
Declarative Array Programming
with

SAC — Single Assignment C

Clemens Grelck

University of Amsterdam
Informatics Institute

Computer Systems Architecture Group

ASCI Course A24

A Programmer’s Guide for
Modern High-Performance Computing Architectures

Delft, November 29, 2012

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Single Assignment C: Outline

Design Rationale of SAC

Language Design of SAC

SAC Arrays

Abstraction and Composition

Case Study: Convolution

Compilation Challenge

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Free Lunch is Over: Many-Core to the Rescue

The many-core hardware zoo:

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Free Lunch is Over: Many-Core to the Rescue

The many-core hardware zoo:

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Free Lunch is Over: Many-Core to the Rescue

The many-core hardware zoo:

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Free Lunch is Over: Many-Core to the Rescue

The many-core hardware zoo:

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Free Lunch is Over: Many-Core to the Rescue

The many-core hardware zoo:

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Vastly different numbers of cores

I Vastly different core architectures: power, genericity

I Vastly different memory architectures

Programming diverse hardware is uneconomic:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Design Rationale of SAC

Hardware in the many-core era is a zoo:

I Vastly different numbers of cores

I Vastly different core architectures: power, genericity

I Vastly different memory architectures

Programming diverse hardware is uneconomic:

I Diverse low-level programming models

I Each requires expert knowledge

I Heterogeneous combinations of the above ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Design Rationale of SAC

Genericity through abstraction:

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach to implicitly promote
concurrency

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Design Rationale of SAC

Genericity through abstraction:

I Program what to compute, not exactly how

I Leave execution organisation to compiler and runtime system

I Put expert knowledge into compiler, not into applications

I Let programs remain architecture-agnostic

I Compile one source to diverse target hardware

I Pursue data-parallel approach to implicitly promote
concurrency

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

Data parallel:

fac n = prod(1 + iota(n));

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

1

10n:

f:

Data parallel:

fac n = prod(1 + iota(n));

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

n:

f: 1

910

10

Data parallel:

fac n = prod(1 + iota(n));

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

n:

f: 1

9 810

10 90

Data parallel:

fac n = prod(1 + iota(n));

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

n:

f: 1 3628800

9 810 1

10 90

Data parallel:

fac n = prod(1 + iota(n));

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

n:

f: 1 3628800

9 810 1

10 90

Data parallel:

fac n = prod(1 + iota(n));

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

n:

f: 1 3628800

9 810 1

10 90

Data parallel:

fac n = prod(1 + iota(n));

10

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

n:

f: 1 3628800

9 810 1

10 90

Data parallel:

fac n = prod(1 + iota(n));

2

10

0 1 3 4 5 7 8 96

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

n:

f: 1 3628800

9 810 1

10 90

Data parallel:

fac n = prod(1 + iota(n));

2

2 10

10

0 1 3 4 5 7 8 9

1 3 4 5 7 8 96

6

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What Does Data Parallel Really Mean ?

Factorial imperative:

int fac(int n)

{

f = 1;

while (n > 1) {

f = f * n;

n = n - 1;

}

return f;

}

Factorial functional:

fac n = if n <= 1

then 1

else n * fac (n - 1)

n:

f: 1 3628800

9 810 1

10 90

Data parallel:

fac n = prod(1 + iota(n));

3628800

2

2 10

10

0 1 3 4 5 7 8 9

1 3 4 5 7 8 96

6

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Essence of Data Parallel Programming

prod(1+iota(n))

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Essence of Data Parallel Programming

compilation

to

seqential

code

prod(1+iota(n))

3628800

1

2

6

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Essence of Data Parallel Programming

01

0

compilation

to

seqential

code

compilation

to

microthreaded

code

prod(1+iota(n))

3628800

1

2

6

3628800

20

2 12 56 90

24 1680

151200

30

2

2

98765431

1 3 4 5 7 8 96

8 9765431

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Essence of Data Parallel Programming

01

0

to

compilation

to

seqential

code

compilation

to

microthreaded

code

compilation

multithreaded code

prod(1+iota(n))

3628800

2 10

120 30240

20

2

3628800

1

2

6

3628800

20

2 12 56 90

24 1680

151200

30

2

2

1 3 4 5 6 7 8 9

98765431

64310 75 8 9

98765431

1 3 4 5 7 8 96

8 9765431

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Single Assignment C: Outline

Design Rationale of SAC

Language Design of SAC

SAC Arrays

Abstraction and Composition

Case Study: Convolution

Compilation Challenge

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

SAC — Design Space

High-level functional, data-parallel
programming with vectors, matrices, arrays

SAC

Easy to adopt for programmers
with an imperative background

Suitability to achieve high performance
in sequential and parallel execution

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

SAC — Design Space

High-level functional, data-parallel
programming with vectors, matrices, arrays

SAC

Easy to adopt for programmers
with an imperative background

Suitability to achieve high performance
in sequential and parallel execution

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

SAC — Design Space

High-level functional, data-parallel
programming with vectors, matrices, arrays

SAC

Easy to adopt for programmers
with an imperative background

Suitability to achieve high performance
in sequential and parallel execution

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

SAC — Design Space

High-level functional, data-parallel
programming with vectors, matrices, arrays

SAC
Easy to adopt for programmers
with an imperative background

Suitability to achieve high performance
in sequential and parallel execution

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

What is Functional Programming ?

