
CS4140
Embedded Systems Laboratory

Introduction to Digital Filtering

Brief Intro

CS4140 ESL 2

Guohao Lan,
Assistant Professor
Embedded and Networked Systems Group

Things that I am working on

Advertisement:
Multiple openings for MSc project on (1) self-learning for eye tracking and

gaze-based context sensing systems, (2) privacy-preserving AR/VR.

Reference
Steven W. Smith, “The scientist and engineer's guide to digital
signal processing.” 1997.

Sanjeev R. Kulkarni, “Lecture Notes for ELE201 Introduction to
Electrical Signals and Systems”, Princeton University, 2002.

CS4140 ESL 5

Why Signal Processing?

Improve/restore media content
 Compression/Decompression
 Audio filtering (bass, treble, equalization)
 Video filtering (enhancement, contours, ..)
 Noise suppression (accel, gyro data)
 Data fusion (mixing accel + gyro data)
By digital means: DSP

CS4140 ESL 6

DSP is Everywhere

Cell Phone
TV
Plant Control
Climate Control
Automotive
Copiers, Wafer Scanners
Model Quad Rotors ...

CS4140 ESL 7

Objectives of this Crash Course

Appreciate the benefits of Digital Filtering
Understand some of the basic principles
Communicate with DSP engineers
Implement your own filters for the QR

CS4140 ESL 8

Example: QR Sensor Signals phi, p

2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 108

-300

-200

-100

0

100

200

300

phi

∫ pdtp

Signal from the previous version of QR:
• phi is the plot of Acc

• Roll angle
• p is the roll rate
• red is the

• Integral of roll rate = roll angle

Issues?
• Scaling
• Noise

CS4140 ESL 9

After some low-pass filtering

2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 108

-10

-8

-6

-4

-2

0

2

4

6

8

10

phi

∫ pdt

p

CS4140 ESL 10

Signals and Frequency Synthesis

Usually signals (such as s) are composed of signals with many frequencies.
For instance, s contains
• 0 Hz component (green dashed line) ---- DC term
• lowest freq component (purple dashed line)
• higher freq component (yellow dashed line)
• and others

Fourier: Any periodic signal with base frequency fb
can be constructed from sine waves with frequency fb, 2fb, 3fb, …

t

s

CS4140 ESL 11

Frequency Spectrum

The frequency spectrum of s is:

t

s

f
0 f1 f2

possible freq components in s

CS4140 ESL 12

Filter: Frequency Response

Low-pass
Filter

pass

Often filters are designed to filter frequency components in a signal

block

Filter’s Frequency Response

Freq. Spectrum Freq. Spectrum

Inverse Fourier transform

Transition band
& roll-off

CS4140 ESL 13

Sampling A Signal

s sampled at discrete time intervals (sample frequency fs): x[n]

t

s

t

x

x[0] x[n]1/fs

Continuous (analog) signal

CS4140 ESL 14

Sampling: Avoid Aliasing

t

x

t

fs > 2 * highest freq in s: OK

fs < highest freq in s: you see non-existing low-freq signal(s)!

CS4140 ESL 15

Sampling: Avoid Aliasing (cont.)

fs = 10 f fs = f

CS4140 ESL 16

Sampling: Avoid Aliasing (cont.)

t

x

fs > 2 * highest freq in s

Shannon Sampling Theorem: a bandlimited signal with maximum frequency s
can be perfectly reconstructed from samples if the sampling frequency
satisfies:

CS4140 ESL 17

Sampling: Why Aliasing Happen

f

An analog signal composed of frequency components between 0 and f

CS4140 ESL 18

Sampling: Why Aliasing Happen (cont.)

Sampling the original signal using an impulse train.
The spectrum is then a duplication of the spectrum of the original at
Multiple of the sampling frequency, i.e., fs, 2fs, 3fs, etc.

CS4140 ESL 19

Sampling: Why Aliasing Happen (cont.)

Overlapping happened in the spectrum when fs<2f

CS4140 ESL 20

Example Filter: Moving Average
y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

x[n] y[n]MA Filter

x[0] = get_sample();
y[0] = (x[0]+x[1]+x[2])/3;
put_sample(y[0]);
x[2] = x[1]; x[1] = x[0];

MA filter filters (removes) signals of certain frequency:

x, freq f, amplitude 1 y, freq f, amplitude ???MA Filter

CS4140 ESL 21

Frequency Behavior MA
lower frequency x: amplitude y = 0.77, fs = 12 f
x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33, 0.00
y = 0.00, 0.11, 0.33, 0.66, 0.77, 0.66, 0.33, 0.00, -0.33, -0.66, -0.77, -0.66, -0.33

higher frequency x: amplitude y = 0.33, fs = 4 f
x = 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00
y = 0.00, 0.33, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33

transient steady-state

f/fs

|y|

1

1/20 1/6 1/4

x = 0.00, 0.87, -0,87, 0.0, 0.87, -0.87, 0.00
y = 0.00, 0.29, 0.00, 0.00, 0.00, 0.00, 0.00

1/3

CS4140 ESL 22

Frequency Behavior MA (cont.)

