
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – TI2726-B
April 15, 2016 13.30 - 15.00

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:

• FQS (Function Queue Scheduling)

• ISR (Interrupt Service Routine)

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• RTOS (Real-Time Operating System)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. Embedded programming is more difficult than “classical” programming because of the
higher level of abstraction involved. true/false

2. A defining characteristic of embedded systems is the restricted, or complete lack, of a user
interface. true/false

3. Despite advances in software engineering practices, as a rule of thumb, embedded
software contains 1-10 bugs per million lines of code. true/false

4. An embedded program can be coded as a finite state machine where all state transitions
are triggered by user actions. true/false

5. Finite State Machines can be coded in VHDL.
- An advantage of doing so is that it results in lower interrupt latency as less context (e.g.,
registers) need to be saved and restored. true/false

6. A software interrupt is an asynchronous signal to indicate the need for a change in the
execution flow. true/false

7. Besides Finite State Machines other models of computation suitable for embedded
systems include Symbolic Execution and Discrete Events. true/false

8. typedef void *resolve(void *old, void *new);

The definition above declares the prototype of the function resolve, which takes two
arguments of type void * and returns a void pointer as result. true/false

9. Valgrind is programming tool that aids memory debugging.
- it does so by executing a program in a safe environment. true/false

10. The C language is centered around the int data type, which is defined to hold integral
numbers of at least 16 bits. true/false

11. Finite State Machines can be coded in a number of ways in C.
- In the table-based solution, every transition (arc) is encoded as a separate function. true/false

12. int main(void)
{

int c;
statefp state = before;
while((c = getchar()) != EOF) {

state = (statefp) (*state)(c);
}
return 0;

}

The above driver loop for a FSM is interrupt based. true/false

13. Specifying the type of statefp is difficult in C because forward declarations are not
supported for function types. true/false

14. Using interrupts improves system response time. true/false

15. An interrupt service routine should restore the context upon exit. true/false

2



16. To guarantee atomicity interrupts must be disabled. true/false

17. An ISR can not be interrupted by another ISR. true/false

18. static int iSeconds, iMinutes;
void interrupt vUpdateTime(void)
{

++iSeconds;
if (iSeconds>=60) {

iSeconds=0;
++iMinutes;

}
}
long lSeconds(void)
{

disable();
return (iMinutes*60+iSeconds);
enable();

}

Despite disabling interrupts the above pseudo code fails to solve the shared-data problem. true/false

19. By structuring a program as a collection of tasks the data sharing problem is resolved. true/false

20. An interrupt vector table contains the code of the interrupt service routines. true/false

21. The worst-case latency for servicing an interrupt is a combination of factors, including
the time taken for higher priority tasks. true/false

22. Given the following pseudo code, which reads the current values of 3 different buttons
and acts accordingly. The 3 buttons are all mapped to bits 0..2 of the button register. The
buttons are already debounced.

void f1(void) { delay(1000); }
void f2(void) { delay(2000); }
void f3(void) { delay(3000); }

void main (void) {
while (1) {

if (buttons & 0x01) f1();
delay(1000);
if (buttons & 0x02 ) f2();
delay(1000);
if (buttons & 0x04 ) f3();

}
}

This code is an example of an RR architecture. true/false

23. When none of the buttons have been pressed, the longest time that button #2 must be
pressed to activate f2() once is 1 second. true/false

24. When the system is in an arbitrary state, button #1 must be pressed at most 7 seconds to
activate f1(). true/false

3



25. Priority inversion requires a minimum of 3 tasks of different priority and 3 semaphores
to occur. true/false

26. A deadly embrace requires a minimum of 2 tasks and 1 semaphore to occur. true/false

27. Shared variables marked volatile guarantee atomic access. true/false

28. With an RR architecture, the handling of an I/O device may need to wait until all other
devices have been served. true/false

29. An RRI architecture supports priority-based ISRs. true/false

30. The response time to an external event in an FQS architecture depends on the longest task
in the system. true/false

31. Consider an alarm system that constantly monitors the digital output of several motion
detector sensors in a house. If a breach is detected then an intermittent alarm sound is
triggered.
- To guarantee a minimum response time an FQS architecture must be used. true/false

32. The primary shortcoming of an RRI architecture is that critical sections must be used. true/false

33. An FQS architecture has a smaller memory footprint than an RTOS as it needs only one
stack. true/false

34. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- A task can transition directly from BLOCKED to READY. true/false

35. Semaphores can be used for signaling between ISRs. true/false

36. A reentrant function may not reference variables labeled extern. true/false

37. A semaphore used for guaranteeing mutual exclusive access to shared resources must be
initialized to 1. true/false

38. A high-priority task must not invoke an RTOS function that may block. true/false

39. An ISR may call the OS post() routine, provided that the RTOS “knows” that the
invocation is by an ISR and not by an ordinary task. true/false

40. The ’alternating buffers’ technique addresses the shared-data problem by copying the data
from the in- to the out-buffer instead of passing a pointer. true/false

41. int f (int x) {
disable int();

!! read some global variables
!! do some processing, call some functions
!! write some global variables

enable int();
}

Function f() disables/enables interrupts to address the shared-data problem.
- However, when f() calls itself recursively, it is no longer reentrant. true/false

4



42. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
f(1);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
f(-1);

}
}

void f(int i) {
delay(10); // do some computation
counter = counter + i ; // modify some global counter
printf("%d\n", counter) ; // print result

}

The function f() is reentrant. true/false

43. If count is set to 15 when event 2 occurs, and event 1 follows 3 ms later, then the first
value printed is 16. true/false

44. If the call to delay is replaced with OSTimeDly the order of the print statements
depends on wether or not a timer interrupt appeared in between the two events. true/false

45. An RTOS usually provides two types of delay functions: polling-based and timer-based.
- timer-based delays are more efficient as other tasks can run while the caller is waiting
for the specified time to pass. true/false

46. The heartbeat timer is a single hardware timer an RTOS is using to verify that the system
is still progressing (i.e. not deadlocked). true/false

47. Assume that one system clock tick = 10 ms.
- Calling the function OSTimeDly(6) causes a delay between 65 and 75 ms. true/false

48. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- a common pitfall is that they allow pointers to be passed from one task to another. true/false

49. Even when an RTOSs is aware of which task is using which semaphore, it cannot prevent
deadlock. true/false

50. Time-slicing should be avoided in an RTOS because it makes the response time of tasks
less predictable. true/false

51. The minimal memory footprint of a program grows linearly with the number of tasks. true/false

52. Printing from an ISR is to be avoided except when the RTOS provides a reentrant primitive
to do so. true/false

5



53. Time slicing between tasks of equal priority is common practice in embedded systems. true/false

54. Aborting tasks is nontrivial because a task may hold resources (e.g., a semaphore) when
being destroyed. true/false

55. Tasks should have different priorities to avoid fairness issues imposed by the RTOS. true/false

56. Code coverage tools help in thorough testing.
- a 100% coverage implies a bug-free program. true/false

57. A logic analyzer is preferred to an in-circuit emulator because it is easier to install; not all
signals need to be connected. true/false

58. Debugging through scripting test scenarios can only be used to test HW-independent code. true/false

59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
two most underestimated problems have been the water-proof packaging of the sensor
nodes and the provision of a reliable base station. true/false

60. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- A wireless testbed requires no physical instrumentation (i.e. wiring) of the sensor node. true/false

6


