
In4073 QR Controller Theory (2011-2012)

Arjan J.C. van Gemund

Embedded Software Lab

Software Technology Department

Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

February 2012

1 Introduction

This document describes how to develop an attitude controller for the Delft AeroVinci ”quad-pilot 2 F.3” Quad-
Rotor Aerial Vehicle (QR), which is used in the MSc lab course in4073 Embedded Real-time Systems [1]. The
document assumes introductory knowledge on the assignment [2], control theory, and filtering as lectured within
in4073.

2 Control Principles

In order to allow easy pilot handling the QR should be attitude-controlled with respect to roll and pitch, rather
than rate-controlled, whereas yaw should be rate-controlled. That is, the joystick (and keyboard) roll and pitch
setpoints have the semantics of angles ϕ and θ, respectively, while the yaw setpoint has the semantics of rate

r (twist the JS and the QR will yaw, neutral JS and the QR will stabilize at the current angle ψ). Apart
from pilot convenience, there is little point in yaw attitude control as there is no sensor to estimate ψ anyway,
whereas for ϕ and θ feedback we can use the Y and X axis accelerometers, respectively 1.

2.1 Yaw control

As may have become clear during the in4073 control theory lecture, PID controllers can be used for each of the
3 dimensions. The yaw controller implementation is straightforward, and can be implemented by the simple
rate P controller

N_s = P_r * (yaw_s - sr)

where N_s is the torque setpoint for the QR engines, and yaw_s is the twist handle input (rate setpoint). Since,
the QR integrates torque N_s into rate sr there is no need for an additional I term in the above P controller.
On the other hand, an additional D term might be needed to compensate for phase lags due to latency, filtering,
etc., but should initially be avoided, and is therefore not included in the above controller.

2.2 Roll/Pitch control

The roll and pitch controllers are slightly more complicated and will be treated in more depth. As they are
identical, we will only discuss the roll controller. Note that mapping an angle setpoint to a torque setpoint
(i.e., two integrations) using just one controller is impossible due to the associated 180 degrees phase lag, unless
derivative control would be added. Consequently, in (roll or pitch) attitude control, there are two nested P(ID)
controllers involved: an attitude controller that maps the joystick angle setpoint roll_s to a rate setpoint p_s
for the rate controller, that maps the rate setpoint into the torque setpoint K_s for the QR engines. The cascaded
controller is shown in Figure 1. Similar to the previous yaw controller we restrict ourselves to simple P control.
QR’ models a QR that has rate input due to the second P controller. As QR‘ represents a single integration

1Note that ϕ and θ are formally Euler angles (i.e., ϕ is a body rotation) while in the current paper we refer to ϕ as attitude
relative to the earth frame. However, as we assume (near) hovering conditions the (fundamental) difference is immaterial.

1



K_s+

-
P_phi

+

-
P_p QR

roll_s

sphi

sp

p_s

QR’

Figure 1: Cascaded P controller

only, angle control can be implemented by a single (second) P controller. The cascaded controller equations are
given by

p_s = P_phi * (roll_s - sphi)

K_s = P_p * (p_s - sp)

The two cascaded P controller equations can be simply combined into one equation

K_s = P_p * (P_phi * (roll_s - sphi) - sp)

which reduces to

K_s = P1 * (roll_s - sphi) - P2 * sp

where P1 and P2 are positive control parameters. The above form resembles a PD controller (with P1 and P2

proportional and derivative control, respectively) since sp is the time derivative of sphi. Note that a real PD
controller includes a derivative sphi term in the D subexpression, but the effect of the current D subexpression
on feedback stability is the same, which is due to the sp term (which is the derivative of sphi).

3 Kalman Filtering

Although the above controller will work very well for ideal sensors, in practice, accelerometers and, most notably,
gyroscopes exhibit drift (and noise). Consequently, after initial calibration has been performed sphi and sp will
start to drift away from the actual QR state variables phi and p, respectively, due to vibration, temperature,
voltage changes due to varying rotor engine RPM, battery depletion, etc. As a result, the above (cascaded
P) controller will drift in terms of both attitude and rate. The attitude drift from accelerometers is typically
small, and can be easily compensated with the JS as one is manually controlling the angle setpoints anyway. A
rate drift from the gyros, however, is not easily compensated by a JS that controls angles and would required
constant re-trimming.

A typical solution in IMU design for aerial vehicles such as QRs is to apply Kalman filtering, a sensor fusing
technique due to Kalman (see [3] for papers on Kalman filtering). A Kalman filter dynamically adjusts the
calibration of sp which is based on exploiting information on sphi and sp. Due to this dynamic calibration, the
Kalman filter yields (on average) a perfect (i.e., drift-free) estimation of p which greatly improves QR control.
Apart from virtually drift-free rate sensing, QR control is also improved due to the following. While gyros
have non-negligible drift, they experience low noise pickup from the QR engines, which, despite the drift, make
them quite suitable for fast movement control (i.e., compensating for the quick, random attitude changes during
hover). Accelerometers, on the other hand, are almost drift-free, but pick up much more noise due to engine
vibration. This implies that they would have to be significantly filtered at low frequencies, severely degrading
their use in controlling fast QR movements. Since Kalman filtering removes gyro drift, gyros now effectively
become the main source for QR control instead of the accelerometers. An extra reason why the gyros are the
most important source of attitude control is that accelerometers also pick up on body accelerations next to
gravity. Although in hover the lateral movements of the QR will cancel out in the long term, a short-term
lateral drift of the QR will influence the acclererometer readings and introduce an error in the computed angle.
In fact, this error can be disastrous. Suppose the QR pitches down which causes the QR to accelerate in forward
direction. This results in a decrease in acceleration as measured by the X-axis accelerometer. Consequently,
the angle returned to the controller is too small and the QR is not sufficiently compensated. This, in turn,

2



leads to further acceleration, i.e., an unintended feed-forward effect next to the intended feedback control. As
we will show, in a Kalman scenario accelerometers are primarily used as reference for the Kalman filter, rather
than directly being used in the earlier, cascaded P controller. In fact, the sphi signal in the controller will now
primarily be based on integrating gyro rate, rather than on the accelerometer signal.

