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Why Signal Processing?

Improve/restore media content
 Compression/Decompression
 Audio filtering (bass, treble, equalization)
 Video filtering (enhancement, contours, ..)
 Noise suppression (accel, gyro data)
 Data fusion (mixing accel + gyro data)
By digital means: DSP
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DSP is Everywhere

Cell Phone
TV
Plant Control
Climate Control
Automotive
Copiers, Wafer Scanners
Model Quad Rotors ...
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Objectives of this Crash Course

Appreciate the benefits of Digital Filtering
Understand some of the basic principles
Communicate with DSP engineers
Implement your own filters for the QR
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Example: QR Sensor Signals phi, p
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∫ pdtp

Signal from the previous version of QR: 
• phi is the plot of Acc

• Roll angle
• p is the roll rate
• red is the 

• Integral of roll rate =  roll angle

Issues?
• Scaling
• Noise
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After some low-pass filtering
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Signals and Frequency Synthesis

Usually signals (such as s) are composed of signals with many frequencies.
For instance, s contains
• 0 Hz component (green dashed line)  ---- DC term
• lowest freq component (purple dashed line)
• higher freq component (yellow dashed line)
• and others

Fourier: Any periodic signal with base frequency fb
can be constructed from sine waves with frequency fb, 2fb, 3fb, …

t

s
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Frequency Spectrum

The frequency spectrum of s is:

t

s

f
0 f1 f2

possible freq components in s
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Filter: Frequency Response

Low-pass
Filter

pass

Often filters are designed to filter frequency components in a signal

block

Filter’s Frequency Response

Freq. Spectrum Freq. Spectrum

Inverse Fourier transform

Transition band 
& roll-off 
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Sampling A Signal

s sampled at discrete time intervals (sample frequency fs): x[n]

t

s

t

x

x[0] x[n]1/fs

Continuous (analog) signal
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Sampling: Avoid Aliasing

t

x

t

fs > 2 * highest freq in s: OK

fs < highest freq in s: you see non-existing low-freq signal(s)!
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Sampling: Avoid Aliasing (cont.)

fs = 10 f fs = f
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Sampling: Avoid Aliasing (cont.)

t

x

fs > 2 * highest freq in s

Shannon Sampling Theorem: a bandlimited signal with maximum frequency s
can be perfectly reconstructed from samples if the sampling frequency 
satisfies:
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Sampling: Why Aliasing Happen

f

An analog signal composed of frequency components between 0 and f
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Sampling: Why Aliasing Happen (cont.)

Sampling the original signal using an impulse train.
The spectrum is then a duplication of the spectrum of the original at 
Multiple of the sampling frequency, i.e., fs, 2fs, 3fs, etc.  
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Sampling: Why Aliasing Happen (cont.)

Overlapping happened in the spectrum when fs<2f
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Example Filter: Moving Average
y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

x[n] y[n]MA Filter

x[0] = get_sample();
y[0] = (x[0]+x[1]+x[2])/3;
put_sample(y[0]);
x[2] = x[1]; x[1] = x[0];

MA filter filters (removes) signals of certain frequency:

x, freq f, amplitude 1 y, freq f, amplitude ???MA Filter
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Frequency Behavior MA
lower frequency x: amplitude y = 0.77,  fs = 12 f
x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33,  0.00
y = 0.00, 0.11, 0.33, 0.66, 0.77, 0.66, 0.33,  0.00, -0.33, -0.66, -0.77, -0.66, -0.33   

higher frequency x: amplitude y = 0.33, fs = 4 f
x = 0.00, 1.00, 0.00, -1.00,  0.00, 1.00, 0.00, -1.00,  0.00, 1.00, 0.00, -1.00,  0.00
y = 0.00, 0.33, 0.33,  0.00, -0.33, 0.00, 0.33,  0.00, -0.33, 0.00, 0.33,  0.00, -0.33   

transient steady-state

f/fs

|y|

1

1/20 1/6 1/4

x = 0.00, 0.87, -0,87, 0.0, 0.87, -0.87, 0.00
y = 0.00, 0.29, 0.00, 0.00, 0.00, 0.00, 0.00 

1/3
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Frequency Behavior MA (cont.)

