
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – TI2726-B
April 5, 2019 18.30 - 20.00

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may only use a B-pencil so erasures can be applied to correct mistakes.
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number

The following abbreviations are assumed to be known:

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• FQS (Function Queue Scheduling)

• RTOS (Real-Time Operating System)

• ISR (Interrupt Service Routine)

• UART (Universal Asynchronous Receiver Transmitter)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. Embedded programming is more difficult than “classical” programming because of the
event-based programming model. true/false

2. A defining characteristic of embedded systems is use of a limited, or even lacking,
graphical user interface. true/false

3. The Embedded software crisis refers to the “millennium” bug. true/false

4. An embedded program can be coded as a finite state machine where interrupts trigger
state transitions. true/false

5. A hardware interrupt is an asynchronous signal to indicate the need for processor
attention. true/false

6. Several models of computation for embedded systems are described in [Lee:2002].
- Process Networks are primarily used to describe concurrency at the hardware level. true/false

7. VHDL is an ideal programming language for embedded systems as its synchronous model
of computation supports multi-tasking at the hardware level. true/false

8. typedef void *(* resolve)(void *old, void *new);

The definition above declares resolve as a pointer to a function that takes two
arguments of type void * and returns a void pointer as result. true/false

9. Valgrind is programming tool that aids memory debugging.
- it does so by executing a program in a safe environment. true/false

10. The C language is centered around the int data type that represents the canonical
machine word.
- As such the size of an int is architecture dependent. true/false

11. Arrays in C are basically syntactic sugar for pointers, and notation may be mixed freely.

char hello[] = {’w’,’o’,’r’,’l’,’d’};
char *ptr = hello;

assert(*ptr == ’w’);

- the above assert holds. true/false

12. int main(void)
{

int c;
statefp state = before;
while((c = getchar()) != EOF) {

state = (statefp) (*state)(c);
}
return 0;

}

The above driver loop for a FSM follows a round-robin architecture. true/false

13. Unlike recursive data structures, recursive function types cannot be properly defined in C
and require kludges like void pointers and type casts. true/false

2



14. Using interrupts with event-based programming avoids the shared-data problem. true/false

15. An interrupt service routine should save the context upon entrance. true/false

16. To guarantee atomicity task switching must be disabled. true/false

17. Since disabling interrupts increases interrupt latency, several alternative methods have
been developed for dealing with shared data.
- The Alternating Buffers technique can be used between two “communicating” tasks of
equal priority. true/false

18. An interrupt service routine must be allocated a dedicated call stack. true/false

19. A deadly embrace requires a minimum of 2 tasks and 1 semaphore to occur. true/false

20. An interrupt vector contains the address of an ISR. true/false

21. static volatile int count;

main () {
...
int val = count;
...

}

Reading the value of the global variable count is atomic. true/false

22. Given the following pseudo code, which reads the current values of 4 different buttons
and acts accordingly. The 4 buttons are all mapped to bits 0..3 of the button register. The
buttons are already debounced.

void f1(void) { delay(1000); }
void f2(void) { delay(2000); }
void f3(void) { delay(3000); }
void f4(void) { delay(4000); }

void main (void) {
while (1) {

if (buttons & 0x01) f1();
if (buttons & 0x02 ) f2();
if (buttons & 0x04 ) f3();
if (buttons & 0x08 ) f4();
delay(1000);

}
}

This code is an example of an RR architecture. true/false

23. When none of the buttons have been pressed, the longest time that button #3 must be
pressed to activate f3() once is 1 second. true/false

24. When the system is in an arbitrary state, button 1 must be pressed at most 10 seconds to
activate f1(). true/false

25. While interrupts are disabled atomicity is guaranteed even when calling a non-reentrant
function. true/false

3



26. A high-priority task can be interrupted by a ISR. true/false

27. By design the RR architecture is free of the shared-data problem. true/false

28. An RTOS architecture supports priority-based task scheduling. true/false

29. With an RTOS, the worst response time of a task includes the time taken by the longest
task in the system. true/false

30. An RTOS architecture is most robust to code changes. true/false

31. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- a task starts in the state READY. true/false

32. A reentrant function may use hardware only in an atomic way. true/false

33. A task can signal an ISR by operating a semaphore. true/false

34. An ISR may call the OS post() routine, provided that the RTOS “knows” that the
invocation is by an ISR and not by an ordinary task. true/false

