Embedded Software

CSE2425

1. Introduction

Koen Langendoen
Qing Wang
Embedded & Networked Systems Group

Embedded System — Definition

Many different definitions, some of them:

e A computer system with a dedicated function within a
larger mechanical or electrical system

e ..., often with real-time computing constraints

e A computing system that fulfills the task of monitoring and
controlling the technical context

e Without the computing system, the whole system is useless

Examples

Embedded Software — Definition

Many different definitions, some of them:

e Computer software with a dedicated function within a
larger mechanical or electrical system

e ..., often with real-time computing constraints

e A computer program that fulfills the task of monitoring and
controlling the technical context

e Without the right firmware, the whole system is useless

In this course ...

You will learn about:
* Programming of embedded system
e Real-time programming with RTOSs
We will explore:
* Principles of “good” embedded systems design
e Time and complexity
You will engage in low-level programming:
e Clanguage
e STM32F103C8T6 microcontroller platform

Course setup

An Embedded

CSE2425 2021-2022 Software Primer

Credit points
Lectures
Exam

Lab work

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

ICE HALL SOFTWARE SERIES

5 EC '4“ 45‘
11

vﬁ 4 h-
Chap 1, 4-10 + lect. notes C, FSM %
C + Robot David E. Simon i

Lhe Practice of

Proms TS
Erum '. kismighan

Rk I*

iy

T,

" The book

Chapter 1 — Introduction to embedded systems (today)
Chapter 4 — Interrupts
Chapter 5 — Survey of software architectures

Chapter 6 — Introduction to RTOS An Embedded

Chapter 7 — More OS services Software Primer
A Yy =

Chapter 8 — Basic design with RTOS 4& P ‘B

P g J"-g?}hﬁ:

Chapter 9 — Toolchain 45
Chapter 10 — Debugging David E.Simon *~=35

" ES Example — Telegraph

ES Example — Telegraph

Out-of-order data

Negotiate with multiple clients (print jobs) + status regs.
Adapt to different printers

Response time to certain requests
Data throughput / buffering

Telegraph is
more
complex than

anticipated!

Debugging and software updates

10

nitoring Sys.

Underground Tank Mo

level CH > Emb Sys
level H,O
temperature
tank 1| - -+« |tank N buttons LCD printer
disp

Guard levels, detect leaks
Extremely low-cost design (proc)

Very simple arithmetic CPU - response time problem

Model of normal drainage vs. leaking drainage

11

Cruise Control System

Current speed

| Embedded ~Adust . Motor/
ee
CC System P Drivetrain

Set/release cc‘ current speed | Throttle

Step up/down | set speed
speedo buttons SSD gas
meter pedal

Speed

Stabilize car speed when engaged

Extremely low processor cycle budget

Small control loop jitter due to other activities
Reliable operation

12

Characteristics of Embedded Sys.

No / restricted user interface
Specific connectors for sensors/actuators

Restricted memory size and processing power
Predictable timing behavior
Suitable for extreme operation environments

13

~ Typical Platform for

® Microcontroller

8 bit RISC Processor
EEPROM & RAM
UART (serial line)
Timer

A/D converter
Digital I/O Lines

ATmega8 test circuit

+5V

10uF E d

—1]
Oz Frin]
10K o3 xh LED
04 250
Os 20
Oe 230
7 2
3 210 X1
go 00] | GND
010 1wp——al||sc
o 18 MISO
Oz 17T MOSI
[mRE] :1u] LB Reset
014 150
Prog_load
Programmer Cable
ATmegag with internal

:

1K W

protection resistors

~MEMA & all s

{RESET) PCE
{RXD} PDO O
{Tx0) PO1 G
{INTO} PO2 O
(INT1PD3

(XCKITO) PD4 O

vee o

EEEEETLE

GO
(XTALVTOSC1) PEE QD
(XTAL2TOSCZ) PE7 O3 10
(MiPosg
{AND) DS] 12

{AN1) PD7] 13
Py e g 1

280 FCE (ADCH/SCL)
27 [PC4 (ADC4ISDA)
261 PC3 (ADCY)
5[] FC2 (ADCZ)
241 FC1 (ADC1)
231 RCO (ADCD)
2P GiD

21 AREF

0[AVCe

100 PBS (SCK)

180 PB4 (MISO)

17 [PB3 (MOSI0C2)
161 PBZ {SS/0C18)
151 PB1 (OC1A)

ATmega8 pin layout

5 Y

to PC

~ Typical Platform for ES

* PC/104
e Typical PC platform
e Flash, RAM, Drives

e Many possible connectors
and interfaces

e Many available OSs

15

16

M. Rubenstein - KiloBot: A Robotic Modules for Demonstrating Collective Behaviors, ICRA2010

Digllent Low-Cost 23
Faralel Port ko JTaG | icivded
Cabls

]