Frequency response of MA filter:
“X point” refers to the window size
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Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter
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Analysis: Z Transform
• We can numerically evaluate frequency behavior
• Rather analyze frequency behavior through analytic means
• For this we introduce Z transformation

• Let x[n] be a signal in the time domain (n)
• The Z transform of x[n] is given by

X(z) = Σn x[n] z-n

where z is a complex variable.

• Example:
x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
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Z Transform
• Z transforms make life easy
• Properties of the Z transform, Shifting:

• Let y[n] = x[n-1]   (i.e., signal delayed by 1 sample)

Y(z) = z-1 X(z)

• Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
y = 0.00, 0.00, 0.33, 0.66, 1.00, ..
Y = 0 + 0z-1 + 0.33z-2 + 0.66z-3 + z-4 + …

= z-1 X
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Z Transform
• Other properties of the Z transform:

• Z transform of K a[n] = K A(z)
• Z transform of a[n] + b[n] = A(z) + B(z)

• Example:

x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
X = 0 + 0.33z-1 + 0.66z-2 + z-3 + 0.66z-4 + …
y = 0.00, 0.66, 1.32, 2.00, 1.32, ..
Y = 0 + 0.66z-1 + 1.32z-2 + 2.00z-3 + 1.32z-4 + …

= 2 X
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Apply Z transform to MA Filter

• It holds Y(z) = H(z) X(z), where H(z) is filter’s (system’s) transfer function
• Frequency response of filter can be read from H(z)

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

In terms of the Z transform we have:

Y(z) = 1/3 X(z) + 1/3 z-1 X(z) + 1/3 z-2 X(z)
= (1/3 + 1/3 z-1 + 1/3 z-2) X(z)
= H(z) X(z)

X(z) Y(z)H(z)



CS4140 ESL 28

Frequency Response H(z)
H(z) reveals frequency response (H(f)=H(z)| z=ej2πf): 
As Y(z) = H(z) X(z), |H(z)| determines amplification of X(z)

The variable z is a complex variable and
encodes frequency F= f/fs according to 

z = ej2πF

= cos(2πF) + j sin(2πF)

This corresponds to traversing 
the unit circle in the 
complex z plane:

Re(z)

Im(z)
z = 0.7 + 0.7j

z

f/fs = 0f/fs = 1/2

f/fs = 1/8
f/fs = 1/4
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Frequency Response MA Filter
The transfer function of the MA filter is given by:

H(z) = (1/3 + 1/3 z-1 + 1/3 z-2)
= (1/3 z2 + 1/3 z + 1/3) / z2 (normalized)

re(z)

im(z)

z

Determine poles and zeros of H(z):

zero (= root of numerator): 
z1 = -½+½√3j, z2 = -½-½√3j 
(H(z1,2) = 0)
pole (= root of denominator): 
z3, z4 = 0
(H(z3,4) = ∞)

Simply inspect distance z to poles/zeros.

f/fs = 1/3
(H(z) = 0)

Pole-zero form of H(z):
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Frequency Response MA Filter
Interpret H(z) while 
traversing the unit circle
(upper half only):

re(z)

im(z)

z

f/fs

1

1/20 1/6 1/4 1/3

|H(z)|

F = f/fs = 1/4

z = ej2πF = cos(2πF) + j sin(2πF)
H(z) = (1/3 z2 + 1/3 z + 1/3) / z2

A practice!
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Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter
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Impulse Response

MA filter: y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]
Let x[n] = δ[n], then  y[n] = 1/3, 1/3, 1/3, 0, 0, 0, …

Z Transform: X(z) = 1, Y(z) = H(z) * 1 => H(z) = 1/3 + 1/3z-1 + 1/3z-2

Impulse signal δ reveals H(z) in terms of h[n]

Impulse response (IR) of a filter:

δ[n] y[n], characteristic for HH

Impulse signal δ[n] = 1, 0, 0, 0, … (a spike, Dirac pulse)

The transfer function
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Impulse Response
MA filter: h[n] = 1/3, 1/3, 1/3, 0, 0, 0, …

The IR is finite: as it settles to zero in finite time.

