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Why Control Theory?

Embedded systems integrated with appl’n

Multi-disciplinary training required:

 Physics engineering

 Electronics engineering

 Mechanical engineering

 Control engineering

 …

 And, of course,

 Computer science & engineering
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Control is Everywhere

embedded
controller

Automotive

Aerospace

Plant Control

Climate Control

Health Care

Copiers, Wafer Scanners

Model Quad Rotors ...

controlled
system
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Cruise Control

vsetp

v controller

e

vehicle

e = enable [0/1]
T = throttle [%]
F = thrust [N]
v = velocity [m/s]

vsetp = setpoint

vmeas = measured
vvehicle = actual

engine++

road, air

speedometer

vmeas

vvehicleFvehicle

T vmeas

disturbances (slope, wind)
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Objectives of this Crash Course

Appreciate the benefits of control

Understand basic control principles

Communicate with control engineers

Get you up to speed to do the QR control
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Part I: Feedback Control

What is Control

The Feedback Loop

Proportional Feedback
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Velocity Control

vsetp

v controller

e (1)

vehicle
engine++

road, air

speedometer

vmeas

vvehicleFvehicle

T vmeas

disturbances (slope, wind)

(2)

(1)

(3)(4)

(5) (6)

control function:

try to maintain vmeas = vsetp(3)
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Feedback Control Loop

T

controller function T=h_c():
adjust T such that  -> 0

vsetp

-

+
h_c



h_c controller

control theory: how to determine function h_c

vvehicle

vmeas

speedometer

vehicle + environment
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Standard Loop Format

T

-

+
h_c



standard form: control h_s through h_c such that y = x

y

x

-

+
h_c


h_s y

h_c = h_controller
h_s = h_system

vsetp

vmeas

vvehicle
vmeas
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Proportional Control

y

x

-

+
P


h_s y

Let h_c() = P 

(Steady-state) Analysis:

Let h_s(a) = c a  (i.e. linear system)
Then y = c P (x-y) => y = (c P/(c P+1)) x 

a
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Effect of Loop Gain

0.5

1.0

-

+
P = 1 1 0.5

y = P/(P+1) x 

0.5

0.98

1.0

-

+
P = 49 1 0.98 !

0.02

Loop gain: the larger, the better (y  x)
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Example: Velocity Control

hspeedometer

-

+
P



Analysis:

vsetp vvehicle

vmeas

vmeas = hspeedometer (vvehicle)
If P » 1 then vmeas  vsetp

Consequently, vvehicle  hspeedometer
-1(vsetp)

Ideally, hspeedometer(x) = x
Result: vvehicle  vsetp

Note: Sensor 
Determines
Accuracy
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Example: Variable Amplifier

a
y

z

x

-

+
P



A

Analysis:

If P A » 1 (i.e. sufficient loop gain) then z  x
Hence y  (1/A) x  (e.g. A = 0.001 => 1000 x amp)

variable attenuator

1
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Part II: Blessings of Feedback

High Loop Gain: More Robustness

High Loop Gain: More Linearity

High Loop Gain: More Speed
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More Robustness

Suppose h_s varies with time

0.98

1.0

-

+
49 1 49/50 = 0.98

0.02

0.978

1.0

-

+
49 0.9 44.1/45.1 = 0.978 !

0.022

10% change in h_s: only 10%/50 = 0.2% change in y
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Example: Velocity Control

For sufficiently high loop gain: vmeas stable ( vsetp), 
Hence vvehicle  hspeedometer

-1(vsetp), which is stable

h unstable

T

-

+
h_c


vsetp

vmeas

vvehicle

vmeas
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More Linearity

y

x

-

+
P


h_s y

Suppose h_s is non-linear function

Analysis:

Let h_s(a) = ca a  =>  y = (ca P/(ca P+1)) x   
If ca P » 1 then y  x  =>  y is linear with x 

a

a

y
ca a
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Example: Audio Amp

a v_out

v

v_in

-

+
P



A

highly nonlinear

Analysis:

If ca P A » 1 then v  v_in
Hence v_out  1/A v_in  (so linear gain: 1/A)

attenuation A « 1
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More Speed

T(t) v(t)

Vehicle response (slow):
10(dv(t)/dt) + v(t) = T(t)

Let T(t) = 1  => 
v(t) = 1 - e –t/10

T and v are typically time-
varying signals (function of t).
transfer function (h) is not just 
a proportional gain function but
a first-order transfer function:

t [s]

v

10

1

h
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Example: Velocity Control

0.0
0.5
0.74
0.86
0.92

1

-

+

In 2 steps of 100 ms same level (0.74) as 10 s w/o feedback
Performance of vehicle has effectively increased ~50 times!

