
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – TI2726-B
April 15, 2016 13.30 - 15.00

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:

• FQS (Function Queue Scheduling)

• ISR (Interrupt Service Routine)

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• RTOS (Real-Time Operating System)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. Embedded programming is more difficult than “classical” programming because of the
higher level of abstraction involved. false

2. A defining characteristic of embedded systems is the restricted, or complete lack, of a user
interface. true

3. Despite advances in software engineering practices, as a rule of thumb, embedded
software contains 1-10 bugs per million lines of code. false

4. An embedded program can be coded as a finite state machine where all state transitions
are triggered by user actions. false

5. Finite State Machines can be coded in VHDL.
- An advantage of doing so is that it results in lower interrupt latency as less context (e.g.,
registers) need to be saved and restored. false

6. A software interrupt is an asynchronous signal to indicate the need for a change in the
execution flow. false

7. Besides Finite State Machines other models of computation suitable for embedded
systems include Symbolic Execution and Discrete Events. false

8. typedef void *resolve(void *old, void *new);

The definition above declares the prototype of the function resolve, which takes two
arguments of type void * and returns a void pointer as result. true

9. Valgrind is programming tool that aids memory debugging.
- it does so by executing a program in a safe environment. true

10. The C language is centered around the int data type, which is defined to hold integral
numbers of at least 16 bits. true

11. Finite State Machines can be coded in a number of ways in C.
- In the table-based solution, every transition (arc) is encoded as a separate function. true/false

12. int main(void)
{

int c;
statefp state = before;
while((c = getchar()) != EOF) {

state = (statefp) (*state)(c);
}
return 0;

}

The above driver loop for a FSM is interrupt based. false

13. Specifying the type of statefp is difficult in C because forward declarations are not
supported for function types. false

14. Using interrupts improves system response time. true

15. An interrupt service routine should restore the context upon exit. true

2



16. To guarantee atomicity interrupts must be disabled. false

17. An ISR can not be interrupted by another ISR. false

18. static int iSeconds, iMinutes;
void interrupt vUpdateTime(void)
{

++iSeconds;
if (iSeconds>=60) {

iSeconds=0;
++iMinutes;

}
}
long lSeconds(void)
{

disable();
return (iMinutes*60+iSeconds);
enable();

}

Despite disabling interrupts the above pseudo code fails to solve the shared-data problem. true

19. By structuring a program as a collection of tasks the data sharing problem is resolved. false

20. An interrupt vector table contains the code of the interrupt service routines. false

21. The worst-case latency for servicing an interrupt is a combination of factors, including
the time taken for higher priority tasks. false

22. Given the following pseudo code, which reads the current values of 3 different buttons
and acts accordingly. The 3 buttons are all mapped to bits 0..2 of the button register. The
buttons are already debounced.

void f1(void) { delay(1000); }
void f2(void) { delay(2000); }
void f3(void) { delay(3000); }

void main (void) {
while (1) {

if (buttons & 0x01) f1();
delay(1000);
if (buttons & 0x02 ) f2();
delay(1000);
if (buttons & 0x04 ) f3();

}
}

This code is an example of an RR architecture. true

23. When none of the buttons have been pressed, the longest time that button #2 must be
pressed to activate f2() once is 1 second. false

24. When the system is in an arbitrary state, button #1 must be pressed at most 7 seconds to
activate f1(). true

25. Priority inversion requires a minimum of 3 tasks of different priority and 3 semaphores
to occur. false

3



26. A deadly embrace requires a minimum of 2 tasks and 1 semaphore to occur. false

27. Shared variables marked volatile guarantee atomic access. false

28. With an RR architecture, the handling of an I/O device may need to wait until all other
devices have been served. true

29. An RRI architecture supports priority-based ISRs. true/false

30. The response time to an external event in an FQS architecture depends on the longest task
in the system. true

31. Consider an alarm system that constantly monitors the digital output of several motion
detector sensors in a house. If a breach is detected then an intermittent alarm sound is
triggered.
- To guarantee a minimum response time an FQS architecture must be used. false

32. The primary shortcoming of an RRI architecture is that critical sections must be used. false

33. An FQS architecture has a smaller memory footprint than an RTOS as it needs only one
stack. true

34. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- A task can transition directly from BLOCKED to READY. true

35. Semaphores can be used for signaling between ISRs. false

36. A reentrant function may not reference variables labeled extern. false

37. A semaphore used for guaranteeing mutual exclusive access to shared resources must be
initialized to 1. true

38. A high-priority task must not invoke an RTOS function that may block. false

39. An ISR may call the OS post() routine, provided that the RTOS “knows” that the
invocation is by an ISR and not by an ordinary task. true

40. The ’alternating buffers’ technique addresses the shared-data problem by copying the data
from the in- to the out-buffer instead of passing a pointer. false

41. int f (int x) {
disable int();

!! read some global variables
!! do some processing, call some functions
!! write some global variables

enable int();
}

Function f() disables/enables interrupts to address the shared-data problem.
- However, when f() calls itself recursively, it is no longer reentrant. true

4



42. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
f(1);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
f(-1);

}
}

void f(int i) {
delay(10); // do some computation
counter = counter + i ; // modify some global counter
printf("%d\n", counter) ; // print result

}

The function f() is reentrant. false

43. If count is set to 15 when event 2 occurs, and event 1 follows 3 ms later, then the first
value printed is 16. true

44. If the call to delay is replaced with OSTimeDly the order of the print statements
depends on wether or not a timer interrupt appeared in between the two events. true

45. An RTOS usually provides two types of delay functions: polling-based and timer-based.
- timer-based delays are more efficient as other tasks can run while the caller is waiting
for the specified time to pass. true

46. The heartbeat timer is a single hardware timer an RTOS is using to verify that the system
is still progressing (i.e. not deadlocked). false

47. Assume that one system clock tick = 10 ms.
- Calling the function OSTimeDly(6) causes a delay between 65 and 75 ms. false

48. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- a common pitfall is that they allow pointers to be passed from one task to another. true

49. Even when an RTOSs is aware of which task is using which semaphore, it cannot prevent
deadlock. true

50. Time-slicing should be avoided in an RTOS because it makes the response time of tasks
less predictable. true

51. The minimal memory footprint of a program grows linearly with the number of tasks. true

52. Printing from an ISR is to be avoided except when the RTOS provides a reentrant primitive
to do so. true

53. Time slicing between tasks of equal priority is common practice in embedded systems. false

5



54. Aborting tasks is nontrivial because a task may hold resources (e.g., a semaphore) when
being destroyed. true

55. Tasks should have different priorities to avoid fairness issues imposed by the RTOS. false

56. Code coverage tools help in thorough testing.
- a 100% coverage implies a bug-free program. false

57. A logic analyzer is preferred to an in-circuit emulator because it is easier to install; not all
signals need to be connected. true

58. Debugging through scripting test scenarios can only be used to test HW-independent code. true

59. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
two most underestimated problems have been the water-proof packaging of the sensor
nodes and the provision of a reliable base station. true

60. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- A wireless testbed requires no physical instrumentation (i.e. wiring) of the sensor node. false

6