Filters defined by

y[n] = a0 x[n] + a1 x[n-1] + a2 x[n-2] + …
The output is a discrete convolution of the input signal and the IR.

Always have a finite IR and are therefore called FIR filters
(the equation is non-recursive in y)

Although any filter can be designed, FIR filters are
costly in terms of computation (often many terms needed)



CS4140 ESL 34

Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter
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Averaging Filter
Suppose we want to extend MA filter to N terms:

y[n] = 1/N x[n] + 1/N x[n-1] + … 1/N x[n-N-1]

Suppose we don’t want to implement an N-cell FIFO + 2N ops
and experiment with the following “short cut”:

y[n] = ((N-1)/N) * y[n-1] + 1/N * x[n]

(1st term approximates contents of FIFO after x[n-N-1]
has been shifted out, 2nd term is newest sample shifted in)

Let’s analyze the frequency response of this filter (recursive filter)



CS4140 ESL 36

Frequency Response Filter
y[n] = (N-1)/N y[n-1] + 1/N x[n]
Y(z) = (N-1)/N z-1 Y(z) + 1/N X(z)
H(z) = (1/N) / (1 – (N-1)/N z-1)

= (z/N) / (z – (N-1)/N)

zz

cf. MA filter:

?

Z-transform

H(z) = Y(z)/X(z)

Poles=(N-1)/NZeros=0
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Frequency Response Comparison

f/fs

1

1/20 1/6 1/4 1/3

|H(z)|

z z

It has a faster roll-off compare with MA (with N=3)
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Comparison of both Filters
New filter is much more different than perhaps assumed

Pole-zero plot is quite different: 
now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N), 
the sooner is the cut-off (in terms of frequency f),
this generally corresponds to MA filter but this would take large FIFO!



CS4140 ESL 39

Impulse Response
Filter equation: y[n] = (N-1)/N y[n-1] + 1/N x[n] 

IR (N = 3): h[n] = 1/3, (2/3)1/3, (2/3)2/3, …, (2/3)n/3, …

The IR is infinite: amplitude decays exponentially in n

Filters defined by

b0 y[n] + b1 y[n-1] + … = a0 x[n] + a1 x[n-1] + …

always have an infinite IR and are therefore called IIR filters
(the equation is recursive in y)

Filter order determined by # coefficients. Our case: 1st order.
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Designing Filters
Looking at the pole-zero plot, the IIR filter can be improved
by moving zero to left:
now |H(z)| even becomes zero for f = fs/2
so sharper cut-off.

This plot corresponds to the 
well-known class of Butterworth filters
(our case: 1st-order Butterworth):

The zero is created by adding x[n-1]:
Previously: y[n] = (N-1)/N y[n-1] + 1/N x[n] 
Now: y[n] = (N-1)/N y[n-1] + 1/2N x[n] + 1/2N x[n-1]

y[n] – (N-1)/N y[n-1] = 1/2N x[n] + 1/2N x[n-1]
H(z) = ((z+1)/2N) / (z-(N-1)/N)

z
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Enhancing Filters
Frequency response 1st-order Butterworth:

log2 (f/fs)

log2(1)

log2(½)

fc 2 fc

log2 |H(z)|

4 fc½ fc

log2(¼)

slope -1 .. would like, e.g., slope -2
(sharper filtering)

Ideal response: Sharp cut-off

Rate of the roll-off depends on 
the order of the filter
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Second-order Butterworth
Looking at the pole-zero plot, the IIR filter 
can be further improved by introducing 
more poles & zeros.
now |H(z)| has same cut-off freq fc
but sharper slope!

