Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam — Embedded Software — TI2726-B
April 19,2018 13.30 - 15.00

This exam (6 pages) consists of 60 True/False questions.

Your score will be computed as: mazx (0, W —) x2x9+1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:
e RR (Round Robin)

o RRI (Round Robin with Interrupts)

FQS (Function Queue Scheduling)

RTOS (Real-Time Operating System)
e ISR (Interrupt Service Routine)

e UART (Universal Asynchronous Receiver Transmitter)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay (int ms) {
'l do some CPU computation to the number of ms milliseconds

}

void putchar (char c) {
while (!! UART tx buffer not empty)

14

'l send ¢ to UART tx buffer
}

void puts (char xs) {
'l write string s using putchar

}

Embedded programming is more difficult than “classical” programming because of the

lack of support for recursion. true/false
2. A defining characteristic of embedded systems is the usage of a rich user interface. true/false
3. Because embedded software engages the physical world, it has to embrace time and other
non-functional properties, which requires a view that is significantly different from the
prevailing abstractions in computation. true/false
4. Finite State Machines can be coded in VHDL.
- An advantage of doing so is that it results in a fast and predictable process executing on
dedicated hardware. true/false
5. Interrupts cannot only be generated by hardware, but also by software.
- A software interrupt is a synchronous signal to indicate the need for a change in the
execution flow. true/false
6. Anembedded program can be coded as a finite state machine.
- When for every state S the number of incoming transitions (arcs) equals the number of
outgoing transitions (arcs), the code is free of deadlocks. true/false
7. Besides Finite State Machines other models of computation suitable for embedded
systems include Symbolic Execution and Discrete Events. true/false
8. The size of an int is architecture dependent, but defined to be larger than a short. true/false
9. Memory allocated by the malloc () function is located on the data heap above the code. true/false
10. typedef void (* resolve) (void xold, void =xnew);
The definition above declares resolve as a pointer to a function that takes two
arguments of type void * and returns a void pointer as result. true/false
|11. int main(void)
{
int c;
statefp state = before;
while ((c = getchar()) != EOF) {
state = (statefp) (xstate) (c);
}
return 0;
}
The above driver loop for a FSM follows a round-robin architecture. true/false
12. Specifying the type of statefp is difficult in C because it is recursive and types cannot
be referenced before being fully defined. true/false
13. GDB is programming tool that provides controlled execution of an executable.
- it also provides post mortem inspection when a core file is generated. true/false
14. Using interrupts improves system response time. true/false
15. An interrupt service routine should restore the context upon exit. true/false

16. To guarantee atomicity critical sections must be disabled. true/false
17. An ISR can not be interrupted by another ISR. true/false
18. When a processor is powered up, the state of the interrupt controller needs to be initialized
before the RTOS can be invoked. true/false
19. static int iSeconds, iMinutes;
void interrupt vUpdateTime (void)
{
++iSeconds;
if (iSeconds>=60) {
iSeconds=0;
++iMinutes;
}
}
long 1lSeconds (void)
{
disable();
int now = iMinutes*60+iSeconds;
enable () ;
return (now) ;
}
The above pseudo code correctly dis-/enables the interrupts to solve the shared-data
problem. true/false
20. An interrupt vector table contains the code of the interrupt service routines. true/false
21. Given the following pseudo code, which reads the current values of 3 different buttons
and acts accordingly. The 3 buttons are all mapped to bits 0..2 of the button register. The
buttons are already debounced.
void fl(void) { delay(1000); }
void £2(void) { delay(2000); }
void £3(void) { delay(3000); }
void main (void) {
while (1) {
if (buttons & 0x01) f1();
delay (1000);
if (buttons & 0x02) £f2();
delay (1000);
if (buttons & 0x04) £3();
}
}
This code is an example of an RR architecture. true/false
22. When none of the buttons have been pressed, the longest time that button #3 must be
pressed to activate f3() once is 4 seconds. true/false
23. When the system is in an arbitrary state, button #1 must be pressed at most 10 seconds to

activate f1(). true/false

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

The worst-case latency for servicing an interrupt is a combination of factors, including
the time taken for higher priority tasks.

