Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam — Embedded Software — T12726-B
January 29, 2018 13.30 - 15.00

This exam (6 pages) consists of 60 True/False questions.

Your score will be computed as: mazx (0, W —) x2x9+1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:
e RR (Round Robin)

o RRI (Round Robin with Interrupts)

FQS (Function Queue Scheduling)

RTOS (Real-Time Operating System)
e ISR (Interrupt Service Routine)

e UART (Universal Asynchronous Receiver Transmitter)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay (int ms) {
'l do some CPU computation to the number of ms milliseconds

}

void putchar (char c) {
while (!! UART tx buffer not empty)

14

'l send ¢ to UART tx buffer
}

void puts (char xs) {
'l write string s using putchar

}

Embedded programming is more difficult than “classical” programming because of the

lack of support for recursion. true/false
2. A defining characteristic of embedded systems is the restricted, or complete lack, of a user
interface. true/false
3. Several models of computation for embedded systems are described in [Lee:2002].
- The ROS software (used in the practicals) is a prime example of the publish-and-
subscribe model. true/false
4. The Underground Tank Monitoring System is a somewhat contrived example of an
embedded system as it involves input (sensors/buttons) and output (display/printer), but
lacks real-time constraints and resource limitations. true/false
5. Despite advances in software engineering practices, as a rule of thumb, embedded
software contains 1-10 bugs per thousand lines of code. true/false
6. Hardware interrupts can be disabled; software interrupts cannot. true/false
7. An embedded program can be coded as a finite state machine; the number of incoming
transitions (arcs) into a state S must equal the number of outgoing transitions (arcs). true/false
8. Finite State Machines can be coded in a number of ways in C.
- In the table-based solution, every transition (arc) is encoded as a separate function. true/false
9. int main (void)
{
int c;
statefp state = start;
while ((c = getchar()) != EOF) {
state = (statefp) (xstate) (c);
}
return 0;
}
The above loop drives the FSM until the end state is reached. true/false
10. Unlike recursive data structures, recursive function types cannot be properly defined in C
and require kludges like void pointers and type casts. true/false
11. The C language does not contain a built-in type to represent booleans.
- in control flow statements, expressions evaluating to 0 are regarded as logically False. true/false
12. typedef void (% resolve) (void xold, void *new);
The first pair of parenthesis in the definition above is for clarity (stressing a function
pointer is involved) and can be left out without changing the meaning. true/false
13. Valgrind is programming tool that provides controlled execution, as well as post mortem
inspection of an executable. true/false
14. The worst-case latency for servicing an interrupt is a combination of factors, including
the time taken for higher priority interrupts. true/false

15. static int iSeconds, iMinutes;
void interrupt vUpdateTime (void)
{
++iSeconds;
if (iSeconds>=60) {
iSeconds=0;
++iMinutes;
}
}
long 1lSeconds (void)
{
disable () ;
return (iMinutes*60+iSeconds);
enable () ;
}
Despite disabling interrupts the above pseudo code fails to solve the shared-data problem. true/false
16. An interrupt vector table contains the addresses of the interrupt service routines. true/false
17. An interrupt can not be serviced faster than the time needed to save the context of code
running on the processor. true/false
18. Critical sections can be guarded by disabling and enabling interrupts.
- interrupts arriving during such a critical section are buffered and handled upon exit. true/false
19. Given is the following RTOS (pseudo) code with priority T1 > T2.
void T1(void) {
while (1) {
OS_Pend(seml); // event #1 may unblock any time
£(1);
OSTimeDly (1) ;
}
}
void T2 (void) {
while (1) {
OS_Pend (sem2); // event #2 may unblock any time
£(-1);
OSTimeDly (3);
}
}
void f£(int 1) {
O0S_Pend (mutex) ;
counter = counter + i ; // modify some global counter
OS_Post (mutex) ;
}
This code suffers from a data sharing problem. true/false
20. If the order of eventsis 1, 2, 1, 2, 1 and they occur within 10 ms from each other, then
the final value of the counter will be increased by 1. true/false
21. The function £ () is reentrant true/false

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

The shared-data problem can be solved through enabling interrupts.

A deadly embrace requires a minimum of 3 tasks of different priority and 1 semaphore
to occur.

When a processor is powered up, interrupts are disabled until further notice.

While interrupts are disabled atomicity is guaranteed even when calling a non-reentrant
funcion.

Shared variables marked volatile guarantee atomic access.

Using interrupts improves system response time.

The primary shortcoming of an RRI architecture is that it is more complex than RR.
An RTOS architecture supports priority-based ISRs.

