
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – TI2726-B
January 30, 2017 13.30 - 15.00

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• FQS (Function Queue Scheduling)

• RTOS (Real-Time Operating System)

• ISR (Interrupt Service Routine)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. A defining characteristic of embedded systems is the need for large volumes of scale. false

2. The Underground Tank Monitoring System is a classic example of an embedded system in
that it involves input (sensors/buttons), output (display/printer) and real-time constraints. true

3. Because embedded software engages the physical world, it has to embrace time and other
non-functional properties, which requires a view that is significantly different from the
prevailing abstractions in computation. true

4. Embedded programming is more difficult than “classical” programming because of the
event-based programming model. true

5. Interrupts cannot only be generated by hardware, but also by software.
- A software interrupt is a synchronous signal to indicate the need for a change in the
execution flow. true

6. An embedded program can be coded as a finite state machine.
- When for every state S the number of incoming transitions (arcs) equals the number of
outgoing transitions (arcs), the code is free of deadlocks. false

7. Finite State Machines can be coded in VHDL.
- An advantage of doing so is that it results in a fast and predictable process executing on
dedicated hardware. true

8. The C language is centered around the int data type, which is defined to hold 32-bit
integral numbers. false

9. Arrays in C are basically syntactic sugar for pointers, and notation may be mixed freely.

int array[100];
int *ptr = array;

ptr = 17;
array[0]++;
assert(array[0] == *ptr);

- the above assert will hold. false/true

10. typedef void (* resolve)(void *old, void *new);

The definition above declares resolve as a pointer to a function that takes two
arguments of type void * and returns a void pointer as result. false

11. Memory allocated by the malloc() function is located on the call stack at the high end
of the address space. false

12. Finite State Machines can be coded in a number of ways in C.
- In the function-based solution, every state is encoded as a separate function. true

13. GDB is programming tool that provides controlled execution of an executable.
- it also provides post mortem inspection when a core file is generated. true

14. An interrupt service routine should restore the context upon entrance. false

2



15. Using interrupts avoid wasting time in polling loops for external events true

16. To guarantee atomicity critical sections must be disabled. false

17. An interrupt vector points to a table with interrupt routines. false

18. When a processor is powered up, the state of the interrupt controller needs to be initialized
before the RTOS can be invoked. false

19. static int iSeconds, iMinutes;
void interrupt vUpdateTime(void)
{

++iSeconds;
if (iSeconds>=60) {

iSeconds=0;
++iMinutes;

}
}
long lSeconds(void)
{

disable();
int now = iMinutes*60+iSeconds;
enable();
return(now);

}

The above pseudo code correctly dis-/enables the interrupts to solve the shared-data
problem. true

20. Given the following pseudo code, which reads the current values of 3 different buttons
and acts accordingly. The 3 buttons are all mapped to bits 0..2 of the button register. The
buttons are already debounced.

void f1(void) { delay(1000); }
void f2(void) { delay(2000); }
void f3(void) { delay(3000); }

void main (void) {
while (1) {

if (buttons & 0x01) f1();
delay(1000);
if (buttons & 0x02 ) f2();
delay(1000);
if (buttons & 0x04 ) f3();

}
}

This code is an example of an RR architecture. true

21. When none of the buttons have been pressed, the longest time that button #2 must be
pressed to activate f2() once is 2 seconds. true

22. When the system is in an arbitrary state, button #1 must be pressed at most 8 seconds to
activate f1(). false

3



23. Since disabling interrupts increases interrupt latency, several alternative methods have
been developed for dealing with shared data.
- The Alternating Buffers technique can be used between two “communicating” tasks of
equal priority. false

24. Priority inversion requires a minimum of 3 tasks of different priority and 1 semaphore
to occur. true

25. On 8-bit processors the number of interrupt priorities is limited to 256 (28). false

26. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
OS Pend(mutex);
f(1);
OS Post(mutex);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
OS Pend(mutex);
f(-1);
OS Post(mutex);

}
}

void f(int i) {
counter = counter + i ; // modify some global counter

}

This code suffers from a data sharing problem. false

27. The function f() is reentrant false

28. With an RR architecture, the handling of I/O devices occurs in a fixed order. true

29. An FQS architecture supports priority-based task scheduling. true

30. With an RTOS every task needs its own stack. true

31. An RR architecture is most robust to code changes. false

32. The primary shortcoming of an RRI architecture is that all tasks have the same priority. true

33. When detecting a car crash an airbag should not be inflated instantly.
- An RR architecture provides functionality to support such delayed actions. false

34. An ISR can signal a task by operating a semaphore. true

35. A function can be made reentrant by means of a critical section, but then it may no longer
be called by an ISR. true

4



36. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- A task can transition directly from READY to BLOCKED. false

37. A reentrant function may only be used by one task at a time false

38. A program running on an RTOS may create tasks dynamically at runtime.
- the program ends once main() and all spawned tasks have finished. true

39. The ’alternating buffers’ technique addresses the shared-data problem by having the
RTOS control when to switch between buffers. false

40. In the implementation of the OS Pend() primitive, the RTOS first switches the state of
the current task to BLOCKED, and then looks for a task in the READY queue.
- if the READY queue is empty the processor may be put into sleep mode to save energy
when idling. true

41. A semaphore used for condition synchronization must be initialized to 1. false

42. int f (int x) {
disable int();

!! read some global variables
!! do some processing, call some functions
!! write some global variables

enable int();
}

Function f() disables/enables interrupts to address the shared-data problem.
- However, when f() calls itself recursively, it is no longer reentrant. true

43. Tasks may call the OS pend() routine, but not the OS post() routine . false

44. The accuracy of a OSTimeDly() depends on the frequency of the periodic timer used
by the OS.
- the higher the frequency, the lower the accuracy. false

45. The heartbeat timer is a single hardware timer an RTOS is using to verify that the system
is still progressing (i.e. not deadlocked). false

46. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- the basic read/write operations on these primitives are atomic. true

47. The advantage of pipes over queues is that messages/items can be of variable length. true

48. As the RTOSs is aware of which task is using which semaphore, deadlock can be
prevented by delaying the OS Pend operation of the last runnable task. false

49. With the X32 RTOS creating a task amounts to initializing a stack and invoking a context
switch to the task’s main function.
- This approach provides the possibility to use one stack for multiple (concurrent) tasks
and reduce the memory footprint. false

50. An advantage of using tasks is that it allows for better data encapsulation. true

5



51. A key principle of RTOS-based design is that short interrupt routines are needed for a
responsive system true

52. Printing from an ISR is to be avoided except when the RTOS provides a reentrant primitive
to do so. true

53. Time-slicing should be avoided in an RTOS because it introduces the shared-data problem. false

54. A semaphore S used by task A must be initialized before A is created. false

55. Tasks should have different priorities to prevent the RTOS selecting the wrong task. true/false

56. When developing code for an embedded system, the software can de structured into HW-
dependent and HW-independent code.
- Doing so makes debugging HW-independent code feasible on the host platform true

57. Debugging through scripting test scenarios is difficult when the target platform is
unavailable. false

58. Although the assert macro is a useful debugging aid, it can only be used on embedded
devices with a display. false

59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
most underestimated problem has been securing the power supply of the sensor nodes. false

60. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- offline sniffing requires logging facilities on the sniffer nodes. true

6


