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The Free Lunch is Over: Many-Core to the Rescue

The many-core hardware zoo:
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Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Vastly different numbers of cores

I Vastly different core architectures: power, genericity

I Vastly different memory architectures

Programming diverse hardware is uneconomic:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?
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Design Rationale of SAC

Genericity through abstraction:

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach to implicitly promote
concurrency

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)



Design Rationale of SAC

Genericity through abstraction:

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach to implicitly promote
concurrency

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)



What Does Data Parallel Really Mean ?

Factorial imperative:

int fac( int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

Data parallel:

fac n = prod( 1 + iota( n));
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The Essence of Data Parallel Programming

prod( 1+iota(n))
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SAC — Design Space

High-level functional, data-parallel
programming with vectors, matrices, arrays

SAC

Easy to adopt for programmers
with an imperative background

Suitability to achieve high performance
in sequential and parallel execution
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What is Functional Programming ?

Execution Model:

Imperative programming:
Sequence of instructions
that step-wise manipulate the program state

Functional programming:
Context-free substitution of expressions
until fixed point is reached
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Functional Semantics of SAC

SAC:

{

...

a = 5;

b = 7;

a = a + b;

return( a);

}

Functional pseudo code:

...

let a = 5

in let b = 7

in let a = a + b

in a
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Functional Semantics of SAC

SAC:

int fac( int n)

{

if (n>1) {

r = fac( n-1);

f = n * r;

}

else {

f = 1;

}

return( f);

}

Functional pseudo code:

fun fac n =

if n>1

then let r = fac (n-1)

in let f = n * r

in f

else let val f = 1

in f
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Functional Semantics of SAC

SAC:

int fac( int n)

{

f = 1;

while (n>1) {

f = f * n;

n = n - 1;

}

return( f);

}

Functional pseudo code:

fun fac n =

let rec fac_while f n =

if n>1

then let f = f * n

in let n = n - 1

in fac_while f n

else f

in

fac_while 1 n
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The Role of Functions

Mathematics:
context-free mapping of argument values to result values

Imperative programming:
subroutine with side-effects on global state

Functional programming in SAC:
context-free mapping of argument values to result values
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The Role of Variables

Mathematics:
name/placeholder of a value

Imperative programming:
name of a memory location

Functional programming in SAC:
name/placeholder of a value
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The Role of Arrays

Mathematics:
functions from indices to values

Imperative programming:
contiguous fragments of addressable memory

Functional programming in SAC:
stateless multidimensional indexable collections of values
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Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

j

k

i

10

7 8 9

1211

54 6

1 2 3

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[ 1, 2, 3, 4, 5, 6 ]
dim: 1
shape: [ 6 ]
data: [1,2,3,4,5,6]

42

dim: 0
shape: [ ]
data: [42]
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Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape( [3,2], vec);

I Querying for the shape of an array:
shp = shape( mat); [3,2]

I Querying for the rank of an array:
rank = dim( mat); 2

I Selecting elements:
x = sel( [4], vec); 5

y = sel( [2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6
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With-Loops: Versatile Array Comprehensions

A = with {
([1,1] <= iv < [4,4]) : e(iv);

}: genarray( [5,4], def );

I Multidimensional array comprehensions

I Mapping from index domain into value domain

index domain

[0,0]

[1,0]

[2,0]

[3,0]

[0,1]

[1,1]

[2,1]

[3,1]

[0,2]

[1,2]

[2,2]

[3,2]

[4,0] [4,1] [4,2] [4,3]

[3,3]

[2,3]

[1,3]

[0,3] def def def def

defdef

def

def

def def def def

e([1,3])

e([2,3])

e([3,3])

e([1,2])

e([2,2])

e([3,2])

e([1,1])

e([2,1])

value domain

e([3,1])
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With-Loops: Modarray Variant

A = with {
([1,1] <= iv < [3,4]) : e(iv);

}: modarray( B );

A =


B[[0,0]] B[[0,1]] B[[0,2]] B[[0,3]] B[[0,4]]
B[[1,0]] e( [1,1]) e( [1,2]) e( [1,3]) B[[1,4]]
B[[2,0]] e( [2,1]) e( [2,2]) e( [2,3]) B[[2,4]]
B[[3,0]] B[[3,1]] B[[3,2]] B[[3,3]] B[[3,4]]


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With-Loops: Fold Variant

A = with {
([1,1] <= iv < [3,4]) : e(iv);

}: fold( ⊕, neutr );

