
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – CSE2425
April 5, 2019 18.30 - 20.00

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may only use a B-pencil so erasures can be applied to correct mistakes.
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number

The following abbreviations are assumed to be known:

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• FQS (Function Queue Scheduling)

• RTOS (Real-Time Operating System)

• ISR (Interrupt Service Routine)

• UART (Universal Asynchronous Receiver Transmitter)

• ROS (Robotic Operating System)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. Embedded programming is more difficult than “classical” programming because of the
event-based programming model. true

2. A defining characteristic of embedded systems is use of a limited, or even lacking,
graphical user interface. true

3. The Embedded software crisis refers to the “millennium” bug. false

4. An embedded program can be coded as a finite state machine where interrupts trigger
state transitions. true

5. A hardware interrupt is an asynchronous signal to indicate the need for processor
attention. true

6. Several models of computation for embedded systems are described in [Lee:2002].
- Process Networks are primarily used to describe concurrency at the hardware level. false

7. VHDL is an ideal programming language for embedded systems as its synchronous model
of computation supports multi-tasking at the hardware level. false

8. typedef void *(* resolve)(void *old, void *new);

The definition above declares resolve as a pointer to a function that takes two void
pointers as arguments and returns a void pointer as result. true

9. Valgrind is programming tool that aids memory debugging.
- it does so by executing a program in a safe environment. true

10. The C language is centered around the int data type that represents the canonical
machine word.
- As such the size of an int is architecture dependent. true

11. Arrays in C are basically syntactic sugar for pointers, and notation may be mixed freely.

char hello[] = {’w’,’o’,’r’,’l’,’d’};
char *ptr = hello;

assert(*ptr == ’w’);

- the above assert holds. true

12. int main(void)
{

int c;
statefp state = start;
while((c = getchar()) != EOF) {

state = (statefp) (*state)(c);
}
return 0;

}

The above driver loop for a FSM follows a round-robin architecture. false

13. Unlike recursive data structures, recursive function types cannot be properly defined in C
and require kludges like void pointers and type casts. true

2



14. Using interrupts with event-based programming avoids the shared-data problem. false

15. An interrupt service routine should save the context upon entrance. true

16. To guarantee atomicity task switching must be disabled. false

17. Since disabling interrupts increases interrupt latency, several alternative methods have
been developed for dealing with shared data.
- The Alternating Buffers technique can be used between two “communicating” tasks of
equal priority. false

18. An interrupt service routine must be allocated a dedicated call stack. false

19. A deadly embrace requires a minimum of 2 tasks and 1 semaphore to occur. false

20. An interrupt vector contains the address of an ISR. true

21. static volatile int count;

main () {
...
int val = count;
...

}

Reading the value of the global variable count is atomic. false

22. Given the following pseudo code, which reads the current values of 4 different buttons
and acts accordingly. The 4 buttons are all mapped to bits 0..3 of the button register. The
buttons are already debounced.

void f1(void) { delay(1000); }
void f2(void) { delay(2000); }
void f3(void) { delay(3000); }
void f4(void) { delay(4000); }

void main (void) {
while (1) {

if (buttons & 0x01) f1();
if (buttons & 0x02 ) f2();
if (buttons & 0x04 ) f3();
if (buttons & 0x08 ) f4();
delay(1000);

}
}

This code is an example of an RR architecture. true

23. When none of the buttons have been pressed, the longest time that button 3 must be
pressed to activate f3() once is 1 second. true

24. When the system is in an arbitrary state, button 1 must be pressed at most 10 seconds to
activate f1(). true

25. While interrupts are disabled atomicity is guaranteed even when calling a non-reentrant
function. true

3



26. A high-priority task can be interrupted by an ISR. true

27. By design the RR architecture is free of the shared-data problem. true

28. An RTOS architecture supports priority-based task scheduling. true

29. With an RTOS, the worst response time of a task includes the time taken by the longest
task in the system. false

30. An RTOS architecture is most robust to code changes. true

31. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- a task starts in the state READY. true

32. A reentrant function may use hardware only in an atomic way. true

33. A task can signal an ISR by operating a semaphore. false

34. An ISR may call the OS post() routine, provided that the RTOS “knows” that the
invocation is by an ISR and not by an ordinary task. true

