CS4140 Embedded Systems Laboratory

Introduction to Digital Filtering

Brief Intro

Things that I am working on

Guohao Lan, Assistant Professor Embedded and Networked Systems Group

Advertisement:

Multiple openings for MSc project on (1) self-learning for eye tracking and gaze-based context sensing systems, (2) privacy-preserving AR/VR.

Reference

Steven W. Smith, "The scientist and engineer's guide to digital signal processing." 1997.

Sanjeev R. Kulkarni, "Lecture Notes for ELE201 Introduction to Electrical Signals and Systems", Princeton University, 2002.

Why Signal Processing?

Improve/restore media content Compression/Decompression Audio filtering (bass, treble, equalization) Video filtering (enhancement, contours, ..) Noise suppression (accel, gyro data) Data fusion (mixing accel + gyro data) By digital means: DSP

DSP is Everywhere

Cell Phone

Automotive

Objectives of this Crash Course

Appreciate the benefits of Digital Filtering
 Understand *some* of the basic principles
 Communicate with DSP engineers
 Implement your own filters for the QR

Example: QR Sensor Signals phi, p

-(1

After some low-pass filtering

9

Signals and Frequency Synthesis

Usually signals (such as s) are composed of signals with many frequencies. For instance, s contains

- 0 Hz component (green dashed line) ---- DC term
- lowest freq component (purple dashed line)
- higher freq component (yellow dashed line)
- and others

Fourier: Any *periodic* signal with base frequency f_b can be constructed from sine waves with frequency f_b , $2f_b$, $3f_b$, ...

CS4140 ESL

S

Filter: Frequency Response

Often filters are designed to filter frequency components in a signal

s sampled at *discrete* time intervals (sample frequency f_s): x[n]

Sampling: Avoid Aliasing (cont.)

Shannon Sampling Theorem: a bandlimited signal with maximum frequency s can be perfectly reconstructed from samples if the sampling frequency satisfies:

$$f_s > 2$$
 * highest freq in s

Sampling: Why Aliasing Happen

An analog signal composed of frequency components between 0 and f

Sampling: Why Aliasing Happen (cont.)

Sampling the original signal using an impulse train. The spectrum is then a duplication of the spectrum of the original at Multiple of the sampling frequency, i.e., fs, 2fs, 3fs, etc.

Sampling: Why Aliasing Happen (cont.)

Overlapping happened in the spectrum when fs<2f

Example Filter: Moving Average

$$y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]$$
 $y[i] = \frac{1}{M} \sum_{j=0}^{M-1} x[i-j]$

 $x[n] \longrightarrow MA Filter \longrightarrow y[n]$

x[0] = get_sample(); y[0] = (x[0]+x[1]+x[2])/3; put_sample(y[0]); x[2] = x[1]; x[1] = x[0];

MA filter filters (removes) signals of certain frequency:

x, freq f, amplitude 1 — MA Filter y, freq f, amplitude ???

Frequency Behavior MA

steady-state

transient

lower frequency x: amplitude y = 0.77, fs = 12 f x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33, 0.00 y = 0.00, 0.11, 0.33, 0.66, 0.77, 0.66, 0.33, 0.00, -0.33, -0.66, -0.77, -0.66, -0.33

higher frequency x: amplitude y = 0.33, fs = 4 f x = 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00 y = 0.00, 0.33, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33

y

Frequency Behavior MA (cont.)

Frequency response of MA filter: "X point" refers to the window size

22

Outline

Fixed-point Implementation

Analysis: Z Transform

- We can numerically evaluate frequency behavior
- Rather analyze frequency behavior through analytic means
- For this we introduce Z transformation
- Let x[n] be a signal in the time domain (n)
- The Z transform of x[n] is given by

 $X(z) = \Sigma_n x[n] z^{-n}$

where z is a complex variable.