In the following, we restrict ourselves to QR flying conditions close to hover (which is the target of in4073).
During hover, the average value of sphi corresponds to level flight. This information is exploited as we will
show. A formal, mathematical treatment of Kalman filtering is beyond the scope of this course. We simply
present the equations for an inertia-only Kalman filter (i.e., for hovering), and give a rationale for each equation.

Let p denote the QR’s actual angular rate (which, of course, we cannot directly measure), according to

p = sp - p_b

where p_b denotes the error (b for bias) in p due to drift. Later on, we show how p_b is computed by the
Kalman filter. Rather than estimating phi from a noisy, and/or slow sphi, we now use the fact that p is
(approximately) ideal, so we integrate p to obtain phi. Note that integrating rates into angles is generally a
bad idea as any offset (drift) is accumulated into a potentially unbounded error. However, in Kalman filtering
this effect doesn’t happen, as discussed later on. Thus the Kalman filter prediction is given by

phi = phi + p * P2PHI

where p is estimated by the earlier equation, and P2PHI is the rate/angle conversion constant, determined by
the gyro and accelerometer transfer functions, as well as by the frequency with which the Kalman equations
are executed (e.g., 1000 Hz sample rate). Note that in the above we assume that gyro and angle signals have
the same polarity, i.e., a positive gyro signal corresponds to a positive angle increment. Based on the observed

attitude sphi the above prediction for phi is adjusted according to the update

phi = phi - (phi - sphi) / C1

where the constant C1 determines how much weight must be given to the observed angle compared to the
previous prediction. Given the superiority of the (unbiased) gyro information (p, and hence phi) compared to
the accelerometer (sphi), C1 has a high value of, e.g., 100. Thus we put more weight to p (via sp) than to sphi

when estimating phi.
In turn, the above adjustment based on the real sphi bears consequences for p as well, and the bias in sp

is slightly adjusted according to the update

p_b = p_b + (phi - sphi) / C2

where C2 determines how fast the bias is updated (much slower than the angle, e.g., C2 = 1,000,000). The
updated drift p_b is fed back to the first Kalman equation that (re)computes p, and all subsequent equations
are re-executed, etc. The set of equations is run iteratively, which makes the Kalman filter dynamically compute
the actual drift, based on the fact that on average sphi varies around a (small) constant (i.e., the bias in sphi),
given that the QR hovers around zero angle (consequently, the continuous integration of p will stay within a
narrow band around 0).

In summary, the Kalman filter estimates the real QR state variables phi and p from sphi and sp, respectively.
Note that while the average estimate of p is exact (in the limit), phi can never be estimated better than sphi.
While p can be estimated due to the fact that its long-term integration must be zero (average hover conditions),
no such knowledge is available for phi. Hence, in stationary conditions phi will approximate sphi. Consequently,
when sphi is improperly calibrated, the Kalman filter will return a non-zero phi. Without proper trimming this
will lead to non-level flight. As mentioned earlier, however, this constant attitude bias can be easily trimmed
away (either by JS or keyboard).

3



4 Implementation Notes

From the above it follows that the implementation of a Kalman-based attitude controller for the Aero-Vinci QR
comprises two stages, i.e., Kalman filter, and cascaded P controller. In the following example pseudo code we
assume both are integrated within the same (control) loop (e.g., a timer ISR).

ISR begin

...

// Kalman for p, phi

p = sp - p_b

phi = phi + p * P2PHI

phi = phi - (phi - sphi) / C1

p_b = p_b + (phi - sphi) / C2

// Use p, phi in P controller

K_s = P1 * (roll_s - phi) - P2 * p

...

ISR end

Apart from the constants P2PHI, C1, C2, P, and D, special attention must be given to a proper dimensioning
of the signal values. After calibration the sensor values range in the order of tens of units. Without proper
scaling this will immediately pose numerical (integer) problems as, e.g., P2PHI will be less than unity for realistic
update frequencies (1000 Hz). A similar argument holds with respect to the divisions by C1, and, in particular,
C2 2. Note that the 32-bit X32 architecture provides sufficient headroom for proper scaling.

Acknowledgement

We extend our appreciation to dr.ir. Christophe De Wagter of the TUD Aerospace Faculty and Aero-Vinci BV,
for the many helpful discussions on QR control.

References

[1] In4073 Course Web Site. http://www.st.ewi.tudelft.nl/~gemund/Courses/In4073/index.html.

[2] In4073 Assignment document. http://www.st.ewi.tudelft.nl/~gemund/Courses/In4073/Resources/
assignment.pdf.

[3] In4073 Resources. http://www.st.ewi.tudelft.nl/~gemund/Courses/In4073/Resources/index.html.

2For performance reasons integer division should be avoided other than through bit shifts.

4