Frequency response of MA filter:
“X point” refers to the window size

CS4140 ESL 23

Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter

CS4140 ESL 24

Analysis: Z Transform
• We can numerically evaluate frequency behavior
• Rather analyze frequency behavior through analytic means
• For this we introduce Z transformation

• Let x[n] be a signal in the time domain (n)
• The Z transform of x[n] is given by

X(z) = Σn x[n] z-n

where z is a complex variable.

• Example:
x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …

CS4140 ESL 25

Z Transform
• Z transforms make life easy
• Properties of the Z transform, Shifting:

• Let y[n] = x[n-1] (i.e., signal delayed by 1 sample)

Y(z) = z-1 X(z)

• Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
y = 0.00, 0.00, 0.33, 0.66, 1.00, ..
Y = 0 + 0z-1 + 0.33z-2 + 0.66z-3 + z-4 + …

= z-1 X

CS4140 ESL 26

Z Transform
• Other properties of the Z transform:

• Z transform of K a[n] = K A(z)
• Z transform of a[n] + b[n] = A(z) + B(z)

• Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
y = 0.00, 0.66, 1.32, 2.00, 1.32, ..
Y = 0 + 0.66z-1 + 1.32z-2 + 2.00z-3 + 1.32z-4 + …

= 2 X

CS4140 ESL 27

Apply Z transform to MA Filter

• It holds Y(z) = H(z) X(z), where H(z) is filter’s (system’s) transfer function
• Frequency response of filter can be read from H(z)

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

In terms of the Z transform we have:

Y(z) = 1/3 X(z) + 1/3 z-1 X(z) + 1/3 z-2 X(z)
= (1/3 + 1/3 z-1 + 1/3 z-2) X(z)
= H(z) X(z)

X(z) Y(z)H(z)

CS4140 ESL 28

Frequency Response H(z)
H(z) reveals frequency response (H(f)=H(z)| z=ej2πf):
As Y(z) = H(z) X(z), |H(z)| determines amplification of X(z)

The variable z is a complex variable and
encodes frequency F= f/fs according to

z = ej2πF

= cos(2πF) + j sin(2πF)

This corresponds to traversing
the unit circle in the
complex z plane:

Re(z)

Im(z)
z = 0.7 + 0.7j

z

f/fs = 0f/fs = 1/2

f/fs = 1/8
f/fs = 1/4

CS4140 ESL 29

Frequency Response MA Filter
The transfer function of the MA filter is given by:

H(z) = (1/3 + 1/3 z-1 + 1/3 z-2)
= (1/3 z2 + 1/3 z + 1/3) / z2 (normalized)

re(z)

im(z)

z

Determine poles and zeros of H(z):

zero (= root of numerator):
z1 = -½+½√3j, z2 = -½-½√3j
(H(z1,2) = 0)
pole (= root of denominator):
z3, z4 = 0
(H(z3,4) = ∞)

Simply inspect distance z to poles/zeros.

f/fs = 1/3
(H(z) = 0)

Pole-zero form of H(z):

CS4140 ESL 30

Frequency Response MA Filter
Interpret H(z) while
traversing the unit circle
(upper half only):

re(z)

im(z)

z

f/fs

1

1/20 1/6 1/4 1/3

|H(z)|

F = f/fs = 1/4

z = ej2πF = cos(2πF) + j sin(2πF)
H(z) = (1/3 z2 + 1/3 z + 1/3) / z2

A practice!

CS4140 ESL 31

Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter

CS4140 ESL 32

Impulse Response

MA filter: y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]
Let x[n] = δ[n], then y[n] = 1/3, 1/3, 1/3, 0, 0, 0, …

Z Transform: X(z) = 1, Y(z) = H(z) * 1 => H(z) = 1/3 + 1/3z-1 + 1/3z-2

Impulse signal δ reveals H(z) in terms of h[n]

Impulse response (IR) of a filter:

δ[n] y[n], characteristic for HH

Impulse signal δ[n] = 1, 0, 0, 0, … (a spike, Dirac pulse)

The transfer function

CS4140 ESL 33

Impulse Response
MA filter: h[n] = 1/3, 1/3, 1/3, 0, 0, 0, …

The IR is finite: as it settles to zero in finite time.