• Example:

 $\begin{aligned} x &= 0.00, \, 0.33, \, 0.66, \, 1.00, \, 0.66, \, .. \\ X &= 0 \, + \, 0.33z^{-1} \, + \, 0.66z^{-2} \, + \, z^{-3} \, + \, 0.66z^{-4} \, + \, ... \end{aligned}$

Z Transform

- Z transforms make life easy
- Properties of the Z transform, Shifting:
- Let y[n] = x[n-1] (i.e., signal delayed by 1 sample)

 $Y(z) = z^{-1} X(z)$

• Example:

 $\begin{array}{l} x = 0.00, \, 0.33, \, 0.66, \, 1.00, \, 0.66, \, .. \\ X = 0 \, + \, 0.33z^{-1} \, + \, 0.66z^{-2} \, + \, z^{-3} \, + \, 0.66z^{-4} \, + \, ... \\ y = 0.00, \, 0.00, \, 0.33, \, 0.66, \, 1.00, \, .. \\ Y = 0 \, + \, 0z^{-1} \, + \, 0.33z^{-2} \, + \, 0.66z^{-3} \, + \, z^{-4} \, + \, ... \\ = z^{-1} \, X \end{array}$

Z Transform

• Other properties of the Z transform:

• Z transform of K a[n] = K A(z)

- Z transform of a[n] + b[n] = A(z) + B(z)
- Example:

 $\begin{array}{l} x = 0.00, \, 0.33, \, 0.66, \, 1.00, \, 0.66, \, .. \\ X = 0 \, + \, 0.33z^{-1} \, + \, 0.66z^{-2} \, + \, z^{-3} \, + \, 0.66z^{-4} \, + \, ... \\ y = 0.00, \, 0.66, \, 1.32, \, 2.00, \, 1.32, \, .. \\ Y = 0 \, + \, 0.66z^{-1} \, + \, 1.32z^{-2} \, + \, 2.00z^{-3} \, + \, 1.32z^{-4} \, + \, ... \\ = 2 \, X \end{array}$

Apply Z transform to MA Filter

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

In terms of the Z transform we have:

 $\begin{array}{r} Y(z) \ = \ 1/3 \ X(z) \ + \ 1/3 \ z^{-1} \ X(z) \ + \ 1/3 \ z^{-2} \ X(z) \\ \ = \ (1/3 \ + \ 1/3 \ z^{-1} \ + \ 1/3 \ z^{-2}) \ X(z) \\ \ = \ H(z) \ X(z) \end{array}$

 $X(z) \longrightarrow H(z) \longrightarrow Y(z)$

- It holds Y(z) = H(z) X(z), where H(z) is filter's (system's) transfer function
- Frequency response of filter can be read from H(z)

Frequency Response H(z)

H(z) reveals frequency response (H(f)=H(z)| $z=e^{j2\pi f}$): As Y(z) = H(z) X(z), |H(z)| determines *amplification* of X(z)

Frequency Response MA Filter

The transfer function of the MA filter is given by:

 $H(z) = (1/3 + 1/3 z^{-1} + 1/3 z^{-2})$ = (1/3 z^2 + 1/3 z + 1/3) / z^2 (normalized)

Determine poles and zeros of H(z):

zero (= root of numerator): $z_1 = -\frac{1}{2} + \frac{1}{2}\sqrt{3}j$, $z_2 = -\frac{1}{2} - \frac{1}{2}\sqrt{3}j$ (H($z_{1,2}$) = 0) pole (= root of denominator): z_3 , $z_4 = 0$ (H($z_{3,4}$) = ∞)

Simply inspect distance z to poles/zeros.

CS4140 ESL

Pole-zero form of H(z): $H[z] = \frac{(z - z_1)(z - z_2)(z - z_3) \cdots}{(z - p_1)(z - p_2)(z - p_3) \cdots}$

 $f/f_{s} = 1/3$

(H(z) = 0)

► re(z)

im(z)

Frequency Response MA Filter

Outline

Fixed-point Implementation

Impulse Response

Impulse signal $\delta[n] = 1, 0, 0, 0, ...$ (a spike, Dirac pulse)Impulse response (IR) of a filter:

 $\delta[n] \rightarrow H \rightarrow y[n]$, characteristic for H

MA filter: y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]Let $x[n] = \delta[n]$, then y[n] = 1/3, 1/3, 1/3, 0, 0, 0, ...

