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This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:

• FQS (Function Queue Scheduling)

• ISR (Interrupt Service Routine)

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• RTOS (Real-Time Operating System)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}
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1. Embedded programming is more difficult than “classical” programming because of the
lack of support for recursion. true/false

2. A defining characteristic of embedded systems is the need for predictable timing behavior. true/false

3. The Embedded software crisis refers to the “year 2000” bug. true/false

4. Finite State Machines can be coded in VHDL.
- An advantage of doing so is that it results in a fast and predictable process executing on
dedicated hardware. true/false

5. Despite advances in software engineering practices, as a rule of thumb, embedded
software contains 1-10 bugs per thousand lines of code. true/false

6. The Underground Tank Monitoring System is a classic example of an embedded system in
that it involves input (sensors/buttons), output (display/printer) and real-time constraints. true/false

7. Because embedded software engages the physical world, it has to embrace time and other
non-functional properties, which requires a view that is significantly different from the
prevailing abstractions in computation. true/false

8. An interrupt is a synchronous signal from hardware to indicate the need for processor
attention. true/false

9. The C language is centered around the int data type that represents the canonical
machine word.
- As such the size of an int is architecture dependent. true/false

10. typedef void *(* resolve)(void *old, void *new);

The definition above declares resolve as a pointer to a function that takes two
arguments of type void * and returns a void pointer as result. true/false

11. GDB is programming tool that aids memory debugging by executing a program in a safe
environment. true/false

12. Finite State Machines can be coded in a number of ways in C.
- In the table-based solution, every state is encoded as a separate function. true/false

13. int main(void)
{

int c;
statefp state = start;
while((c = getchar()) != EOF) {

state = (statefp) (*state)(c);
}
return 0;

}

The above loop drives the FSM until all characters from the standard input have been
processed. true/false

14. Specifying the type of statefp is difficult in C because it is recursive and types cannot
be referenced before being fully defined. true/false
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15. Using interrupts improves task response time. true/false

16. An interrupt service routine should save the context upon entrance. true/false

17. A low-priority ISR can be interrupted by a high-priority task. true/false

18. Since disabling interrupts increases interrupt latency, several alternative methods have
been developed for dealing with shared data. The Alternating Buffers method is suited for
handing data from an ISR to a task.

static int tempA[2], tempB[2];
static bool useA = TRUE;

void interrupt readTemp() {
if (useA) {

tempA[0]= ...;
tempA[1]= ...;

} else {
tempB[0]= ...;
tempB[1]= ...;

}
useA = !useA;

}

void main(void) {
while (TRUE) {

if (useA)
if (tempB[0]!=tempB[1]) ... ;

else
if (tempA[0]!=tempA[1]) ... ;

}
}

The above code with toggling the useA flag in the ISR is correct. true/false

19. An interrupt vector contains the address of an ISR. true/false

20. Disabling interrupts guarantees atomicity of the code until the interrupts are enabled
again. true/false

21. Priority inversion occurs when the volatile and static keywords are wrongly used
inside a task or interrupt. true/false

22. The worst-case latency for servicing an interrupt is a combination of factors, including
the time taken for higher priority tasks. true/false

23. The number of interrupts is limited by the number of GPIO pins on the processor. true/false

24. Mutual exclusive access can also be accomplished by disabling interrupts, which has the
advantage of faster context switching compared to using RTOS primitives like semaphores
and mutexes. true/false

25. The shared-data problem can be solved through using the volatile keyword. true/false
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26. Given the following pseudo code, which reads the current values of 4 different buttons
and acts accordingly. The 4 buttons are all mapped to bits 0..3 of the button register. The
buttons are already debounced.

void f1(void) { delay(1000); }
void f2(void) { delay(2000); }
void f3(void) { delay(3000); }
void f4(void) { delay(4000); }

void main (void) {
while (1) {

if (buttons & 0x01) f1();
if (buttons & 0x02 ) f2();
if (buttons & 0x04 ) f3();
if (buttons & 0x08 ) f4();
delay(1000);

