
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

exam – Embedded Software – TI2726-B/TI2725-C
January 28, 2015 14.00 - 15.30

This exam (6 pages) consists of 60 True/False questions.
Your score will be computed as: max(0, #correct

60 − 1
2)× 2× 9 + 1

It is not allowed to consult the book, handouts, or any other notes.

Instructions for filling in the answer sheet:
- You may use a pencil (erasures are allowed) or a pen (blue or black, no red, no strike outs).
- Fill in the boxes completely.
- Answer all questions; there is no penalty for guessing.
- Do not forget to fill in your Name and Student Number, and to sign the form.

The following abbreviations are assumed to be known:

• FQS (Function Queue Scheduling)

• ISR (Interrupt Service Routine)

• RR (Round Robin)

• RRI (Round Robin with Interrupts)

• RTOS (Real-Time Operating System)

One system clock tick = 10 ms (unless stated otherwise).

We make use of the following definitions:

void delay(int ms) {
!! do some CPU computation to the number of ms milliseconds

}

void putchar(char c) {
while (!! UART tx buffer not empty)

;

!! send c to UART tx buffer
}

void puts(char *s) {
!! write string s using putchar

}

1



1. Embedded programming is more difficult than “classical” programming because of the
event-based programming model. true

2. A defining characteristic of embedded systems is the lack of an interrupt controller. false

3. The Embedded software crisis refers to the lack of correct code for the increasing
number of embedded systems. true

4. Despite advances in software engineering practices, as a rule of thumb, embedded
software contains 1-10 bugs per million lines of code. false

5. An embedded program can be coded as a finite state machine where interrupts trigger
state transitions. true

6. An interrupt is a synchronous signal form hardware to indicate the need for processor
attention. false

7. Besides Finite State Machines other models of computation suitable for embedded
systems include Publish/Subscribe and Recursion. false

8. Since disabling interrupts increases interrupt latency, several alternative methods have
been developed for dealing with shared data. The Alternating Buffers method is suited for
handing data from an ISR to a task.

static int tempA[2], tempB[2];
static bool useB = FALSE;

void interrupt readTemp() {
if (useB) {

tempA[0]= ...;
tempA[1]= ...;

} else {
tempB[0]= ...;
tempB[1]= ...;

}
}

void main(void) {
while (TRUE) {

if (useB)
if (tempB[0]!=tempB[1]) ... ;

else
if (tempA[0]!=tempA[1]) ... ;

useB = !useB;
}

}

The code for toggling the useB flag should be in the main task (not the ISR) as shown
above. true

9. Using interrupts improves context switch times. false

10. An interrupt service routine should restore the context upon exit. true

11. To guarantee atomicity task switching must be disabled. false

2



12. A low-priority ISR can be interrupted by a high-priority ISR. true

13. The shared data problem can be solved through using semaphores. true

14. When a processor is powered up, interrupts are disabled until further notice. true

15. Priority inversion requires a minimum of 3 tasks of different priority and 1 semaphore
to occur. true

16. An interrupt vector points to a table with interrupt routines. false

17. An interrupt can not be serviced faster than the time needed to save the context of code
running on the processor. true

18. Mutual exclusive access can also be accomplished by disabling interrupts, which has the
advantage of faster system response compared to using RTOS primitives like semaphores
and mutexes. false

19. int panic = 0;

void isr buttons(void) // arrive here if a button is pressed
{

int temp1 = X32 PERIPHERALS[PERIPHERAL TEMP1];
int temp2 = X32 PERIPHERALS[PERIPHERAL TEMP2];
if (temp1 != temp2) {

panic = 1;
}
...

}

main() {
...
while (!program done) {

// some lengthy calculations and control commands
if (panic) {

// shutdown plant
}

}
}

The above pseudo code suffers from the shared data problem. false

20. The worst-case latency for servicing an interrupt is a combination of factors, including
the longest period of time in which interrupts are disabled. true

21. A deadly embrace requires a minimum of 3 tasks and 2 semaphores to occur. false

22. static volatile int count;

main () {
...
int val = count;
...

