
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – TI2726-B
January 28, 2019 13.30 - 15.00

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may only use a B-pencil so erasures can be applied to correct mistakes.
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number

The following abbreviations are assumed to be known:

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• FQS (Function Queue Scheduling)

• RTOS (Real-Time Operating System)

• ISR (Interrupt Service Routine)

• UART (Universal Asynchronous Receiver Transmitter)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. A defining characteristic of embedded systems is the need for large volumes of scale. false

2. The Underground Tank Monitoring System is a classic example of an embedded system in
that it involves input (sensors/buttons), output (display/printer) and real-time constraints. true

3. Because embedded software engages the physical world, it has to embrace time and
other non-functional properties, which requires the use of interrupt handlers to guarantee
responsiveness. false

4. An embedded program can be coded as a finite state machine where all state transitions
are triggered by user actions. false

5. Several models of computation for embedded systems are described in [Lee:2002].
- The ROS software (used in the practicals) is a prime example of the Dataflow model. false

6. An interrupt is an asynchronous signal from hardware to indicate the need for processor
attention. true/false

7. Finite State Machines can be coded in VHDL.
- An advantage of doing so is that it results in lower interrupt latency as less context (e.g.,
registers) need to be saved and restored. false

8. Finite State Machines can be coded in a number of ways in C.
- In the function-based solution, transitions (arcs) are encoded as a function calls. false

9. Global variables are located on the data heap by the C runtime support at start of execution. false

10. The C language is centered around the int data type, which is defined to hold integral
numbers of at least 16 bits. true

11. GDB is programming tool that aids memory debugging by executing a program in a safe
environment. false

12. int main(void)
{

int c;
statefp state = start;
while((c = getchar()) != EOF) {

state = (statefp) (*state)(c);
}
return 0;

}

The above loop drives the FSM until all characters from the standard input have been
processed. true

13. Specifying the type of statefp is difficult in C because it is recursive and types cannot
be referenced before being fully defined.
- This explains the need for an explicit type cast in the body of the while loop. true

14. Using interrupts improves task response time. false

15. An interrupt service routine does not need to be allocated its own call stack. true

16. A low-priority ISR can be interrupted by a high-priority task. false

2



17. Since disabling interrupts increases interrupt latency, several alternative methods have
been developed for dealing with shared data, including writing so-called “ingenious
code”.

volatile static long int lSecondsToday;
void interrupt vUpdateTime()
{

++lSecondsToday;
}
long lGetSeconds()
{

long lReturn;
lReturn = lSecondsToday;
while (lReturn!=lSecondsToday)

lReturn = lSecondsToday;
return (lReturn);

}

The volatile keyword is needed to prevent the compiler from optimizing the loop away. true

18. When a processor in an embedded system is powered up, interrupts are enabled to meet
response-time requirements. false

19. The shared-data problem can be solved by storing data in non-volatile memory. false

20. An interrupt vector table contains the addresses of the interrupt service routines. true

21. Given the following pseudo code, which reads the current values of 3 different buttons
and acts accordingly. The 3 buttons are all mapped to bits 0..2 of the button register. The
buttons are already debounced.

void f1(void) { delay(1000); }
void f2(void) { delay(2000); }
void f3(void) { delay(3000); }

void main (void) {
while (1) {

if (buttons & 0x01) f1();
delay(1000);
if (buttons & 0x02 ) f2();
delay(1000);
if (buttons & 0x04 ) f3();

}
}

This code is an example of an RR architecture. true

22. When none of the buttons have been pressed, the longest time that button 2 must be
pressed to activate f2() once is 1 second. false

23. When the system is in an arbitrary state, button 1 must be pressed at most 8 seconds to
activate f1(). false

24. The worst-case latency for servicing an interrupt is a combination of factors, including
the longest period of time in which interrupts are disabled. true

25. On 8-bit processors the number of interrupt priorities is limited to 256 (28). false

3



26. Shared (global) variables marked static guarantee atomic access within the code file
due to C’s data hiding principle. false

27. Priority inversion occurs when a high priority task blocks on a resource held by a low
priority task t that is prevented from running due to some other task(s) with more priority
than t. true

28. An RRI architecture is most robust to code changes. false

29. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- A task can transition directly from BLOCKED to READY. true

30. An ISR could activate (unblock) more than one task. true

31. A reentrant function may not call other functions false

32. A queue inbetween a producer and consumer task can be controlled by a counting
semaphore that records the number of items in the queue. true