35. Even a local variable can introduce a shared data problem when its address escapes the
defining function, for example, by returning the address as its result. true

36. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
f(1);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
f(-1);

}
}

void f(int i) {
delay(10); // do some computation
counter = counter + i ; // modify some global counter
printf("%d\n", counter) ; // print result

}

The function f() is reentrant. false

37. If counter is set to 15 when event 2 occurs, and event 1 follows 3 ms later, then the first
value printed is 14. false

38. If the call to delay is replaced with OSTimeDly task T2 will not be able to print the
counter value. false

39. An RTOS usually provides two types of delay functions: polling-based and timer-based.
- timer-based delays are specified in so-called ticks. true

4



40. The accuracy of a OSTimeDly() depends on the frequency of the periodic timer used
by the OS.
- the higher the frequency, the higher the accuracy. true

41. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- they have in common that pointers can not be passed from one task to another. false

42. A disadvantage of queues over pipes is that messages/items are handled strictly in FIFO
order. false

43. With the simple OS Pend()/OS Post() interface the RTOS cannot know in advance
which semaphore(s) will be used by a task. true

44. Consider the following code fragment:

1 extern char *UART_rx_buf; // copied from <uart.h> for reference
2 extern char *UART_tx_buf;
3 extern char *UART_ier;
4
5 #define LEN 80
6 static char *next_command = NULL;
7
8 void rx_ready() {
9 static char buffer[2][LEN];

10 static int toggle=0;
11 static char *command = buffer[0];
12 static int cnt = 0;
13
14 char c = *UART_rx_buf;
15 if (c == ’\n’) {
16 command[cnt] = ’\0’;
17 next_command = command;
18 toggle = 1 - toggle;
19 command = buffer[toggle];
20 cnt = 0;
21 } else {
22 command[cnt++] = c;
23 }
24 }
25
26 int main() {
27 *UART_ier |= 0x3; // start RX and TX please
28 while (1) {
29 if (next_command != NULL) {
30 if (strcmp(next_command, "exit") == 0) {
31 exit(0);
32 } else if (strcmp(next_command, "hello") == 0) {
33 printf("world\n");
34 }
35 next_command = NULL;
36 }
37 ...
38 }
39 }

This code is an example of an FQS architecture. false

5



45. Consider lines 1-3 in which some of a UART’s registers are declared. This way a
UART, or any other peripheral for that matter, can be accessed with normal read/write
instructions.
- this mode of operation is called ’Direct Memory Access’. false

46. The function rx ready() uses a technique called ‘alternating buffers’ with the global
variable next command pointing main() to the buffer that is ready for processing.
- the very first command is passed in buffer[0]. true

47. The code suffers from a (subtle) data sharing bug as both rx ready() and main()
write to the same global variable next command.
- as a result main() may read data before rx ready() has written it to the alternate
buffer. false

48. A second issue with the code is the statement on line 22 that adds a character to the
alternate buffer.
- that character may be stored outside the space allocated to the variable buffer. true

49. An alternative approach would be to make use of semaphores to support rx ready()
passing the next command to main().
- only a single semaphore initialized to 1 is needed. false

50. Time-slicing should be avoided in an RTOS because it makes the response time of tasks
less predictable. true

51. A key principle of RTOS-based design is that the separation of concerns; by splitting code
amongst several tasks, the memory footprint is reduced. false

52. A semaphore S used by task T must be initialized by T. false

53. It is recommended to use just the minimum necessary functionality from an RTOS. true

54. Printing from an ISR is common practice as no other debugging techniques are available. false

55. Tasks should have different priorities to avoid fairness issues imposed by the RTOS. false/true

56. Even on embedded devices without a display, the assert macro is a useful debugging aid. true

57. Code coverage tools help in thorough testing.
- a 100% coverage can never be achieved for programs that handle (unknown) user input. false

58. Debugging through scripting test scenarios has limited use as only one interrupt can be
triggered at the exact same time. false

59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
most underestimated problem has been the water-proof packaging of the base station. false

60. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- Out-of-band collection can handle large volumes of data. true

6