}

Reading the value of the global variable count is atomic. false

3



23. Given the following pseudo code, which reads the current values of 4 different buttons
and acts accordingly. The 4 buttons are all mapped to bits 0..3 of the button register. The
buttons are already debounced.

void f1(void) { delay(1000); }
void f2(void) { delay(2000); }
void f3(void) { delay(3000); }
void f4(void) { delay(4000); }

void main (void) {
while (1) {

if (buttons & 0x01) f1();
if (buttons & 0x02 ) f2();
if (buttons & 0x04 ) f3();
if (buttons & 0x08 ) f4();
delay(1000);

}
}

This code is an example of an RRI architecture. false

24. When none of the buttons have been pressed, the longest time that button #3 must be
pressed to activate f3() once is 4 seconds. false

25. When the system is in an arbitrary state, button #1 must be pressed at most 9 seconds to
activate f1(). false

26. Given is the following RTOS (pseudo) code with priority T1 > T2.

void T1(void) {
while (1) {

OS Pend(sem1); // event #1 may unblock any time
f(1);
OSTimeDly(1);

}
}

void T2(void) {
while (1) {

OS Pend(sem2); // event #2 may unblock any time
f(-1);
OSTimeDly(3);

}
}

void f(int i) {
OS Pend(mutex);
counter = counter + i ; // modify some global counter
OS Post(mutex);

}

This code suffers from a data sharing problem. false

27. If the order of events is #1, #2, #1, #2, #1 and they occur within 10 ms from each other,
then the final value of the counter will be increased by 1. true

28. The function f() is reentrant true

4



29. The primary shortcoming of an FQS architecture is that all tasks have the same priority. false

30. An RR architecture does not support priorities. true

31. With an FQS architecture, a task signaled by an ISR is executed immediately after that
ISR completes execution. false

32. Consider an alarm system that constantly monitors the digital output of several motion
detector sensors in a house. If a breach is detected then an intermittent alarm sound is
triggered.
- That alarm system can be implemented with an RR architecture. true

33. An RTOS architecture is most robust to code changes. true

34. In an RTOS, tasks can be in state BLOCKED, READY or RUNNING.
- A task can transition directly from READY to RUNNING. true

35. An ISR may change a task’s status from RUNNING to BLOCKED. false

36. An ISR can signal a task by operating a semaphore. true

37. A reentrant function may use hardware only in an atomic way. true

38. A reentrant function may not reference variables labeled extern. false

39. A semaphore used for condition synchronization must be initialized to zero. true

40. An ISR must not invoke an RTOS function that may block. true

41. A function can be made reentrant by temporarily disabling interrupts, but additional
bookkeeping is required as simply enabling interrupts on exit may cause errors. true

42. An ISR may call the OS pend() routine, but not the OS post() routine . false

43. When using an RTOS signaling between ISRs and tasks must be done by calling
appropriate RTOS primitives. true

44. A program running on an RTOS may create tasks dynamically at runtime.
- the program ends as soon as the main() function returns. false

45. The heartbeat timer is a single hardware timer an RTOS is using to verify that the system
is still progressing (i.e. not deadlocked). false

46. An RTOS usually provides two types of delay functions: polling-based and timer-based.
- polling-based delays are the most accurate. true

47. Assume that one system clock tick = 10 ms.
- Calling the function OSTimeDly(5) causes a delay between 40 and 50 ms. true

48. Time-slicing should be avoided in an RTOS because it makes the response time of tasks
less predictable. true

49. A key principle of RTOS-based design is that the separation of concerns, by splitting code
amongst several tasks, improves the overall throughput. false

5



50. Creating and destroying tasks dynamically is somewhat problematic because the RTOS
must disable interrupts for too long. false

51. Tasks in an RTOS are often structured as state machines with states stored in private
variables and ISRs advancing the state machine. false

52. It is recommended to use just the minimum necessary functionality from an RTOS. true

53. Tasks can share the same stack as mutual exclusion allows only one task to execute a
critical section. false

54. A logic analyzer is preferred to an in-circuit emulator because it can monitor the internal
memory bus of (most) modern micro controllers. false

55. When developing code for an embedded system, the software can de structured into HW-
dependent and HW-independent code.
- Doing so makes debugging HW-independent code feasible on the target platform false

56. Debugging through scripting test scenarios can not be used to test HW-dependent code. true

57. A large study of outdoor sensor-network deployments [Beutel:2009] has shown that the
two most underestimated problems have been the water-proof packaging of the sensor
nodes and the provision of a reliable base station. true

58. When debugging code for a distributed sensor network, collecting the (debug) output of
the nodes can be arranged in different ways.
- online sniffing requires logging facilities on the sensor nodes themselves. false

59. Given is the following RTOS (pseudo) code. T1 has the highest priority, the time for
puts and context switching is negligible:

void T1(void) {
while (1) {

puts("1 ");
OSTimeDly(10);

}
}

void T2(void) {
while (1) {

puts("2 ");
OSTimeDly(10);

}
}

The display shows the sequence ”1 2 1 2 1 2 1 2 1 2 ...” true

60. When we replace the OSTimeDly(10) call with a delay(10) call, the ouput of the
print statements will be displayed in a random order. false

6