Computing h[n] (the ai and bi)
is difficult, so use a tool to compute
coefficients, given fs and fc
(Matlab or Web sites)

Just insert found coefficients in IIR equation
b0 y[n] + b1 y[n-1] + b2 y[n-2] = a0 x[n] + a1 x[n-1] + a2 x[n-2]

z

(2x)
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Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter
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Why we need it? 
•Many microcontrollers have no floating-point unit
• Software floating-point often (too) slow
• Need to implement filters in fixed-point arithmetic

To define a fixed-point type conceptually we need:
• Width of the representation;
• Binary point position in the number.

Fixed-point Arithmetic

Trade-off range & resolution

Integer (signed) part Fractional part
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2’s-complement bit representation (e.g., 32 bits, 14 bits fraction):

3.75: 000000000000000011  11000000000000
0.02: 000000000000000000  00000101001001
0.02: 000000000000000000  000001010001111011
-1.5: 000000000000000001  10000000000000 ^ -1 + 1 =>

111111111111111110  10000000000000

Fixed-point Arithmetic (cont.)

2-12021 2-2

14 bits18 bits
Exercise:  12, 0.125, -10, -10.5  

Integer (signed) part Fractional part
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• Addition, subtraction as usual (e.g., 15+(-5), 15-5 in 8 bits)
• Multiplication: result must be post-processed:

• make sure intermediate fits in variable!  (e.g., 32 bits)
• shift right by |fraction| and sign-extend

Example multiplication (32 bits, 14 bits fraction):
Let’s try a simple one instead: (-1.5 * 1 in 4 bits)

3.75: 00000000000000001111000000000000 times:
-1.5: 11111111111111111010000000000000 equals:

10100110000000000000000000000000
(value just fits in 32 bits!)
(now shift right by 14 bits and sign-extend):
11111111111111101001100000000000 which is:

-5.625 111111111111111010  01100000000000

Fixed-point Arithmetic
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• Second-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients: 

a0 = 0.0006098548 a1 = 2 a0 a2 = a0
b0 = 1 b1 = -1.9289423 b2 = 0.9313817

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0]      000000000000000000  00000000001001 111111
a[0] 000000000000000000  00000000001010
a[1] 000000000000000000  00000000010100
a[2] 000000000000000000  00000000001010
b[1] 000000000000000001  11101101110100 ^ -1 + 1
b[2] 000000000000000000  11101110011100
b[2] 000000000000000000  1110111001101111

Filter Example
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int mul(int c, int d) {
int result = c * d;
return (result >> 14);

}

void filter() {
y0 = mul(a0,x0) + mul(a1,x1) + mul(a2,x2) -

mul(b1,y1) - mul(b2,y2);
x2 = x1; x1 = x0; y2 = y1; y1 = y0;

}

Implementation (high-cost)
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• Second-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients: 

a0 = 0.0006098548 * 8/10 a1 = 2 a0 a2 = a0
b0 = 1 b1 = -2 b2 = 1

Bit representation (e.g., 32 bits, 14 bits fraction):
a[0] 000000000000000000  00000000001000 (was 10)
a[0] 000000000000000000  00000000001010  Previous value
a[1] 000000000000000000  00000000010000 (was 20)
a[1] 000000000000000000  00000000010100  Previous value
a[2] 000000000000000000  00000000001000 (was 10)
a[2] 000000000000000000  00000000001010  Previous value
-b[1] 000000000000000010  00000000000000 (was 31604)
b[2] 000000000000000001  00000000000000 (was 15260)

Filter Approximation Example

See if we can “approximate’ the coefficients with binary numbers that 
contain just 1 bit 
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y0 = (x0 << 3) >> 14 + (x1 << 4) >> 14 + 
(x2 << 3) >> 14 + (y1 << 15) >> 14 –
(y2 << 14) >> 14; // assume compiler optimizes ...

x2 = x1; x1 = x0; y2 = y1; y1 = y0;

Implementation (low-cost)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-5

0

5

10

15

20

25

30

35

Approx too coarse
(2nd-order FIR: 
ai, bi very sensitive!)