33. A program running on an RTOS may create tasks dynamically at runtime.
- the program ends once main() and all spawned tasks have finished. true

34. Even a local variable can introduce a shared data problem when its address escapes the
defining function, for example, by storing the address in a global datastructure. true

35. In the implementation of the OS Pend() primitive, the RTOS first switches the state of
the current task to BLOCKED, and then looks for a task in the READY queue.
- if the READY queue is empty the processor may be put into sleep mode to save energy
when idling. true

36. When using an RTOS signaling between ISRs and tasks must be done by calling
appropriate RTOS primitives. true

37. A function can be made reentrant by temporarily disabling interrupts, but then it may no
longer be called by an ISR. true

38. The accuracy of a OSTimeDly() depends on the frequency of the periodic timer used
by the OS.
- the higher the frequency, the lower the accuracy. false

39. An RTOS usually provides two types of delay functions: polling-based and timer-based.
- polling-based delays are specified in so-called ticks. false

40. The heartbeat timer is a single hardware timer an RTOS is using as base for all timings. true

41. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- the unique property of a mailbox is that it can accept items from different tasks. false

42. The advantage of pipes over queues is that messages/items can be of variable length. true

43. With the X32 RTOS creating a task amounts to initializing a stack and invoking a context
switch to the task’s main function.
- This approach provides the possibility to use one stack for multiple (concurrent) tasks
and reduce the memory footprint. false

4



44. Consider the following code fragment:

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4
5 extern char *UART_rx_buf; // copied from <uart.h> for reference
6 extern char *UART_tx_buf;
7 extern char *UART_ier;
8
9 #define LEN 80

10 static char *next_command = NULL;
11
12 void rx_ready() {
13 static char buffer[2][LEN];
14 static int toggle = 0;
15 static char *command = buffer[0];
16 static int cnt = 0;
17
18 char c = *UART_rx_buf;
19 if (c == ’\n’) {
20 command[cnt] = ’\0’;
21 next_command = command;
22 toggle = 1 - toggle;
23 command = buffer[toggle];
24 cnt = 0;
25 } else {
26 command[cnt++] = c;
27 }
28 }
29
30 int main() {
31 *UART_ier |= 0x3; // start RX and TX please
32 while (1) {
33 if (next_command != NULL) {
34 if (strcmp(next_command, "exit") == 0) {
35 exit(0);
36 } else if (strcmp(next_command, "hello") == 0) {
37 printf("world\n");
38 }
39 next_command = NULL;
40 }
41 ...
42 }
43 }

This code is an example of an RR architecture. false

45. Consider lines 5-7 in which some of a UART’s registers are declared. This way a
UART, or any other peripheral for that matter, can be accessed with normal read/write
instructions.
- this mode of operation is called ’memory-mapped I/O’. true

46. The function rx ready() uses a technique called ‘alternating buffers’.
- the global variable next command signals the main() routine which buffer is ready
for processing. true/false

5



47. The code suffers from a (subtle) data sharing bug as both rx ready() and main()
write to the same global variable next command.
- in certain cases main() will read data before rx ready() has written it to the buffer. false

48. Removing the write statement on line 39 will not resolve the shared data bug.
- instead main() should clear the command by writing a null character to the first
position in the buffer (next command[0] = 0;). false

49. An alternative approach would be to make use of semaphores to support rx ready()
passing the next command to main().
- two semaphores are required; one for signalling and the other for mutual exclusive access
to the buffers. false

50. Tasks in an RTOS are often structured as state machines with states stored in private
variables and ISRs advancing the state machine. false

51. In an RTOS each task requires its own stack space. true

52. Printing from an ISR is considered bad practice as the driver resides in the RTOS. false

53. Time-slicing should be avoided in an RTOS because it introduces the shared-data problem. false

54. A semaphore S used by task A must be declared as a local variable within the source code
of A. false

55. Time slicing between tasks of equal priority is to be avoided as it compromises the
predictability of their response times. true

56. When developing code for an embedded system, the software can de structured into HW-
dependent and HW-independent code.
- Doing so makes debugging HW-independent code feasible on the host platform true

57. An in-circuit emulator is preferred to a logic analyzer because it can be used with any type
of processor. false

58. Although the assert macro is a useful debugging aid during program development, it can
only be used on the target machine. false

59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
two most underestimated problems have been the water-proof packaging of the sensor
nodes and the provision of a reliable base station. true

60. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- A major advantage of a testbed is that large volumes of (debug) data can be handled. true/false

6