Filters defined by

y[n] = a0 x[n] + a1 x[n-1] + a2 x[n-2] + …
The output is a discrete convolution of the input signal and the IR.

Always have a finite IR and are therefore called FIR filters
(the equation is non-recursive in y)

Although any filter can be designed, FIR filters are
costly in terms of computation (often many terms needed)

CS4140 ESL 34

Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter

CS4140 ESL 35

Averaging Filter
Suppose we want to extend MA filter to N terms:

y[n] = 1/N x[n] + 1/N x[n-1] + … 1/N x[n-N-1]

Suppose we don’t want to implement an N-cell FIFO + 2N ops
and experiment with the following “short cut”:

y[n] = ((N-1)/N) * y[n-1] + 1/N * x[n]

(1st term approximates contents of FIFO after x[n-N-1]
has been shifted out, 2nd term is newest sample shifted in)

Let’s analyze the frequency response of this filter (recursive filter)

CS4140 ESL 36

Frequency Response Filter
y[n] = (N-1)/N y[n-1] + 1/N x[n]
Y(z) = (N-1)/N z-1 Y(z) + 1/N X(z)
H(z) = (1/N) / (1 – (N-1)/N z-1)

= (z/N) / (z – (N-1)/N)

zz

cf. MA filter:

?

Z-transform

H(z) = Y(z)/X(z)

Poles=(N-1)/NZeros=0

CS4140 ESL 37

Frequency Response Comparison

f/fs

1

1/20 1/6 1/4 1/3

|H(z)|

z z

It has a faster roll-off compare with MA (with N=3)

CS4140 ESL 38

Comparison of both Filters
New filter is much more different than perhaps assumed

Pole-zero plot is quite different:
now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N),
the sooner is the cut-off (in terms of frequency f),
this generally corresponds to MA filter but this would take large FIFO!

CS4140 ESL 39

Impulse Response
Filter equation: y[n] = (N-1)/N y[n-1] + 1/N x[n]

IR (N = 3): h[n] = 1/3, (2/3)1/3, (2/3)2/3, …, (2/3)n/3, …

The IR is infinite: amplitude decays exponentially in n

Filters defined by

b0 y[n] + b1 y[n-1] + … = a0 x[n] + a1 x[n-1] + …

always have an infinite IR and are therefore called IIR filters
(the equation is recursive in y)

Filter order determined by # coefficients. Our case: 1st order.

CS4140 ESL 40

Designing Filters
Looking at the pole-zero plot, the IIR filter can be improved
by moving zero to left:
now |H(z)| even becomes zero for f = fs/2
so sharper cut-off.

This plot corresponds to the
well-known class of Butterworth filters
(our case: 1st-order Butterworth):

The zero is created by adding x[n-1]:
Previously: y[n] = (N-1)/N y[n-1] + 1/N x[n]
Now: y[n] = (N-1)/N y[n-1] + 1/2N x[n] + 1/2N x[n-1]

y[n] – (N-1)/N y[n-1] = 1/2N x[n] + 1/2N x[n-1]
H(z) = ((z+1)/2N) / (z-(N-1)/N)

z

CS4140 ESL 41

Enhancing Filters
Frequency response 1st-order Butterworth:

log2 (f/fs)

log2(1)

log2(½)

fc 2 fc

log2 |H(z)|

4 fc½ fc

log2(¼)

slope -1 .. would like, e.g., slope -2
(sharper filtering)

Ideal response: Sharp cut-off

Rate of the roll-off depends on
the order of the filter

CS4140 ESL 42

Second-order Butterworth
Looking at the pole-zero plot, the IIR filter
can be further improved by introducing
more poles & zeros.
now |H(z)| has same cut-off freq fc
but sharper slope!

Computing h[n] (the ai and bi)
is difficult, so use a tool to compute
coefficients, given fs and fc
(Matlab or Web sites)

Just insert found coefficients in IIR equation
b0 y[n] + b1 y[n-1] + b2 y[n-2] = a0 x[n] + a1 x[n-1] + a2 x[n-2]

z

(2x)

CS4140 ESL 43

Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter

CS4140 ESL 44

Why we need it?
•Many microcontrollers have no floating-point unit
• Software floating-point often (too) slow
• Need to implement filters in fixed-point arithmetic

To define a fixed-point type conceptually we need:
• Width of the representation;
• Binary point position in the number.