A = neutr ⊕ e( [1,1]) ⊕ e( [1,2]) ⊕ e( [1,3])
⊕ e( [2,1]) ⊕ e( [2,2]) ⊕ e( [2,3])

( ⊕ denotes associative, commutative binary function. )
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Principle of Abstraction

Element-wise subtraction of arrays:

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B)

{

res = with {

([0 ,0] <= iv < [20 ,20]) : A[iv] - B[iv];

}: genarray( [20,20], 0);

return( res);

}
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Principle of Abstraction
int[.,.] (-) (int[.,.] A, int[.,.] B)

{

shp = min( shape(A), shape(B));

res = with {

([0 ,0] <= iv < shp) : A[iv] - B[iv];

}: genarray( shp , 0);

return( res);

}

Rank-generic code

int [*] (-) (int [*] A, int [*] B)

{

shp = min( shape(A), shape(B));

res = with {

(0* shp <= iv < shp) : A[iv] - B[iv];

}: genarray( shp , 0);

return( res);

}
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Shapely Array Type Hierarchy With Subtyping

...

... ... ......int int[1] int[42]

int[.]

int[  ]

int[.,.]

int[1,1] int[3,7]

rank: dynamic

shape: static

shape: dynamic

rank: static

shape: dynamic

rank: static

*

AUD Class:

AKD Class:

AKS Class:

AUD : Array of Unknown Dimension
AKD : Array of Known Dimension
AKS : Array of Known Shape
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Function Overloading

Example:

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B) {...}

int[.,.] (-) (int[.,.] A, int[.,.] B) {...}

int [*] (-) (int [*] A, int [*] B) {...}

Features:

I Multiple function definitions with same name, but
I different numbers of arguments
I different base types
I different shapely types

I No restriction on function semantics

I Argument subtyping must be monotonous

I Dynamic function dispatch
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Principle of Composition

Characteristics:

I Step-wise composition of functions

I from previously defined functions

I or basic building blocks (with-loop defined)

Example: convergence test

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return( all( abs( new - old) < eps ));

}
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Principle of Composition

Example: convergence test

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return( all( abs( new - old) < eps ));

}

Advantages:

I Rapid prototyping

I High confidence in correctness

I Good readability of code
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Execution through Context-Free Substitution

Convergence Test:

is convergent( [1,2,3,8], [3,2,1,4], 3 )

all( abs( [1,2,3,8] - [3,2,1,4]) < 3 )

all( abs( [-2,0,2,4]) < 3 )

all( [2,0,2,4] < 3 )

all( [true, true, true, false])

false
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Shape-Generic Programming

2-dimensional convergence test:

is convergent(

(
1 2
3 8

)
,

(
3 2
1 7

)
, 3 )

3-dimensional convergence test:

is convergent(


(

1 2
3 8

)
(

6 7
2 8

)
,


(

2 1
0 8

)
(

1 1
3 7

)
, 3 )
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The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization
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Single Assignment C: Outline

Design Rationale of SAC

Language Design of SAC

SAC Arrays

Abstraction and Composition

Case Study: Convolution

Compilation Challenge
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Case Study: Convolution

Algorithmic principle:

Compute weighted sums
of neighbouring elements

Fixed boundary conditions (1-dimensional):

Periodic boundary conditions (1-dimensional):
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Case Study: Convolution

Problem:

I 9 different situations in 2-dimensional grids

I 27 different situations in 3-dimensional grids

I ...
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Convolution Step in SaC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = A + rotate( 1, A) + rotate( -1, A);

return( R / 3.0);

}
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Convolution Step in SaC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = A + rotate( 1, A) + rotate( -1, A);

return( R / 3.0);

}

N-dimensional:

double [*] convolution_step (double [*] A)

{

R = A;

for (i=0; i<dim(A); i++) {

R = R + rotate( i, 1, A) + rotate( i, -1, A);

}

return( R / tod( 2 * dim(A) + 1));

}
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Convolution in SaC

Fixed number of iterations:

double [*] convolution (double [*] A, int iter)

{

for (i=0; i<iter; i++) {

A = convolution_step( A);

}

return( A);

}
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Convolution in SaC

Variable number of iterations with convergence check:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step( A_old);

}

while (! is_convergent( A, A_old , eps));

return( A);

}
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Convolution in SaC

Variable number of iterations with convergence test:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step( A_old);

}

while (! is_convergent( A, A_old , eps));

return( A);

}

Convergence criterion:

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return( all( abs( new - old) < eps ));