0.0
0.5
0.74
0.86
0.92

t10
1:1

1.0
0.5
0.26
0.14
0.08

50
50
25
13
7
4

0.0
0.5
0.74
0.86
0.92
0.95 
etc.

100 ms trace:
slow vvehicle

vsetp
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Part III: Harnessing Feedback

Instability Problem

Classical Control Theory
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Loop Gain Limitations

y = P/(P+1) x 

0.98

1.0

-

+
49 1 0.98,  error = 0.02

0.02

Analysis: 

Problem:
P should be infinite for control error to become zero
In practice however, loop gain must be limited for stability
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Example 1: Integrator Systems

P ≥ 1: instability!
Cause: each integration adds 90 deg phase lag
So 2 integrators use up all 180 deg budget!

dp(t)/dt = K(t) dphi(t)/dt = p(t)

K p phi
phi_s

-

+
P = 1











QR

sin t sin t -cos t -sin t

-sin t

0

180 deg

180 deg



CS4140 ESL 26

Example 2: Time Latency

0
1
0
1

1

-

+
1

1
0
1
0

h_s 0
1
0
1
0
etc.

Let h_s: y(t) = a(t-0.5)      (i.e., 0.5s delay)
Phase lag of 180 deg at 1 Hz causes instability

1
0
1
0

180 deg

0.5 s trace:

 y



y

t

a

e.g., comm latency

x
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Phase Lag: examples

Integration (90 deg): 

 speed -> position, flow -> volume

First-order system (up to 90 deg):

 lamp, heating, car velocity, ...

N-th order system (up to N*90 deg):

 compositions of 1st-order systems, missiles

Delay systems (unlimited):

 humans, computers, sample times, cables, air

h_s

Need control theory to analyze, e.g., control stability
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Classical Control Theory

Describe x(t), y(t), h_c(t), h_s(t) in terms of their
Laplace transforms X(s), Y(s), H_c(s), H_s(s), respectively





0

)()()]([ dtetfsFtfL st

y

x

-

+
h_c h_s y



Y

X

-

+
H_c H_s Y



Y

X

-

+
H_c H_s Y





CS4140 ESL 29

Classical Control Theory

X H Y

For linear system h it holds Y(s) = H(s) · X(s)
(i.e. composition in time domain reduces to multiplication
in the Laplace domain). This allows for easy analysis.



L[a] = a/s

L[a t] = a / s2  

L[a f + b g] = a L[f ] + b L[g]

= a F(s) + b G(s)

L[f ’ ] = s L[f ] – f(0)

= s F(s) – f(0)
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Laplace cheat sheet



Let x(t) = 1
=>  
X(s) = 1/s
Y(s) = H(s) X(s) = 1/s2

<=
y(t) = t
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Example: Rate Control (1)

x(t) y(t) dy(t)/dt = x(t) 

Laplace transform:
s Y(s) = X(s)
H(s) = Y(s)/X(s) = 1/s

t 

y




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Control System Analysis

X H Y

Y(s) = H(s) X(s)

Stability: Re(roots H(s)) < 0
Im(roots H(s)) small

H(s) = 
Y(s)

X(s)
poles

zeros



Example: Rate Control (2)

x

-

+
P





K y

Y(s) = HPC(s) X(s) 
HPC(s) = ??

Determine roots
Check stability

Y(s) = P H(s) (X(s) – Y(s))
Y(s) = (P H(s) / (1 + P H(s))) X(s) = HPC(s) X(s)

H(s) = 1/s
HPC(s) = (P/s) / (1 + P/s) = P / (s + P)

First-order system with time constant 1/P
(root: s = -P => Re < 0, Im = 0) so stable
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Part IV: QR Control

Instability Problem

Cascaded P Control
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Rate control using P controller

yaw

-

+

dp(t)/dt = K(t)

P < 1: useless control performance
P ≥ 1: stable (for not too high P!)

P




K sr

P controller for roll rate:
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Angle control using P controller

phi_s

-

+

dp(t)/dt = K(t)

P < 1: useless control performance
P ≥ 1: instability

P








K p phi

dphi(t)/dt = p(t)

P controller for roll angle:
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Cascaded P control

EXERCISE: prove the stability of the cascaded controller
(what can you say about P1 vs P2?)

Embedded rate controller “neutralizes” one integrator

-

+
P2









K p phi

P1

-

+

phi_s p_s

Rate controller

Cascaded P Controller: stable (for not too high P1 and P2!
and P2 ≥  4 ∙ P1)



CS4140 ESL 38

Summary

Feedback control offers many advantages

Is ubiquitous (cars, planes, missiles, QRs ..)

Potential stability problems

Need control theory

This was merely introduction into the field

Get a feel by applying to QR!