Farallel Cabls W 24
Kutl Pro Desskiop Tool

Low-CostITAG 23]
Dioamikad Cabis
Cornactor

i

ST XILINX

HFOES bt
Configuration
PI%M
(= Platiorm Flash
Option JUmpers

100 SRAM

;

2EEKE
10ns SRAM

Broolop
WizA Port

—

El RS-232 Part
S&ral Port

PE2 POt

T-Sagment LED

"”E Hide Swil

A1 Expansion 21)
_ Header

A2 Expansion 25
—

B1 Expansion (15
Haader

S0 Mz (19

| csdata
4 Puen Butond
— . gLEps 12

Audiiary g
Crclllabar Socket

g I E
8

LED:

I
|

A0 Wall Adapter
InGived

G130 m_pemss

Figure 7-1: Xilinx Spartan-3 Starter Kit Board Bleck Diagram

AIEINX RTAN-3
A

L] =

°* FPGA
e Build your own hardware (1/0)

e High performance
e High-level programming

17

Embedded Systems Boom

® Provides functionality (intelligence) of almost everything

® Annual growth 25-60% (Emb Linux > 60%
® 100 x PC market WWW.Iinuxdevic@

® Accounts for 25-40% costs in automotive

* Very large societal dependence
* Very high performance demands
®* More and more integration of systems

19

Embedded Software Boom

e Software
e is more and more executed on standard hardware

® Accounts to a large extent for the
e Product functionality

50% Development
Cost for Software
alone!

e |ntelligence / smartness

e User ergonomics & look and feel

® Has an increasing added value

® Increased volume and complexity 0% of the Innovations
: (0}

Coming from Electronics

& Software
20

/ -
CAN-Netw. Devices in a VW Phaeton
Em.wme

Si‘IZ-SG., hinten Telefon-5G

Dachmodul - Zentral-5G Komfortsystem
Tar-SG, hintenre. | Kimabedienteil Fond el] Heok
— - | TV-Tuner
Analoguhr Y / Luftfeder/CDC-SG
. . /4
Tir-SG, Beifahrer }——____________ = ‘ o Reifendruckk.-SG
Navigation-SG [—— | d Anhanger-SG
ADR-SG |7 ’"ﬁ! nsp
Motor-5G 1 | 23 Batterie-SG
Motor-SG2 |71 Tar-SG hinten Ii.
Getriebe-5G Lenksaulenmodul
7AB Tar-3G Fahrer
Sitz-SG, Kombinstrument
Beifahrer Sitz.SG Fahrer -CAH-AIIIIiEh
ADR-S'E“:G Kima-5G -CAH-K{]mfnrl

Wischermodul - CAN-Infotainm.

21

Embedded Software Crisis

Functionality migrates from HW to SW

Standard cores combined with FPGAs, rather than ASICs
Programming-centred design (incl. HDLs)

TV, mobile, car, .. 10+ MLOC code, exp. growth!

Despite SW engineering: 1 — 10 bug / KLOC

100 Billion S / yr on bugs (Mars Polar Lander, Mars
Climate Orbiter, Ariane 5, Patriot, USS Yorktown,
Therac-25, ...)

Embedded Programming

IH

More difficult than “classical” programming

e |nteraction with hardware

e Real-time issues (timing)

e Concurrency (multiple threads, scheduling, deadlock)

* Need to understand underlying RTOS principles

e Event-driven programming (interrupts) ; 9 | V

Lots of (novice) errors (hence the crisis) =~ (

That’s why we have this course | B e
already in 2nd year! Wi d\

Embedded Programming Example

* Automatic sliding gate task (thread):
for (G;) {

// wait to open

while (inp(sensor) 1= 1) ;

out(door,OPEN);
// wait to close

while (inp(sensor) == 1) ;

sleep(1000);
// close after timeout
out(door,CLOSE);

® Any issues with this code?

25

S’ . S ¢ S

wait to open
// P sleep(1000)

out(door,open //wait to close

t
out(door,close)

timin

® Red arc missing from the specification
® Door can slam in your face!

26

Door Controller in VHDL

VHDL: FSM in entity door_controller

Advantages

e Separate hardware: no sharing of a processor
(no scheduling, no priorities)

e Fast and synchronous programming model: high frequency
clocked process with simple polling for sand t

Disadvantages
e VHDL too cumbersome / prohibitive for large applications
e Lots of legacy code written in C

