CS4140 Embedded Systems Laboratory

Introduction to Control Theory

Why Control Theory?

Embedded systems integrated with appl'n Multi-disciplinary training required: Physics engineering Electronics engineering Mechanical engineering Control engineering And, of course,

Computer science & engineering

Control is Everywhere

Cruise Control

Objectives of this Crash Course

Appreciate the benefits of control
 Understand basic control principles
 Communicate with control engineers

Get you up to speed to do the QR control

Part I: Feedback Control

What is Control
 The Feedback Loop
 Proportional Feedback

Velocity Control

Feedback Control Loop

control theory: how to determine function h_c

Standard Loop Format

<u>standard form</u>: control h_s through h_c such that y = x

Proportional Control

Let $h_c(\varepsilon) = P \varepsilon$

(Steady-state) Analysis:

Let $h_s(a) = c a$ (i.e. linear system) Then y = c P (x-y) => y = (c P/(c P+1)) x

CS4140 ESL

Effect of Loop Gain

Loop gain: the larger, the better $(y \approx x)$

Example: Velocity Control $v_{setp} \xrightarrow{\epsilon} P \xrightarrow{\epsilon} v_{vehicle}$ $v_{meas} \xrightarrow{k} P \xrightarrow{k} v_{vehicle}$ Note: Sensor Determines Accuracy

Analysis: $v_{meas} = h_{speedometer}$ ($v_{vehicle}$) If P > 1 then $v_{meas} \approx v_{setp}$ Consequently, $v_{vehicle} \approx h_{speedometer}^{-1}(v_{setp})$ Ideally, $h_{speedometer}(x) = x$ Result: $v_{vehicle} \approx v_{setp}$

CS4140 ESL

Example: Variable Amplifier

Analysis:

If P A \gg 1 (i.e. sufficient loop gain) then $z \approx x$ Hence $y \approx (1/A) \times (e.g. A = 0.001 => 1000 \times amp)$

Part II: Blessings of Feedback

High Loop Gain: More Robustness
High Loop Gain: More Linearity
High Loop Gain: More Speed

More Robustness

Suppose h_s varies with time

10% change in h_s: only 10%/50 = 0.2% change in y

For sufficiently high loop gain: v_{meas} stable ($\approx v_{setp}$), Hence $v_{vehicle} \approx h_{speedometer}^{-1}(v_{setp})$, which is stable

More Linearity

Let $h_s(a) = c_a a \implies y = (c_a P/(c_a P+1)) x$ If $c_a P \gg 1$ then $y \approx x \implies y$ is <u>linear</u> with x

Example: Audio Amp

If $c_a P A \gg 1$ then $v \approx v_{in}$ Hence $v_{out} \approx 1/A v_{in}$ (so linear gain: 1/A)

CS4140 ESL

More Speed

T and v are typically timevarying signals (function of t). transfer function (h) is not just a proportional gain function but a first-order transfer function:

V

10

Vehicle response (slow): 10(dv(t)/dt) + v(t) = T(t)

Let T(t) = 1 =>v(t) = 1 - e^{-t/10}

t [s]

Example: Velocity Control

In 2 steps of 100 ms same level (0.74) as 10 s w/o feedback Performance of vehicle has effectively increased ~50 times!

Part III: Harnessing Feedback

Instability Problem Classical Control Theory

Loop Gain Limitations

Problem: P should be <u>infinite</u> for control error to become zero In practice however, loop gain must be <u>limited</u> for *stability*

Example 1: Integrator Systems

$P \ge 1$: instability! Cause: each integration adds 90 deg phase lag So 2 integrators use up all 180 deg budget!

Example 2: Time Latency

Let $h_s: y(t) = a(t-0.5)$ (i.e., 0.5s delay) Phase lag of 180 deg at 1 Hz causes instability

CS4140 ESL

Phase Lag: examples

- Integration (90 deg):
 - speed -> position, flow -> volume
- First-order system (up to 90 deg):
 - Iamp, heating, car velocity, ...
- N-th order system (up to N*90 deg):
 - compositions of 1st-order systems, missiles
- Delay systems (unlimited):
 - humans, computers, sample times, cables, air

Need control theory to analyze, e.g., control stability

h_s

Classical Control Theory

Describe x(t), y(t), h_c(t), h_s(t) in terms of their Laplace transforms X(s), Y(s), H_c(s), H_s(s), respectively

$$L[f(t)] = F(s) = \int_{-st}^{\infty} f(t)e^{-st}dt$$

()

Classical Control Theory

For <u>linear</u> system h it holds Y(s) = H(s) ■ X(s) (i.e. composition in time domain reduces to multiplication in the Laplace domain). This allows for easy analysis.

Laplace cheat sheet

Example: Rate Control (2)

 $\begin{array}{l} Y(s) = P \; H(s) \; (X(s) - Y(s)) \\ Y(s) = (P \; H(s) \; / \; (1 \; + \; P \; H(s))) \; X(s) = H_{PC}(s) \; X(s) \end{array}$

H(s) = 1/s $H_{PC}(s) = (P/s) / (1 + P/s) = P / (s + P)$

First-order system with time constant 1/P(root: s = -P => Re < 0, Im = 0) so stable

CS4140 ESL

Part IV: QR Control

Rate control using P controller

P < 1: useless control performance $P \ge 1$: instability

Embedded rate controller "neutralizes" one integrator

Summary

Feedback control offers many advantages
Is ubiquitous (cars, planes, missiles, QRs ..)
Potential stability problems
Need control theory
This was merely introduction into the field
Get a feel by applying to QR!