The transfer function

Z Transform: X(z) = 1, $Y(z) = H(z) * 1 = > H(z) = 1/3 + 1/3z^{-1} + 1/3z^{-2}$ Impulse signal δ reveals H(z) in terms of h[n]

 $y[n] = a_0 x[n] + a_1 x[n-1] + a_2 x[n-2] + ...$ The output is a discrete convolution of the input signal and the IR.

Always have a finite IR and are therefore called FIR filters (the equation is non-recursive in y)

Although any filter can be designed, FIR filters are costly in terms of computation (often many terms needed)

Outline

Z Transform

IIR Filters

Fixed-point Implementation

Averaging Filter

Suppose we want to extend MA filter to N terms:

y[n] = 1/N x[n] + 1/N x[n-1] + ... 1/N x[n-N-1]

Suppose we don't want to implement an N-cell FIFO + 2N ops and experiment with the following "short cut":

y[n] = ((N-1)/N) * y[n-1] + 1/N * x[n]

(1st term approximates contents of FIFO after x[n-N-1] has been shifted out, 2nd term is newest sample shifted in)

Let's analyze the frequency response of this filter (recursive filter)

Frequency Response Filter

Frequency Response Comparison

Comparison of both Filters

New filter is much more different than perhaps assumed

Pole-zero plot is quite different: now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N), the sooner is the cut-off (in terms of frequency f), this generally corresponds to MA filter but this would take large FIFO!

Impulse Response

Filter equation: y[n] = (N-1)/N y[n-1] + 1/N x[n]

IR (N = 3): h[n] = 1/3, $(2/3)^{1}/3$, $(2/3)^{2}/3$, ..., $(2/3)^{n}/3$, ...

The IR is infinite: amplitude decays exponentially in n

Filters defined by

 $b_0 y[n] + b_1 y[n-1] + ... = a_0 x[n] + a_1 x[n-1] + ...$

always have an infinite IR and are therefore called IIR filters (the equation is recursive in y)

Filter order determined by # coefficients. Our case: 1st order.

Designing Filters

Looking at the pole-zero plot, the IIR filter can be improved by moving zero to left: now |H(z)| even becomes zero for $f = f_s/2$ so sharper cut-off.

This plot corresponds to the well-known class of **Butterworth** filters (our case: 1st-order Butterworth):

The zero is created by adding x[n-1]: Previously: y[n] = (N-1)/N y[n-1] + 1/N x[n]Now: y[n] = (N-1)/N y[n-1] + 1/2N x[n] + 1/2N x[n-1]

y[n] - (N-1)/N y[n-1] = 1/2N x[n] + 1/2N x[n-1]H(z) = ((z+1)/2N) / (z-(N-1)/N)

CS4140 ESL

Ζ

Х

Enhancing Filters

Frequency response 1st-order Butterworth:

Second-order Butterworth

Looking at the pole-zero plot, the IIR filter can be further improved by introducing more poles & zeros. now |H(z)| has same cut-off freq f_c but sharper slope!

Computing h[n] (the a_i and b_i) is difficult, so use a tool to compute coefficients, given f_s and f_c (Matlab or Web sites)

Just insert found coefficients in IIR equation $b_0 y[n] + b_1 y[n-1] + b_2 y[n-2] = a_0 x[n] + a_1 x[n-1] + a_2 x[n-2]$

Outline

Fixed-point Implementation

Fixed-point Arithmetic

Why we need it?
Many microcontrollers have no floating-point unit
Software floating-point often (too) slow
Need to implement filters in fixed-point arithmetic

To define a fixed-point type conceptually we need:

- Width of the representation;
- Binary point position in the number.

Trade-off range & resolution

Integer (signed) part •

Fractional part

Fixed-point Arithmetic (cont.)

