
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – TI2726-B
April 19, 2017 13.30 - 15.00

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• FQS (Function Queue Scheduling)

• RTOS (Real-Time Operating System)

• ISR (Interrupt Service Routine)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. Embedded programming is more difficult than “classical” programming because of the
thread-based programming model. true/false

2. A defining characteristic of embedded systems is the usage of a rich user interface. true/false

3. The Embedded software crisis refers to the decrease in the number of manufactured
embedded systems. true/false

4. Several models of computation for embedded systems are described in [Lee:2002].
- Process Networks are primarily used to describe concurrency at the hardware level. true/false

5. An embedded program can be coded as a finite state machine where interrupts trigger
state transitions. true/false

6. An interrupt is an asynchronous signal from hardware to indicate the need for processor
attention. true/false

7. Finite State Machines can be coded in VHDL.
- An advantage of doing so is that it results in lower interrupt latency as less context (e.g.,
registers) need to be saved and restored. true/false

8. The C language does not contain a built-in type to represent booleans.
- True and False are handled as numeric values 1 and 0, respectively. true/false

9. Memory allocated by the malloc() function is located on the data heap above the code. true/false

10. typedef void *resolve(void *old, void *new);

The definition above declares resolve as a pointer to a function that takes two
arguments of type void * and returns a void as result. true/false

11. GDB is programming tool that aids memory debugging by executing a program in a safe
environment. true/false

12. int main(void)
{

int c;
statefp state = before;
while((c = getchar()) != EOF) {

state = (statefp) (*state)(c);
}
return 0;

}

The above driver loop for a FSM follows a round-robin architecture. true/false

13. Specifying the type of statefp is difficult in C because it is recursive and types cannot
be referenced before being fully defined.
- This explains the need for an explicit type cast in the body of the while loop. true/false

14. Using interrupts improves task response time. true/false

15. Disabling interrupts guarantees atomicity of the code until they are enabled again. true/false

2



16. An interrupt service routine should save the context upon entrance. true/false

17. A low-priority ISR can be interrupted by a high-priority ISR. true/false

18. int temp1, temp2;

void isr buttons(void) // arrive here if a button is pressed
{

temp1 = X32 PERIPHERALS[PERIPHERAL TEMP1];
temp2 = X32 PERIPHERALS[PERIPHERAL TEMP2];
...

}

main() {
...
while (!program done) {

X32 display = ((temp1 & 0xff) << 8) | (temp2 & 0xff);
if (temp1 != temp2) {

// shutdown plant
}

}
}

The above pseudo code suffers from the shared-data problem. true/false

19. The shared-data problem can be solved by storing data in non-volatile memory. true/false

20. Critical sections can be guarded by disabling and enabling interrupts.
- interrupts arriving during such a critical section are buffered and handled upon exit. true/false

21. When a processor is powered up, the state of the interrupt controller needs to be initialized
before the RTOS can be invoked. true/false

22. Priority inversion occurs when the volatile and static keywords are wrongly used
inside a task or interrupt. true/false

23. static volatile int count;

main () {
...
count = 666;
...

}

Writing to the global variable count is atomic. true/false

24. The worst-case latency for servicing an interrupt is a combination of factors, including
the longest period of time in which interrupts are disabled. true/false

25. The number of interrupts is limited by the number of GPIO pins on the processor. true/false

26. An interrupt vector table contains the code of the interrupt service routines. true/false

3



27. Since disabling interrupts increases interrupt latency, several alternative methods have
been developed for dealing with shared data. The Alternating Buffers method is suited for
handing data from an ISR to a task.

static int tempA[2], tempB[2];
static bool useB = FALSE;

void interrupt readTemp() {
if (useB) {

tempA[0]= ...;
tempA[1]= ...;

} else {
tempB[0]= ...;
tempB[1]= ...;

}
}

void main(void) {
while (TRUE) {

if (useB)
if (tempB[0]!=tempB[1]) ... ;

else
if (tempA[0]!=tempA[1]) ... ;

useB = !useB;
}

}

The code for toggling the useB flag should be in the main task (not the ISR) as shown
above. true/false

28. An RR architecture supports priority-based task scheduling. true/false

29. With an RRI architecture, the execution of a task associated with a high-priority interrupt
may be delayed by other tasks in the system. true/false

30. An FQS architecture has a smaller memory footprint than an RTOS as it needs only one
stack. true/false

31. Consider an alarm system that constantly monitors the digital output of several motion
detector sensors in a house. If a breach is detected then an intermittent alarm sound is
triggered.
- That alarm system can be implemented with an RR architecture. true/false

32. The response time to an external event in an FQS architecture is deterministic and depends
solely on the length of the ISR. true/false

33. When detecting a car crash an airbag should not be inflated instantly.
- An RTOS provides functionality to support such delayed actions. true/false

34. When upgrading to an RTOS, signaling between ISRs and tasks may still be done through
flags residing in global memory. true/false

35. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- A task can transition directly from BLOCKED to RUNNING. true/false

36. An ISR must not invoke an RTOS function that may block. true/false

4



37. A reentrant function may only be used by one task at a time true/false

38. Semaphores can be used for signaling between tasks. true/false

39. Tasks may call the OS pend() routine, but not the OS post() routine . true/false

40. A program running on an RTOS may create tasks dynamically at runtime.
- the program ends once main() and all spawned tasks have finished. true/false

41. In the implementation of the OS Pend() primitive, the RTOS first switches the state of
the current task to BLOCKED, and then looks for a task in the READY queue.
- if the READY queue is empty the RTOS starts a watchdog timer to guard for a potential
deadlock. true/false

42. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
f(1);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
f(-1);

}
}

void f(int i) {
delay(10); // do some computation
counter = counter + i ; // modify some global counter
printf("%d\n", counter) ; // print result

}

The function f() is reentrant. true/false

43. If counter is set to 15 when event 2 occurs, and event 1 follows 13 ms later, then the
first value printed is 15. true/false

44. If the call to delay is replaced with OSTimeDly the output will be different. true/false

45. An RTOS usually provides two types of delay functions: polling-based and timer-based.
- polling-based delays are the most accurate. true/false

46. Assume that one system clock tick = 10 ms.
- Calling the function OSTimeDly(5) causes a delay between 40 and 50 ms. true/false

47. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- a common advantage is that they allow pointers to be passed from one task to another. true/false

48. The advantage of queues over pipes is that messages/items can be of variable length. true/false

5



49. Even when an RTOS is aware of which task is using which semaphore, it cannot prevent
deadlock. true/false

50. Tasks in an RTOS are often structured as state machines with states stored in private
variables and messages in their queues acting as events. true/false

51. The memory footprint of a program grows linearly with the number of tasks. true/false

52. Printing from an ISR is considered a good practice as no other debugging techniques are
available. true/false

53. Time slicing between tasks of equal priority is to be avoided as the response time of
individual tasks is comprised. true/false

54. A semaphore S used by task A must be initialized by A. true/false

55. Aborting tasks is nontrivial because a task may hold resources (e.g., a semaphore) when
being destroyed. true/false

56. A logic analyzer is preferred to an in-circuit emulator because it can monitor the internal
memory bus of (most) modern micro controllers. true/false

57. Code coverage tools help in thorough testing.
- a 100% coverage implies a bug-free program. true/false

58. Even on embedded devices without a display, the assert macro is a useful debugging aid. true/false

59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
water-proof packaging of the base station is key to establishing a reliable connection to
the back bone. true/false

60. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- A wireless testbed requires physical instrumentation (i.e. wiring) of the sensor node. true/false

6