}
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Single Assignment C: Outline

Design Rationale of SAC

Language Design of SAC

SAC Arrays

Abstraction and Composition

Case Study: Convolution

Compilation Challenge
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Compilation Challenge

programming

environment

layer

computer

architecture

layer

compiler

technology

layer

MicroGrid

Architecure

Amsterdam Systems
on a

Chip

Symmetric

Processors
Multicore

Manycore
GPGPU

Boards

Functional Array Programming

Advanced Compiler Technology

SAC

SAC2C
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Some Compilation Challenges

I Challenge 1: Stateless Arrays
I How to avoid copying?
I How to avoid boxing small arrays?
I How to do memory management efficiently?

I Challenge 2: Compositional Specifications
I How to avoid temporary arrays?
I How to avoid multiple array traversals?

I Challenge 3: Shape-Invariant Specifications
I How to generate efficient loop nestings?
I How to represent arrays with different static knowledge?

I Challenge 4: Organisation of Concurrent Execution
I How to schedule index spaces to threads ?
I When to synchronise (and when not) ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)



Some Compilation Challenges

I Challenge 1: Stateless Arrays
I How to avoid copying?
I How to avoid boxing small arrays?
I How to do memory management efficiently?

I Challenge 2: Compositional Specifications
I How to avoid temporary arrays?
I How to avoid multiple array traversals?

I Challenge 3: Shape-Invariant Specifications
I How to generate efficient loop nestings?
I How to represent arrays with different static knowledge?

I Challenge 4: Organisation of Concurrent Execution
I How to schedule index spaces to threads ?
I When to synchronise (and when not) ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)



Some Compilation Challenges

I Challenge 1: Stateless Arrays
I How to avoid copying?
I How to avoid boxing small arrays?
I How to do memory management efficiently?

I Challenge 2: Compositional Specifications
I How to avoid temporary arrays?
I How to avoid multiple array traversals?

I Challenge 3: Shape-Invariant Specifications
I How to generate efficient loop nestings?
I How to represent arrays with different static knowledge?

I Challenge 4: Organisation of Concurrent Execution
I How to schedule index spaces to threads ?
I When to synchronise (and when not) ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)



Some Compilation Challenges

I Challenge 1: Stateless Arrays
I How to avoid copying?
I How to avoid boxing small arrays?
I How to do memory management efficiently?

I Challenge 2: Compositional Specifications
I How to avoid temporary arrays?
I How to avoid multiple array traversals?

I Challenge 3: Shape-Invariant Specifications
I How to generate efficient loop nestings?
I How to represent arrays with different static knowledge?

I Challenge 4: Organisation of Concurrent Execution
I How to schedule index spaces to threads ?
I When to synchronise (and when not) ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)



Challenge 5: Implementing a Fully-Fledged Compiler

Scanner / Parser

Code Generation

Function Inlining

Dead Code Removal
Common Subexpression Elimination
Constant Propagation
Constant Folding
Copy Propagation
Algebraic Simplification
Loop Unrolling

Loop Invariant Removal
Memory Management

With−Loop Folding
With−Loop Scalarisation
With−Loop Fusion

Functionalisation

High−Level Optimisations

Type Inference

Type Specialisation

De−Functionalisation

Parallelisation Automatic Array Padding
Index Vector Elimination

With−Loop Invariant Removal
With−Loop Unrolling

Array Elimination

Memory Reuse
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Compiler Engineering

sac2c is a large-scale compilation technology project

I SAC compiler + runtime library:
I 300,000 lines of code
I about 1000 files
I about 250 compiler passes
I + standard prelude
I + standard library

I More than 15 years of research and development

I Approaching one hundred man years of investment

I Complete compiler construction infrastructure
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The SAC Project

International partners:

I University of Kiel, Germany (1994–2005)

I University of Toronto, Canada (since 2000)

I University of Lübeck, Germany (2001–2008)

I University of Hertfordshire, England (2003–2012)

I University of Amsterdam, Netherlands (since 2008)

I Heriot-Watt University, Scotland (since 2011)
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Always Looking for New Faces !!
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Summary

Language design:

I High-level array processing

I Functional state-less semantics but C-like syntax

I Abstraction and composition

I Shape-generic programming

I (Almost) index-free programming

Language implementation:

I Fully-fledged compiler

I Automatic parallelisation

I Automatic memory management

I High-level program transformation

I Large-scale machine-independent optimisation
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The End

Questions ?

Check out www.sac-home.org !!
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