The number of interrupts is limited by the number of GPIO pins on the processor.
Mutual exclusive access can also be accomplished by disabling interrupts, which has the
advantage of faster context switching compared to using RTOS primitives like semaphores

and mutexes.

Priority inversion requires a minimum of 3 tasks of different priority and 3 semaphores
to occur.

The primary shortcoming of an RRI architecture is that all tasks have the same priority.
An FQS architecture supports priority-based ISRs.

The response time to an external event in an FQS architecture depends on the longest task
in the system.

An RR architecture is most robust to code changes.

Consider an alarm system that constantly monitors the digital output of several motion
detector sensors in a house. If a breach is detected then an intermittent alarm sound is
triggered.

- That alarm system can be implemented with an RR architecture.

When detecting a car crash an airbag should not be inflated instantly.
- An RTOS provides functionality to support such delayed actions.

When upgrading to an RTOS, signaling between ISRs and tasks may still be done through
flags residing in global memory.

Semaphores can be used for signaling between ISRs.
A reentrant function may not reference variables labeled extern.

A semaphore used for guaranteeing mutual exclusive access to shared resources must be
initialized to 1.

A high-priority task must not invoke an RTOS function that may block.

The ’alternating buffers’ technique addresses the shared-data problem by having the
RTOS control when to switch between buffers.

In the implementation of the OS_Pend () primitive, the RTOS first switches the state of
the current task to BLOCKED, and then looks for a task in the READY queue.

- if the READY queue is empty the processor may be put into sleep mode to save energy
when idling.

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

41.

int £ (int x) {
disable_int () ;

'l read some global variables
' do some processing, call some functions

'l write some global variables

enable_int () ;

}

Function £ () disables/enables interrupts to address the shared-data problem.
- However, when £ () calls itself recursively, it is no longer reentrant.

true/false

42.

43.

44.

Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {
OS_Pend(seml); // event #1 may unblock any time
£(1);

}

void T2 (void) {
while (1) {
OS_Pend(sem2); // event #2 may unblock any time
f(-1);

}

void f(int i) {
delay (10); // do some computation
counter = counter + i ; // modify some global counter
printf ("%d\n", counter) ; // print result

}

The function £ () is reentrant.

If counter is set to 15 when event 2 occurs, and event 1 follows 3 ms later, then the first
value printed is 16.

If the call to delay is replaced with OSTimeD1y the output will be different.

true/false

true/false

true/false

45.

46.

47.

48.

An RTOS usually provides two types of delay functions: polling-based and timer-based.
- polling-based delays are more efficient as other tasks can run while the caller is waiting
for the specified time to pass.

Assume that one system clock tick = 10 ms.
- Calling the function 0OSTimeDly (5) causes a delay between 40 and 50 ms.

To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.

- a common advantage is that they allow pointers to be passed from one task to another.

The advantage of queues over pipes is that messages/items can be of variable length.

true/false

true/false

true/false

true/false

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Even when an RTOS is aware of which task is using which semaphore, it cannot prevent
deadlock.

Tasks in an RTOS are often structured as state machines with states stored in private
variables and messages in their queues acting as events.

The memory footprint of a program grows linearly with the number of tasks.

Printing from an ISR is to be avoided except when the RTOS provides a reentrant primitive
to do so.

Time slicing between tasks of equal priority is to be avoided as it compromises the
predictability of their response times.

A semaphore S used by task A must be initialized before A is created.
It is recommended to use just the minimum necessary functionality from an RTOS.

Code coverage tools help in thorough testing.
- a 100% coverage implies a bug-free program.

A logic analyzer is preferred to an in-circuit emulator because it is easier to install; not all
signals need to be connected.

Debugging through scripting test scenarios can only be used to test HW-independent code.

A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
most underestimated problem has been securing the power supply of the sensor nodes.

When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- A wireless testbed requires no physical instrumentation (i.e. wiring) of the sensor nodes.

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