Fixed-point Arithmetic

Trade-off range & resolution

Integer (signed) part Fractional part

CS4140 ESL 45

2’s-complement bit representation (e.g., 32 bits, 14 bits fraction):

3.75: 000000000000000011 11000000000000
0.02: 000000000000000000 00000101001001
0.02: 000000000000000000 000001010001111011
-1.5: 000000000000000001 10000000000000 ^ -1 + 1 =>

111111111111111110 10000000000000

Fixed-point Arithmetic (cont.)

2-12021 2-2

14 bits18 bits
Exercise: 12, 0.125, -10, -10.5

Integer (signed) part Fractional part

CS4140 ESL 46

• Addition, subtraction as usual (e.g., 15+(-5), 15-5 in 8 bits)
• Multiplication: result must be post-processed:

• make sure intermediate fits in variable! (e.g., 32 bits)
• shift right by |fraction| and sign-extend

Example multiplication (32 bits, 14 bits fraction):
Let’s try a simple one instead: (-1.5 * 1 in 4 bits)

3.75: 00000000000000001111000000000000 times:
-1.5: 11111111111111111010000000000000 equals:

10100110000000000000000000000000
(value just fits in 32 bits!)
(now shift right by 14 bits and sign-extend):
11111111111111101001100000000000 which is:

-5.625 111111111111111010 01100000000000

Fixed-point Arithmetic

CS4140 ESL 47

• Second-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients:

a0 = 0.0006098548 a1 = 2 a0 a2 = a0
b0 = 1 b1 = -1.9289423 b2 = 0.9313817

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000 00000000001001 111111
a[0] 000000000000000000 00000000001010
a[1] 000000000000000000 00000000010100
a[2] 000000000000000000 00000000001010
b[1] 000000000000000001 11101101110100 ^ -1 + 1
b[2] 000000000000000000 11101110011100
b[2] 000000000000000000 1110111001101111

Filter Example

CS4140 ESL 48

int mul(int c, int d) {
int result = c * d;
return (result >> 14);

}

void filter() {
y0 = mul(a0,x0) + mul(a1,x1) + mul(a2,x2) -

mul(b1,y1) - mul(b2,y2);
x2 = x1; x1 = x0; y2 = y1; y1 = y0;

}

Implementation (high-cost)

49

• Second-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients:

a0 = 0.0006098548 * 8/10 a1 = 2 a0 a2 = a0
b0 = 1 b1 = -2 b2 = 1

Bit representation (e.g., 32 bits, 14 bits fraction):
a[0] 000000000000000000 00000000001000 (was 10)
a[0] 000000000000000000 00000000001010 Previous value
a[1] 000000000000000000 00000000010000 (was 20)
a[1] 000000000000000000 00000000010100 Previous value
a[2] 000000000000000000 00000000001000 (was 10)
a[2] 000000000000000000 00000000001010 Previous value
-b[1] 000000000000000010 00000000000000 (was 31604)
b[2] 000000000000000001 00000000000000 (was 15260)

Filter Approximation Example

See if we can “approximate’ the coefficients with binary numbers that
contain just 1 bit

CS4140 ESL 50

y0 = (x0 << 3) >> 14 + (x1 << 4) >> 14 +
(x2 << 3) >> 14 + (y1 << 15) >> 14 –
(y2 << 14) >> 14; // assume compiler optimizes ...

x2 = x1; x1 = x0; y2 = y1; y1 = y0;

Implementation (low-cost)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-5

0

5

10

15

20

25

30

35

Approx too coarse
(2nd-order FIR:
ai, bi very sensitive!)

Why we do this? Shifting bits is faster than multiplication operations

CS4140 ESL 51

• First-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients:

a0 = 0.0245221 a1 = a0
b0 = 1 b1 = -0.95095676

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000 00000110010010 (a0 << 14)
a[1] 000000000000000000 00000110010010
b[1] 000000000000000000 11110011011100 ^ -1 + 1

Approx: a[0] = 512 (was 402), b[1] = 16384 (was 15580)

Cascade two 1st-order filters

CS4140 ESL 52

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-1

-0.5

0

0.5

1

1.5

Results

Approx bit better
But still bad for very
low frequencies

So add more powers
of two until good approx
(see matlab demo)

CS4140 ESL 53

• One size fits all? NO!
• number of bits depends on needed precision (sensor vs. joystick)