27

A VHDL Solution
process -- fsm
begin

wait until rising edge(clk);
case state 1s
when SO => 1f (s = “17) then
state <= S51;
when S1 => 1f (s = “0”) then
state <= S52;
when S2 => 1f (s = “1”) then — red arc 1In FSM
state <= S1;
iIfT (t = “1” and s = “0”) then
state <= S0;
end case;
door <= “1” when (state != S0) else “07;
timer_enable <= “1” when (state = S2) else “07;

end process;
28

~ A C Implementation

C: FSM in a task door_controller
Advantages

e simple (sequential) programming model
Disadvantages

e can’t be invoked periodically by a high-frequency clock (timer)
because of polling overhead

e busy waiting (polling) is not an option (see above) -> concurrent
(event) programming (e.g., using interrupts and semaphores)

So the while loops in the example code are wrong
Only use a delay that is not based on busy wait
Ergo: interrupt programming, using an RTOS

29

A better (but not ideal) C Solution

void 1sr_sensor(void) // process sensor IRQ
{
0OS_Post(semaphore_event on_s); // signal s changed
+
void task door_controller(void)
{
for (G3) {
0OS_Pend(semaphore_event on_s); // wait for s = 1
out(door,0OPEN) ;
do {
0S_Pend(semaphore _event on_s); // wait for s = 0
0S_Delay(1000);
} while (inp(sensor) = 0); // timeout
out(door,CLOSE);
}

}

30

/ R 77777\\% //

Issues

Efficient, no busy waiting any more (OS_Pend, OS_Delay)

Still, code is not correct: interrupts (entering/leaving
persons within delay period are not properly handled,
and are only accumulated in semaphore (wrong)

Cannot afford to just “sit” in a delay, AND ...
The ability to simultaneously wait for two events (s or t):

voild i1sr_sensor_and timer(void) { // handle both IRQs

OS_Post(s or t); // either s or t
} // changed

31

Alternative C Solution

void task door_controller(void) {

for (G3) {
switch (state) {

STDBY: OS Pend(s_or_t); // wait for 0O-1
out(door,0PEN);
state = OPEN;

OPEN: OS_Pend(s _or_t); // wait for 1-0
timer_enable();
state = TIMING;

TIMING: OS_Pend(s _or t); // wait 0-1 || t
iIT (inp(sensor) == 0) { // timeout

out(door,CLOSE) ;

timer_disable();
state = STDBY;
} else state = OPEN;

i34, 2

Course Organization

Grade =0.5 exam + 0.5 lab

Lectures (hall Boole): weeks 2.1 — 2.8
e Tuesday, 15:45—-17.45 queue.tudelft.nl
e Thursday, 15:45 — 17.45 weblab.tudelft.n|

C programming: weeks 2.2 — 2.4

e Wednesday, 13:45—-17.45 pick up: Dec 8, 08:45 — 12:30

Robot Lab: weeks 2.5-2.9
return
e Wednesday, 13:45—-17.45 i & demo

33

Example exam questions

The “Embedded Software Crisis” refers to the “year 2000” bug.
true/false?

An embedded program can be coded as a finite state machine
where interrupts trigger state transitions.

true/false?

34

Lab: C programming

Language
e C-syntax, pointers, memory management, ...

TOOlS 0 |[—={ Al —=] John
e Gdb, valgrind

2 —=| Fred —® Zak —={ Amy

Assignment (graded))

e Hash table with bucket lists s | cal

7 | Sam —= Ted

35

I-a b : RO bOt hidden agenda:

“n - f()l |0we I promote minor robotics

* Hardware [3mE]
e Sensors: IR, ultrasonic ranging (2x)
e Control: STM32F103C8T6
e Actuators: motors (2x), LEDs

* Software
o C
e Arduino IDE
e ROS — Robotic Operating System (not!)

36

- Conclusion

Embedded programming is not so easy

Neither in C nor VHDL
e Event programming needed: interrupts + RTOS support
e Concurrency needed (seq. prog. model): RTOS support

Learn the basics of interrupt programming & RTOS (in C)

Learning is (lots of) programming!
Sharing code is plagiarism
Lab C (3 WGEkS) + RObOt (5 WEEkS) ...and so is Coleng from

the Internet / YouTube

37

	Embedded Software
	Embedded System – Definition
	Examples
	Embedded Software – Definition
	In this course …
	Course setup
	The book
	ES Example – Telegraph
	ES Example – Telegraph
	Underground Tank Monitoring Sys.
	Cruise Control System
	Characteristics of Embedded Sys.
	Typical Platform for ES
	Typical Platform for ES
	A different example - kilobot
	Another Typical Platform for ES
	Embedded Systems Boom
	Embedded Software Boom
	CAN-Netw. Devices in a VW Phaeton
	Embedded Software Crisis
	A new Embedded Software crisis?
	Embedded Programming
	Embedded Programming Example
	Specification: Finite State Machine
	Door Controller in VHDL
	A VHDL Solution
	A C Implementation
	A better (but not ideal) C Solution
	Issues
	Alternative C Solution
	Course Organization
	Example exam questions
	Lab: C programming
	Lab: Robot�line follower
	Conclusion