Why we do this? Shifting bits is faster than multiplication operations
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• First-order Butterworth LP Filter fc = 10Hz, fs = 1250Hz
• Coefficients: 

a0 = 0.0245221 a1 = a0
b0 = 1 b1 = -0.95095676

Bit representation (e.g., 32 bits, 14 bits fraction):

a[0] 000000000000000000  00000110010010 (a0 << 14)
a[1] 000000000000000000  00000110010010
b[1] 000000000000000000  11110011011100 ^ -1 + 1

Approx: a[0] = 512 (was 402), b[1] = 16384 (was 15580) 

Cascade two 1st-order filters
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-1

-0.5

0

0.5

1

1.5

Results

Approx bit better
But still bad for very
low frequencies

So add more powers
of two until good approx
(see matlab demo)
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• One size fits all? NO!
• number of bits depends on needed precision (sensor vs. joystick)

• special case for proportional controller: P * ε
• fpn * fpn = fp2n (overflow! requires an additional shift)
• scalar * fpn = fpn (overflow? no shift needed)
• fpm * fpn = fpm+n (when P can’t be represented as a scalar, using 

different representations)

• document precision for every data type (part of softw arch)

• fpn to scalar
• be patient, shift at last instant (when feeding the engines)

Scaling: tips and tricks
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Outline

Introduction
Z Transform
FIR Filters
IIR Filters
Fixed-point Implementation
Kalman Filter
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Recall: QR Sensor Signals phi, p

2.68 2.69 2.7 2.71 2.72 2.73 2.74 2.75 2.76 2.77

x 108

-300

-200

-100

0

100

200

300

phi

∫ pdtp

Signal from the previous version of QR: 
• phi is the plot of Acc

• Roll angle
• p is the roll rate
• red is the 

• Integral of roll rate =  roll angle
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After 2nd-order Low-pass (10Hz)

phi

∫ pdtp
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Bias in p: Integration drift in phi

phi

∫ pdt

p

Integration of the readings from 
the gyro will lead to drift in the angle
estimation over long-term.

Calibrations may not solve the 
problem all the time, as the bias
instability in gyro can lead to 
different drifts (e.g., temperature)
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Problem Analysis

Noise is still considerable
Still little correlation between (filtered) phi and p
More aggressive filtering -> more phase delay
10 Hz signals already 90 deg phase lag with 2nd-order
In our particular case we might apply notch filter
In general though, too many noise frequencies
sphi: negligible drift, too high noise
sp: low noise, drift -> prohibits integration to phi

Kalman Filter: combine the best of both worlds!
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Kalman Filter (quadcopter near-hover)

Sensor Fusing: gyro and accel share same information

Kalman
Filter

Gyro: sp

Acc: sphi

p

phi

Integrate sp to phi
Adjust integration for sp (drift) bias b by comparing phi to sphi, 
averaged over long period (phi ~ constant)
 You have a very large filtering window, and your quadcopter is near-hover, you 

suppose to get a constant (or Zero ) angle (phi ~ constant)!
Return phi, and p (= sp – bias)

b  (in Gyro)
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Algorithm

p = sp – b // estimate real p
phi = phi + p * P2PHI // integration to predict phi
e = phi – sphi // compare to measured phi
phi = phi – e / C1 // correct phi to some extent
b = b + (e/P2PHI) / C2 // adjust bias term

Initiation b obtain from calibration 
P2PHI: depends on loop freq -> compute/measure
C1 small: believe sphi ; C1 large: believe sp
C2 large (typically > 1,000 C1): slow drift
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Summary

DSP is everywhere
This was merely introduction into the field
Get a feel for it when applying to QR
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