35. Even a local variable can introduce a shared data problem when its address escapes the
defining function, for example, by returning the address as its result. true/false

36. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
f(1);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
f(-1);

}
}

void f(int i) {
delay(10); // do some computation
counter = counter + i ; // modify some global counter
printf("%d\n", counter) ; // print result

}

The function f() is reentrant. true/false

37. If counter is set to 15 when event 2 occurs, and event 1 follows 3 ms later, then the first
value printed is 14. true/false

38. If the call to delay is replaced with OSTimeDly task T2 will not be able to run to
completion. true/false

39. An RTOS usually provides two types of delay functions: polling-based and timer-based.
- timer-based delays are specified in so-called ticks. true/false

4



40. The accuracy of a OSTimeDly() depends on the frequency of the periodic timer used
by the OS.
- the higher the frequency, the higher the accuracy. true/false

41. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- they have in common that pointers can not be passed from one task to another. true/false

42. A disadvantage of queues over pipes is that messages/items are handled strictly in FIFO
order. true/false

43. With the simple OS Pend(), OS Post() interface the RTOS cannot know in advance
which semaphore(s) will be used by a task. true/false

44. Consider the following code fragment:

1 extern char *UART_rx_buf; // copied from <uart.h> for reference
2 extern char *UART_tx_buf;
3 extern char *UART_ier;
4
5 #define LEN 80
6 static char *next_command = NULL;
7
8 void rx_ready() {
9 static char buffer[2][LEN];

10 static int toggle=0;
11 static char *command = buffer[0];
12 static int cnt = 0;
13
14 char c = *UART_rx_buf;
15 if (c == ’\n’) {
16 command[cnt] = ’\0’;
17 next_command = command;
18 toggle = 1 - toggle;
19 command = buffer[toggle];
20 cnt = 0;
21 } else {
22 command[cnt++] = c;
23 }
24 }
25
26 int main() {
27 *UART_ier |= 0x3; // start RX and TX please
28 while (1) {
29 if (next_command != NULL) {
30 if (strcmp(next_command, "exit") == 0) {
31 exit(0);
32 } else if (strcmp(next_command, "hello") == 0) {
33 printf("world\n");
34 }
35 next_command = NULL;
36 }
37 ...
38 }
39 }

This code is an example of an FQS architecture. true/false

5



45. Consider lines 1-3 in which some of a UART’s registers are declared. This way a
UART, or any other peripheral for that matter, can be accessed with normal read/write
instructions.
- this mode of operation is called ’Direct Memory Access’. true/false

46. The function rx ready() uses a technique called ‘alternating buffers’ with the global
variable next command pointing main() to the buffer that is ready for processing.
- the very first command is passed in buffer[0]. true/false

47. The code suffers from a (subtle) data sharing bug as both rx ready() and main()
write to the same global variable next command.
- as a result main() may read data before rx ready() has written it to the alternate
buffer. true/false

48. A second issue with the code is the statement on line 22 that adds a character to the
alternate buffer.
- that character may be stored outside the space allocated to the variable buffer. true/false

49. An alternative approach would be to make use of semaphores to support rx ready()
passing the next command to main().
- only a single semaphore initialized to 1 is needed. true/false

50. Time-slicing should be avoided in an RTOS because it makes the response time of tasks
less predictable. true/false

51. A key principle of RTOS-based design is that the separation of concerns; by splitting code
amongst several tasks, the memory footprint is reduced. true/false

52. A semaphore S used by task A must be initialized by A. true/false

53. It is recommended to use just the minimum necessary functionality from an RTOS. true/false

54. Printing from an ISR is common practice as no other debugging techniques are available. true/false

55. Tasks should have different priorities to avoid fairness issues imposed by the RTOS. true/false

56. Even on embedded devices without a display, the assert macro is a useful debugging aid. true/false

57. Code coverage tools help in thorough testing.
- a 100% coverage can never be achieved for programs that handle (unknown) user input. true/false

58. Debugging through scripting test scenarios has limited use as only one interrupt can be
triggered at the exact same time. true/false

59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
most underestimated problem has been the water-proof packaging of the base station. true/false

60. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- Out-of-band collection can handle large volumes of data. true/false

6


