.45

33

pick up: Dec 8, 08:45 – 12:30

return
& demo

queue.tudelft.nl
weblab.tudelft.nl

Example exam questions

The “Embedded Software Crisis” refers to the “year 2000” bug.
 true/false?

An embedded program can be coded as a finite state machine
where interrupts trigger state transitions.
 true/false?

34

Lab: C programming
 Language

 C-syntax, pointers, memory management, …

 Tools
 Gdb, valgrind

 Assignment (graded)
 Hash table with bucket lists

35

 Hardware [3mE]
 Sensors: IR, ultrasonic ranging (2x)
 Control: STM32F103C8T6
 Actuators: motors (2x), LEDs

 Software
 C
 Arduino IDE
 ROS – Robotic Operating System (not!)

36

Lab: Robot
line follower

hidden agenda:
promote minor robotics

Conclusion

 Embedded programming is not so easy
 Neither in C nor VHDL

 Event programming needed: interrupts + RTOS support
 Concurrency needed (seq. prog. model): RTOS support

 Learn the basics of interrupt programming & RTOS (in C)
 Learning is (lots of) programming!
 Lab: C (3 weeks) + Robot (5 weeks)

37

Sharing code is plagiarism
... and so is copying from

the Internet / YouTube

	Embedded Software
	Embedded System – Definition
	Examples
	Embedded Software – Definition
	In this course …
	Course setup
	The book
	ES Example – Telegraph
	ES Example – Telegraph
	Underground Tank Monitoring Sys.
	Cruise Control System
	Characteristics of Embedded Sys.
	Typical Platform for ES
	Typical Platform for ES
	A different example - kilobot
	Another Typical Platform for ES
	Embedded Systems Boom
	Embedded Software Boom
	CAN-Netw. Devices in a VW Phaeton
	Embedded Software Crisis
	A new Embedded Software crisis?
	Embedded Programming
	Embedded Programming Example
	Specification: Finite State Machine
	Door Controller in VHDL
	A VHDL Solution
	A C Implementation
	A better (but not ideal) C Solution
	Issues
	Alternative C Solution
	Course Organization
	Example exam questions
	Lab: C programming
	Lab: Robot�line follower
	Conclusion

