
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – TI2726-B
January 29, 2018 13.30 - 15.00

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• FQS (Function Queue Scheduling)

• RTOS (Real-Time Operating System)

• ISR (Interrupt Service Routine)

• UART (Universal Asynchronous Receiver Transmitter)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. Embedded programming is more difficult than “classical” programming because of the
lack of support for recursion. true/false

2. A defining characteristic of embedded systems is the restricted, or complete lack, of a user
interface. true/false

3. Several models of computation for embedded systems are described in [Lee:2002].
- The ROS software (used in the practicals) is a prime example of the publish-and-
subscribe model. true/false

4. The Underground Tank Monitoring System is a somewhat contrived example of an
embedded system as it involves input (sensors/buttons) and output (display/printer), but
lacks real-time constraints and resource limitations. true/false

5. Despite advances in software engineering practices, as a rule of thumb, embedded
software contains 1-10 bugs per thousand lines of code. true/false

6. Hardware interrupts can be disabled; software interrupts cannot. true/false

7. An embedded program can be coded as a finite state machine; the number of incoming
transitions (arcs) into a state S must equal the number of outgoing transitions (arcs). true/false

8. Finite State Machines can be coded in a number of ways in C.
- In the table-based solution, every transition (arc) is encoded as a separate function. true/false

9. int main(void)
{

int c;
statefp state = start;
while((c = getchar()) != EOF) {

state = (statefp) (*state)(c);
}
return 0;

}

The above loop drives the FSM until the end state is reached. true/false

10. Unlike recursive data structures, recursive function types cannot be properly defined in C
and require kludges like void pointers and type casts. true/false

11. The C language does not contain a built-in type to represent booleans.
- in control flow statements, expressions evaluating to 0 are regarded as logically False. true/false

12. typedef void (* resolve)(void *old, void *new);

The first pair of parenthesis in the definition above is for clarity (stressing a function
pointer is involved) and can be left out without changing the meaning. true/false

13. Valgrind is programming tool that provides controlled execution, as well as post mortem
inspection of an executable. true/false

14. The worst-case latency for servicing an interrupt is a combination of factors, including
the time taken for higher priority interrupts. true/false

2



15. static int iSeconds, iMinutes;
void interrupt vUpdateTime(void)
{

++iSeconds;
if (iSeconds>=60) {

iSeconds=0;
++iMinutes;

}
}
long lSeconds(void)
{

disable();
return (iMinutes*60+iSeconds);
enable();

}

Despite disabling interrupts the above pseudo code fails to solve the shared-data problem. true/false

16. An interrupt vector table contains the addresses of the interrupt service routines. true/false

17. An interrupt can not be serviced faster than the time needed to save the context of code
running on the processor. true/false

18. Critical sections can be guarded by disabling and enabling interrupts.
- interrupts arriving during such a critical section are buffered and handled upon exit. true/false

19. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
f(1);
OSTimeDly(1);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
f(-1);
OSTimeDly(3);

}
}

void f(int i) {
OS Pend(mutex);
counter = counter + i ; // modify some global counter
OS Post(mutex);

}

This code suffers from a data sharing problem. true/false

20. If the order of events is 1, 2, 1, 2, 1 and they occur within 10 ms from each other, then
the final value of the counter will be increased by 1. true/false

21. The function f() is reentrant true/false

3



22. The shared-data problem can be solved through enabling interrupts. true/false

23. A deadly embrace requires a minimum of 3 tasks of different priority and 1 semaphore
to occur. true/false

24. When a processor is powered up, interrupts are disabled until further notice. true/false

25. While interrupts are disabled atomicity is guaranteed even when calling a non-reentrant
funcion. true/false

26. Shared variables marked volatile guarantee atomic access. true/false

27. Using interrupts improves system response time. true/false

28. The primary shortcoming of an RRI architecture is that it is more complex than RR. true/false

29. An RTOS architecture supports priority-based ISRs. true/false

30. With an FQS architecture, the worst response time of a task includes the time taken by the
longest task in the system. true/false

31. With an RTOS every task needs its own stack. true/false

32. An RR architecture is most robust to code changes. true/false

33. With an RTOS it is impossible to make direct use of harware timers. true/false

34. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- a task starts in the state RUNNING. true/false

