
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – TI2726-B
January 30, 2017 13.30 - 15.00

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:

• FQS (Function Queue Scheduling)

• ISR (Interrupt Service Routine)

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• RTOS (Real-Time Operating System)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. A defining characteristic of embedded systems is the need for large volumes of scale. true/false

2. The Underground Tank Monitoring System is a classic example of an embedded system in
that it involves input (sensors/buttons), output (display/printer) and real-time constraints. true/false

3. Because embedded software engages the physical world, it has to embrace time and other
non-functional properties, which requires a view that is significantly different from the
prevailing abstractions in computation. true/false

4. Embedded programming is more difficult than “classical” programming because of the
event-based programming model. true/false

5. Interrupts cannot only be generated by hardware, but also by software.
- A software interrupt is a synchronous signal to indicate the need for a change in the
execution flow. true/false

6. An embedded program can be coded as a finite state machine.
- When for every state S the number of incoming transitions (arcs) equals the number of
outgoing transitions (arcs), the code is free of deadlocks. true/false

7. Finite State Machines can be coded in VHDL.
- An advantage of doing so is that it results in a fast and predictable process executing on
dedicated hardware. true/false

8. The C language is centered around the int data type, which is defined to hold 32-bit
integral numbers. true/false

9. Arrays in C are basically syntactic sugar for pointers, and notation may be mixed freely.

int array[100];
int *ptr = array;

ptr = 17;
array[0]++;
assert(array[0] == *ptr);

- the above assert will hold. true/false

10. typedef void (* resolve)(void *old, void *new);

The definition above declares resolve as a pointer to a function that takes two
arguments of type void * and returns a void pointer as result. true/false

11. Memory allocated by the malloc() function is located on the call stack at the high end
of the address space. true/false

12. Finite State Machines can be coded in a number of ways in C.
- In the function-based solution, every state is encoded as a separate function. true/false

13. GDB is programming tool that provides controlled execution of an executable.
- it also provides post mortem inspection when a core file is generated. true/false

14. An interrupt service routine should restore the context upon entrance. true/false

2



15. Using interrupts avoid wasting time in polling loops for external events true/false

16. To guarantee atomicity critical sections must be disabled. true/false

17. An interrupt vector points to a table with interrupt routines. true/false

18. When a processor is powered up, the state of the interrupt controller needs to be initialized
before the RTOS can be invoked. true/false

19. static int iSeconds, iMinutes;
void interrupt vUpdateTime(void)
{

++iSeconds;
if (iSeconds>=60) {

iSeconds=0;
++iMinutes;

}
}
long lSeconds(void)
{

disable();
int now = iMinutes*60+iSeconds;
enable();
return(now);

}

The above pseudo code correctly dis-/enables the interrupts to solve the shared-data
problem. true/false

20. Given the following pseudo code, which reads the current values of 3 different buttons
and acts accordingly. The 3 buttons are all mapped to bits 0..2 of the button register. The
buttons are already debounced.

void f1(void) { delay(1000); }
void f2(void) { delay(2000); }
void f3(void) { delay(3000); }

void main (void) {
while (1) {

if (buttons & 0x01) f1();
delay(1000);
if (buttons & 0x02 ) f2();
delay(1000);
if (buttons & 0x04 ) f3();

}
}

This code is an example of an RR architecture. true/false

21. When none of the buttons have been pressed, the longest time that button #2 must be
pressed to activate f2() once is 2 seconds. true/false

22. When the system is in an arbitrary state, button #1 must be pressed at most 8 seconds to
activate f1(). true/false

3



23. Since disabling interrupts increases interrupt latency, several alternative methods have
been developed for dealing with shared data.
- The Alternating Buffers technique can be used between two “communicating” tasks of
equal priority. true/false

24. Priority inversion requires a minimum of 3 tasks of different priority and 1 semaphore
to occur. true/false

25. On 8-bit processors the number of interrupt priorities is limited to 256 (28). true/false

26. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
OS Pend(mutex);
f(1);
OS Post(mutex);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
OS Pend(mutex);
f(-1);
OS Post(mutex);

}
}

void f(int i) {
counter = counter + i ; // modify some global counter

}

This code suffers from a data sharing problem. true/false

27. The function f() is reentrant true/false

28. With an RR architecture, the handling of I/O devices occurs in a fixed order. true/false

29. An FQS architecture supports priority-based task scheduling. true/false

30. With an RTOS every task needs its own stack. true/false

31. An RR architecture is most robust to code changes. true/false

32. The primary shortcoming of an RRI architecture is that all tasks have the same priority. true/false

33. When detecting a car crash an airbag should not be inflated instantly.
- An RR architecture provides functionality to support such delayed actions. true/false

34. An ISR can signal a task by operating a semaphore. true/false

35. A function can be made reentrant by means of a critical section, but then it may no longer
be called by an ISR. true/false

4



36. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- A task can transition directly from READY to BLOCKED. true/false

37. A reentrant function may only be used by one task at a time true/false

38. A program running on an RTOS may create tasks dynamically at runtime.
- the program ends once main() and all spawned tasks have finished. true/false

39. The ’alternating buffers’ technique addresses the shared-data problem by having the
RTOS control when to switch between buffers. true/false

40. In the implementation of the OS Pend() primitive, the RTOS first switches the state of
the current task to BLOCKED, and then looks for a task in the READY queue.
- if the READY queue is empty the processor may be put into sleep mode to save energy
when idling. true/false

41. A semaphore used for condition synchronization must be initialized to 1. true/false

42. int f (int x) {
disable int();

!! read some global variables
!! do some processing, call some functions
!! write some global variables

enable int();
}

Function f() disables/enables interrupts to address the shared-data problem.
- However, when f() calls itself recursively, it is no longer reentrant. true/false

43. Tasks may call the OS pend() routine, but not the OS post() routine . true/false

44. The accuracy of a OSTimeDly() depends on the frequency of the periodic timer used
by the OS.
- the higher the frequency, the lower the accuracy. true/false

45. The heartbeat timer is a single hardware timer an RTOS is using to verify that the system
is still progressing (i.e. not deadlocked). true/false

46. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- the basic read/write operations on these primitives are atomic. true/false

47. The advantage of pipes over queues is that messages/items can be of variable length. true/false

48. As the RTOSs is aware of which task is using which semaphore, deadlock can be
prevented by delaying the OS Pend operation of the last runnable task. true/false

49. With the X32 RTOS creating a task amounts to initializing a stack and invoking a context
switch to the task’s main function.
- This approach provides the possibility to use one stack for multiple (concurrent) tasks
and reduce the memory footprint. true/false

50. An advantage of using tasks is that it allows for better data encapsulation. true/false

5



51. A key principle of RTOS-based design is that short interrupt routines are needed for a
responsive system true/false

52. Printing from an ISR is to be avoided except when the RTOS provides a reentrant primitive
to do so. true/false

53. Time-slicing should be avoided in an RTOS because it introduces the shared-data problem. true/false

54. A semaphore S used by task A must be initialized before A is created. true/false

55. Tasks should have different priorities to prevent the RTOS selecting the wrong task. true/false

56. When developing code for an embedded system, the software can de structured into HW-
dependent and HW-independent code.
- Doing so makes debugging HW-independent code feasible on the host platform true/false

57. Debugging through scripting test scenarios is difficult when the target platform is
unavailable. true/false

58. Although the assert macro is a useful debugging aid, it can only be used on embedded
devices with a display. true/false

59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
most underestimated problem has been securing the power supply of the sensor nodes. true/false

60. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- offline sniffing requires logging facilities on the sniffer nodes. true/false

6