• special case for proportional controller: P * ε
• fpn * fpn = fp2n (overflow! requires an additional shift)
• scalar * fpn = fpn (overflow? no shift needed)
• fpm * fpn = fpm+n (when P can’t be represented as a scalar, using

different representations)

• document precision for every data type (part of softw arch)

• fpn to scalar
• be patient, shift at last instant (when feeding the engines)

Scaling: tips and tricks

CS4140 ESL 54

Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter

CS4140 ESL 55

Recall: QR Sensor Signals phi, p

2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 108

-300

-200

-100

0

100

200

300

phi

∫ pdtp

Signal from the previous version of QR:
• phi is the plot of Acc

• Roll angle
• p is the roll rate
• red is the

• Integral of roll rate = roll angle

2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 108

-10

-8

-6

-4

-2

0

2

4

6

8

10

CS4140 ESL 56

After 2nd-order Low-pass (10Hz)

phi

∫ pdtp

CS4140 ESL 57

Bias in p: Integration drift in phi

phi

∫ pdt

p

Integration of the readings from
the gyro will lead to drift in the angle
estimation over long-term.

Calibrations may not solve the
problem all the time, as the bias
instability in gyro can lead to
different drifts (e.g., temperature)

CS4140 ESL 58

Problem Analysis

Noise is still considerable
Still little correlation between (filtered) phi and p
More aggressive filtering -> more phase delay
10 Hz signals already 90 deg phase lag with 2nd-order
In our particular case we might apply notch filter
In general though, too many noise frequencies
sphi: negligible drift, too high noise
sp: low noise, drift -> prohibits integration to phi

Kalman Filter: combine the best of both worlds!

CS4140 ESL 59

Kalman Filter (quadcopter near-hover)

Sensor Fusing: gyro and accel share same information

Kalman
Filter

Gyro: sp

Acc: sphi

p

phi

Integrate sp to phi
Adjust integration for sp (drift) bias b by comparing phi to sphi,
averaged over long period (phi ~ constant)
 You have a very large filtering window, and your quadcopter is near-hover, you

suppose to get a constant (or Zero) angle (phi ~ constant)!
Return phi, and p (= sp – bias)

b (in Gyro)

CS4140 ESL 60

Algorithm

p = sp – b // estimate real p
phi = phi + p * P2PHI // integration to predict phi
e = phi – sphi // compare to measured phi
phi = phi – e / C1 // correct phi to some extent
b = b + (e/P2PHI) / C2 // adjust bias term

Initiation b obtain from calibration
P2PHI: depends on loop freq -> compute/measure
C1 small: believe sphi ; C1 large: believe sp
C2 large (typically > 1,000 C1): slow drift

CS4140 ESL 61

Summary

DSP is everywhere
This was merely introduction into the field
Get a feel for it when applying to QR

	CS4140�Embedded Systems Laboratory
	Brief Intro
	Reference
	Why Signal Processing?
	DSP is Everywhere
	Objectives of this Crash Course
	Example: QR Sensor Signals phi, p
	After some low-pass filtering
	Signals and Frequency Synthesis
	Frequency Spectrum
	Filter: Frequency Response
	Sampling A Signal
	Sampling: Avoid Aliasing
	Sampling: Avoid Aliasing (cont.)
	Sampling: Avoid Aliasing (cont.)
	Sampling: Why Aliasing Happen
	Sampling: Why Aliasing Happen (cont.)
	Sampling: Why Aliasing Happen (cont.)
	Example Filter: Moving Average
	Frequency Behavior MA
	Frequency Behavior MA (cont.)
	Outline
	Analysis: Z Transform
	Z Transform
	Z Transform
	Apply Z transform to MA Filter
	Frequency Response H(z)
	Frequency Response MA Filter
	Frequency Response MA Filter
	Outline
	Impulse Response
	Impulse Response
	Outline
	Averaging Filter
	Frequency Response Filter
	Frequency Response Comparison
	Comparison of both Filters
	Impulse Response
	Designing Filters
	Enhancing Filters
	Second-order Butterworth
	Outline
	Fixed-point Arithmetic
	Fixed-point Arithmetic (cont.)
	Fixed-point Arithmetic
	Filter Example
	Implementation (high-cost)
	Filter Approximation Example
	Implementation (low-cost)
	Cascade two 1st-order filters
	Results
	Scaling: tips and tricks
	Outline
	Recall: QR Sensor Signals phi, p
	After 2nd-order Low-pass (10Hz)
	Bias in p: Integration drift in phi
	Problem Analysis
	Kalman Filter (quadcopter near-hover)
	Algorithm
	Summary