35. An ISR may change a task’s status from BLOCKED to READY. true/false

36. A high-priority task must not invoke an RTOS function that may block. true/false

37. When using an RTOS signaling between ISRs and tasks must be done by calling
appropriate RTOS primitives. true/false

38. A program running on an RTOS may create tasks dynamically at runtime.
- the number of tasks is limited by the number of priority levels supported. true/false

39. An RTOS usually provides two types of delay functions: polling-based and timer-based.
- timer-based delays are more efficient as other tasks can run while the caller is waiting
for the specified time to pass. true/false

40. Assume that one system clock tick = 10 ms.
- Calling the function OSTimeDly(6) causes a delay between 50 and 70 ms. true/false

41. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- a common advantage is that they allow pointers to be passed from one task to another. true/false

42. A disadvantage of queues over pipes is that messages/items are handled strictly in FIFO
order.

true/false

4



43. With the X32 RTOS creating a task amounts to initializing a stack and invoking a context
switch to the task’s main function.
- This approach provides the possibility to use one stack for multiple (concurrent) tasks
and reduce the memory footprint. true/false

44. The heartbeat timer is a single hardware timer an RTOS is using to monitor the liveness
of the task set involved. true/false

45. Consider the following code fragment:

1 #include <stdio.h>
2 #include <string.h>
3 #include <stdlib.h>
4
5 extern char *UART_rx_buf; // copied from <uart.h> for reference
6 extern char *UART_tx_buf;
7 extern char *UART_ier;
8
9 #define LEN 80

10 static char *next_command = NULL;
11
12 void rx_ready() {
13 static char buffer[2][LEN];
14 static int toggle = 0;
15 static char *command = buffer[0];
16 static int cnt = 0;
17
18 char c = *UART_rx_buf;
19 if (c == ’\n’) {
20 command[cnt] = ’\0’;
21 next_command = command;
22 toggle = 1 - toggle;
23 command = buffer[toggle];
24 cnt = 0;
25 } else {
26 command[cnt++] = c;
27 }
28 }
29
30 int main() {
31 *UART_ier |= 0x3; // start RX and TX please
32 while (1) {
33 if (next_command != NULL) {
34 if (strcmp(next_command, "exit") == 0) {
35 exit(0);
36 } else if (strcmp(next_command, "hello") == 0) {
37 printf("world\n");
38 }
39 next_command = NULL;
40 }
41 ...
42 }
43 }

This code is an example of an RRI architecture. true/false

5



46. Consider lines 5-7 in which some of a UART’s registers are declared. This way a
UART, or any other peripheral for that matter, can be accessed with normal read/write
instructions.
- this mode of operation is called ’memory-mapped I/O’. true/false

47. The function rx ready() uses a technique called ’alternating buffers’.
- From line 13 we can infer that the buffers are allocated on the call stack. true/false

48. The code suffers from a (subtle) data sharing bug as both rx ready() and main()
write to the same global variable next command.
- in certain cases rx ready() will overwrite buffered data still to be read by main(). true/false

49. Removing the write statement on line 39 will not resolve the shared data bug.
- it will cause main() to repeat the same command until rx ready() is invoked again. true/false

50. An alternative approach would be to make use of semaphores to support rx ready()
passing the next command to main().
- only a single semaphore initialized to 0 is needed. true/false

51. Time slicing between tasks of equal priority is to be avoided as it compromises the
predictability of their response times. true/false

52. The minimal memory footprint of a program grows linearly with the number of tasks. true/false

53. A semaphore S used by tasks A and B must be initialized by either A or B. true/false

54. An advantage of using tasks is that it allows for better data encapsulation. true/false

55. Tasks should have different priorities to avoid fairness issues imposed by the RTOS. true/false

56. When developing code for an embedded system, the software can de structured into HW-
dependent and HW-independent code.
- Doing so makes debugging HW-independent code feasible on the target platform true/false

57. A logic analyzer is preferred to an in-circuit emulator because it can be used with any type
of processor. true/false

58. Although the assert macro is a useful debugging aid during program development, it can
only be used on the host. true/false

59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
water-proof packaging of the base station is key to establishing a reliable connection to
the back bone. true/false

60. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- A wireless testbed requires no physical instrumentation (i.e. wiring) of the sensor nodes. true/false

6