With an FQS architecture, the worst response time of a task includes the time taken by the
longest task in the system.

With an RTOS every task needs its own stack.
An RR architecture is most robust to code changes.
With an RTOS it is impossible to make direct use of harware timers.

In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- a task starts in the state RUNNING.

An ISR may change a task’s status from BLOCKED to READY.
A high-priority task must not invoke an RTOS function that may block.

When using an RTOS signaling between ISRs and tasks must be done by calling
appropriate RTOS primitives.

A program running on an RTOS may create tasks dynamically at runtime.
- the number of tasks is limited by the number of priority levels supported.

An RTOS usually provides two types of delay functions: polling-based and timer-based.
- timer-based delays are more efficient as other tasks can run while the caller is waiting
for the specified time to pass.

Assume that one system clock tick = 10 ms.
- Calling the function OSTimeD1ly (6) causes a delay between 50 and 70 ms.

To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- a common advantage is that they allow pointers to be passed from one task to another.

A disadvantage of queues over pipes is that messages/items are handled strictly in FIFO
order.

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

true/false

43. With the X32 RTOS creating a task amounts to initializing a stack and invoking a context
switch to the task’s main function.
- This approach provides the possibility to use one stack for multiple (concurrent) tasks
and reduce the memory footprint. true/false
44. The heartbeat timer is a single hardware timer an RTOS is using to monitor the liveness
of the task set involved. true/false
45. Consider the following code fragment:
1 #include <stdio.h>
2 $#include <string.h>
3 $#include <stdlib.h>
4
5 extern char *UART_rx_buf; // copied from <uart.h> for reference
6 extern char *UART_tx_buf;
7 extern char *UART_ier;
8
9 $#define LEN 80
10 static char *next_command = NULL;
11
12 wvoid rx_ready () {
13 static char buffer[2] [LEN];
14 static int toggle = 0;
15 static char xcommand = buffer[0];
16 static int cnt = 0;
17
18 char ¢ = *UART_rx_buf;
19 if (¢ == '\n") {
20 command[cnt] = "\0’;
21 next_command = command;
22 toggle = 1 - toggle;
23 command = buffer[toggle];
24 cnt = 0;
25 } else {
26 command[cnt++] = c;
27 }
28}
29
30 int main() {
31 *UART_ier |= 0x3; // start RX and TX please
32 while (1) {
33 if (next_command != NULL) {
34 if (strcmp(next_command, "exit") == 0) {
35 exit (0);
36 } else if (strcmp (next_command, "hello") == 0) {
37 printf ("world\n") ;
38 }
39 next_command = NULL;
40 }
41
42 }
43 3

This code is an example of an RRI architecture. true/false

46.

Consider lines 5-7 in which some of a UART’s registers are declared. This way a
UART, or any other peripheral for that matter, can be accessed with normal read/write
instructions.

- this mode of operation is called *'memory-mapped I/O’. true/false
47. The function rx_ready () uses a technique called ’alternating buffers’.

- From line 13 we can infer that the buffers are allocated on the call stack. true/false
48. The code suffers from a (subtle) data sharing bug as both rx_ready () and main ()

write to the same global variable next_command.

- in certain cases rx_ready () will overwrite buffered data still to be read by main (). true/false
49. Removing the write statement on line 39 will not resolve the shared data bug.

- it will cause main () to repeat the same command until rx_ready () is invoked again. true/false
50. An alternative approach would be to make use of semaphores to support rx_ready ()

passing the next command to main ().

- only a single semaphore initialized to 0 is needed. true/false
51. Time slicing between tasks of equal priority is to be avoided as it compromises the

predictability of their response times. true/false
52. The minimal memory footprint of a program grows linearly with the number of tasks. true/false
53. A semaphore S used by tasks A and B must be initialized by either A or B. true/false
54. An advantage of using tasks is that it allows for better data encapsulation. true/false
55. Tasks should have different priorities to avoid fairness issues imposed by the RTOS. true/false
56. When developing code for an embedded system, the software can de structured into HW-

dependent and HW-independent code.

- Doing so makes debugging HW-independent code feasible on the target platform true/false
57. Alogic analyzer is preferred to an in-circuit emulator because it can be used with any type

of processor. true/false
58. Although the assert macro is a useful debugging aid during program development, it can

only be used on the host. true/false
59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the

water-proof packaging of the base station is key to establishing a reliable connection to

the back bone. true/false
60. When debugging code for a distributed sensor network, collecting the (debug) output of

the nodes can be arranged in different ways.

- A wireless testbed requires no physical instrumentation (i.e. wiring) of the sensor nodes. true/false