}
}

This code is an example of an RRI architecture. true/false

27. When the system is in an arbitrary state, button #1 must be pressed at most 10 seconds to
activate f1(). true/false

28. The primary shortcoming of an RRI architecture is that all tasks have the same priority. true/false

29. An RTOS architecture supports priority-based task scheduling. true/false

30. An RR architecture is robust to code changes. true/false

31. The response time to an external event in an FQS architecture is deterministic and depends
solely on the length of the ISR. true/false

32. Consider an alarm system that constantly monitors the digital output of several motion
detector sensors in a house. If a breach is detected then an intermittent alarm sound is
triggered.
- That alarm system can be implemented with an RR architecture. true/false

33. A FQS architecture reduces to an RRI architecture when tasks are serviced in LIFO order. true/false

34. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- a task starts in the state READY. true/false

35. A function can be made reentrant by temporarily disabling interrupts, but then it may no
longer be called by an ISR. true/false

36. A task can signal an ISR by operating a semaphore. true/false

37. A reentrant function may use variables only in an atomic way. true/false

38. An ISR may call neither the OS post() routine, nor the OS pend() routine. true/false

39. A semaphore used for guaranteeing mutual exclusive access to shared resources must be
initialized to the number of tasks involved. true/false
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40. Even a local variable can introduce a shared data problem when its address escapes the
defining function, for example, by storing the address in a global datastructure. true/false

41. A program running on an RTOS may create tasks dynamically at runtime.
- the program ends as soon as the last task terminates. true/false

42. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
f(1);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
f(-1);

}
}

void f(int i) {
delay(10); // do some computation
counter = counter + i ; // modify some global counter
printf("%d\n", counter) ; // print result

}

This code suffers from a data sharing problem. true/false

43. If count is set to 15 when event 2 occurs, and event 1 follows 3 ms later, then the first
value printed is 14. true/false

44. If the call to delay is replaced with OSTimeDly the output will be different. true/false

45. An RTOS usually provides two types of delay functions: polling-based and timer-based.
- polling-based delays are more efficient as other tasks can run while the caller is waiting
for the specified time to pass. true/false

46. The heartbeat timer is a single hardware timer an RTOS is using as base for all timings. true/false

47. Assume that one system clock tick = 10 ms.
- Calling the function OSTimeDly(6) causes a delay between 60 and 70 ms. true/false

48. To address the shared-data problem, many RTOSs provide communication primitives like
queues, mailboxes, and pipes.
- the basic read/write operations on these primitives are atomic. true/false

49. As the RTOSs is aware of which task is using which semaphore, deadlock can be
prevented by delaying the OS Pend operation of the last runnable task. true/false

50. Tasks in an RTOS are often structured as state machines with states stored in private
variables and messages in their queues acting as events. true/false

51. The memory footprint of a program grows linearly with the number of tasks. true/false
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52. Printing from an ISR is to be avoided when the RTOS does not provide a reentrant
primitive to do so. true/false

53. A key principle of RTOS-based design is that the separation of concerns, by splitting code
amongst several tasks, improves the overall throughput. true/false

54. Time slicing between tasks of equal priority is to be avoided as the response time of
individual tasks is comprised. true/false

55. It is recommended to use just the minimum necessary functionality from an RTOS. true/false

56. A logic analyzer is preferred to an in-circuit emulator because it is easier to use. true/false

57. When developing code for an embedded system, the software can de structured into HW-
dependent and HW-independent code.
- Doing so makes debugging HW-independent code feasible on the target platform true/false

58. Debugging through scripting test scenarios is difficult when the target platform is
unavailable. true/false

59. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways [Beutel:2009].
- A wireless testbed requires physical instrumentation (i.e. wiring) of the sensor node. true/false

60. A large study of outdoor sensor-network deployments has shown that the most underesti-
mated problem has been the water-proof packaging of the base station. true/false
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