Fixed-point Arithmetic

- Addition, subtraction as usual (e.g., 15+(-5), 15-5 in 8 bits)
- Multiplication: result must be post-processed:
 - make sure intermediate fits in variable! (e.g., 32 bits)
 - shift right by |fraction| and sign-extend

Example multiplication (32 bits, 14 bits fraction): Let's try a simple one instead: (-1.5 * 1 in 4 bits)

- 3.75: 0000000000000001111000000000000000 times:

111111111111111010011000000000 which is:

-5.625 111111111111111010 0110000000000

Filter Example

- Second-order Butterworth LP Filter $f_c = 10Hz$, $f_s = 1250Hz$
- Coefficients:

 $a_0 = 0.0006098548$ $a_1 = 2 a_0$ $a_2 = a_0$ $b_0 = 1$ $b_1 = -1.9289423$ $b_2 = 0.9313817$

Bit representation (e.g., 32 bits, 14 bits fraction):

Implementation (high-cost)

```
int mul(int c, int d) {
    int result = c * d;
    return (result >> 14);
}
```

```
void filter() {
   y0 = mul(a0,x0) + mul(a1,x1) + mul(a2,x2) -
        mul(b1,y1) - mul(b2,y2);
   x2 = x1; x1 = x0; y2 = y1; y1 = y0;
```

Filter Approximation Example

- Second-order Butterworth LP Filter $f_c = 10Hz$, $f_s = 1250Hz$
- Coefficients:

 $a_0 = 0.0006098548 * 8/10$ $a_1 = 2 a_0$ $a_2 = a_0$ $b_0 = 1$ $b_1 = -2$ $b_2 = 1$

See if we can "approximate' the coefficients with binary numbers that contain just 1 bit

Bit representation (e.g., 32 bits, 14 bits fraction): 0000000000000000 000000000000000 (was 10) a[0] a[0] a[1] a[1] 0000000000000000 0000000000000000 (was 10) a[2] a[2] 0000000000000010 000000000000000 (was 31604) -b[1] 0000000000000001 0000000000000000 (was 15260) b[2]

Implementation (low-cost)

Why we do this? Shifting bits is faster than multiplication operations

50

Cascade two 1st-order filters

- First-order Butterworth LP Filter $f_c = 10Hz$, $f_s = 1250Hz$
- Coefficients:
 - $a_0 = 0.0245221$ $a_1 = a_0$ $b_0 = 1$ $b_1 = -0.95095676$

Bit representation (e.g., 32 bits, 14 bits fraction):

 $\begin{array}{ll} a[0] & 00000000000000 & 00000110010010 & (a_0 << 14) \\ a[1] & 00000000000000 & 00000110010010 & \\ b[1] & 00000000000000 & 1111001101100 & -1 + 1 \\ \end{array}$

Approx: a[0] = 512 (was 402), b[1] = 16384 (was 15580)

Results

Approx bit better But still bad for very low frequencies

So add more powers of two until good approx (see matlab demo)

Scaling: tips and tricks

- One size fits all? NO!
 - number of bits depends on needed precision (sensor vs. joystick)
 - special case for proportional controller: P * ε
 - $fp_n * fp_n = fp_{2n}$ (overflow! requires an additional shift)
 - scalar * $fp_n = fp_n$ (overflow? no shift needed)
 - $fp_m * fp_n = fp_{m+n}$ (when P can't be represented as a scalar, using different representations)
 - document precision for every data type (part of softw arch)
- fp_n to scalar
 - be patient, shift at last instant (when feeding the engines)

Outline

Fixed-point Implementation

Recall: QR Sensor Signals phi, p

After 2nd-order Low-pass (10Hz)

Bias in p: Integration drift in phi

Problem Analysis

Noise is still considerable Still little correlation between (filtered) phi and p More aggressive filtering -> more phase delay 10 Hz signals already 90 deg phase lag with 2nd-order In our particular case we might apply notch filter In general though, too many noise frequencies sphi: negligible drift, too high noise sp: low noise, drift -> prohibits integration to phi

Kalman Filter: combine the best of both worlds!

Kalman Filter (quadcopter near-hover)

Sensor Fusing: gyro and accel share same information

Integrate sp to phi

- Adjust integration for sp (drift) bias b by comparing phi to sphi, averaged over long period (phi ~ constant)
 - You have a very large filtering window, and your quadcopter is near-hover, you suppose to get a constant (or Zero) angle (phi ~ constant)!
- Return phi, and p (= sp bias)

Algorithm

Initiation b obtain from calibration

P2PHI: depends on loop freq -> compute/measure

C1 small: believe sphi ; C1 large: believe sp

C2 large (typically > 1,000 C1): slow drift

Summary

DSP is everywhere

Get a feel for it when applying to QR