Execution Model:

Imperative programming:
Sequence of instructions
that step-wise manipulate the program state

Functional programming:
Context-free substitution of expressions
until fixed point is reached

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Functional Semantics of SAC

SAC:

{

...

a = 5;

b = 7;

a = a + b;

return(a);

}

Functional pseudo code:

...

let a = 5

in let b = 7

in let a = a + b

in a

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Functional Semantics of SAC

SAC:

int fac(int n)

{

if (n>1) {

r = fac(n-1);

f = n * r;

}

else {

f = 1;

}

return(f);

}

Functional pseudo code:

fun fac n =

if n>1

then let r = fac (n-1)

in let f = n * r

in f

else let val f = 1

in f

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Functional Semantics of SAC

SAC:

int fac(int n)

{

f = 1;

while (n>1) {

f = f * n;

n = n - 1;

}

return(f);

}

Functional pseudo code:

fun fac n =

let rec fac_while f n =

if n>1

then let f = f * n

in let n = n - 1

in fac_while f n

else f

in

fac_while 1 n

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Role of Functions

Mathematics:
context-free mapping of argument values to result values

Imperative programming:
subroutine with side-effects on global state

Functional programming in SAC:
context-free mapping of argument values to result values

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Role of Functions

Mathematics:
context-free mapping of argument values to result values

Imperative programming:
subroutine with side-effects on global state

Functional programming in SAC:
context-free mapping of argument values to result values

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Role of Functions

Mathematics:
context-free mapping of argument values to result values

Imperative programming:
subroutine with side-effects on global state

Functional programming in SAC:
context-free mapping of argument values to result values

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Role of Variables

Mathematics:
name/placeholder of a value

Imperative programming:
name of a memory location

Functional programming in SAC:
name/placeholder of a value

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Role of Variables

Mathematics:
name/placeholder of a value

Imperative programming:
name of a memory location

Functional programming in SAC:
name/placeholder of a value

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Role of Variables

Mathematics:
name/placeholder of a value

Imperative programming:
name of a memory location

Functional programming in SAC:
name/placeholder of a value

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Role of Arrays

Mathematics:
functions from indices to values

Imperative programming:
contiguous fragments of addressable memory

Functional programming in SAC:
stateless multidimensional indexable collections of values

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Role of Arrays

Mathematics:
functions from indices to values

Imperative programming:
contiguous fragments of addressable memory

Functional programming in SAC:
stateless multidimensional indexable collections of values

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Role of Arrays

Mathematics:
functions from indices to values

Imperative programming:
contiguous fragments of addressable memory

Functional programming in SAC:
stateless multidimensional indexable collections of values

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Single Assignment C: Outline

Design Rationale of SAC

Language Design of SAC

SAC Arrays

Abstraction and Composition

Case Study: Convolution

Compilation Challenge

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

j

k

i

10

7 8 9

1211

54 6

1 2 3

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[1, 2, 3, 4, 5, 6]
dim: 1
shape: [6]
data: [1,2,3,4,5,6]

42

dim: 0
shape: []
data: [42]

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

j

k

i

10

7 8 9

1211

54 6

1 2 3

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[1, 2, 3, 4, 5, 6]
dim: 1
shape: [6]
data: [1,2,3,4,5,6]

42

dim: 0
shape: []
data: [42]

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

j

k

i

10

7 8 9

1211

54 6

1 2 3

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[1, 2, 3, 4, 5, 6]
dim: 1
shape: [6]
data: [1,2,3,4,5,6]

42

dim: 0
shape: []
data: [42]

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Multidimensional Arrays in SAC

 1 2 3
4 5 6
7 8 9

 dim: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

j

k

i

10

7 8 9

1211

54 6

1 2 3

dim: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

[1, 2, 3, 4, 5, 6]
dim: 1
shape: [6]
data: [1,2,3,4,5,6]

42

dim: 0
shape: []
data: [42]

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Built-in Array Operations

I Defining a vector:
vec = [1,2,3,4,5,6];

I Defining a higher-dimensional array:
mat = [vec,vec];

mat = reshape([3,2], vec);

I Querying for the shape of an array:
shp = shape(mat); [3,2]

I Querying for the rank of an array:
rank = dim(mat); 2

I Selecting elements:
x = sel([4], vec); 5

y = sel([2,1], mat); 6

x = vec[[4]]; 5

y = mat[[2,1]]; 6

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

With-Loops: Versatile Array Comprehensions

A = with {
([1,1] <= iv < [4,4]) : e(iv);

}: genarray([5,4], def);

I Multidimensional array comprehensions

I Mapping from index domain into value domain

index domain

[0,0]

[1,0]

[2,0]

[3,0]

[0,1]

[1,1]

[2,1]

[3,1]

[0,2]

[1,2]

[2,2]

[3,2]

[4,0] [4,1] [4,2] [4,3]

[3,3]

[2,3]

[1,3]

[0,3] def def def def

defdef

def

def

def def def def

e([1,3])

e([2,3])

e([3,3])

e([1,2])

e([2,2])

e([3,2])

e([1,1])

e([2,1])

value domain

e([3,1])

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

With-Loops: Modarray Variant

A = with {
([1,1] <= iv < [3,4]) : e(iv);

}: modarray(B);

A =


B[[0,0]] B[[0,1]] B[[0,2]] B[[0,3]] B[[0,4]]
B[[1,0]] e([1,1]) e([1,2]) e([1,3]) B[[1,4]]
B[[2,0]] e([2,1]) e([2,2]) e([2,3]) B[[2,4]]
B[[3,0]] B[[3,1]] B[[3,2]] B[[3,3]] B[[3,4]]



Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

With-Loops: Fold Variant

A = with {
([1,1] <= iv < [3,4]) : e(iv);

}: fold(⊕, neutr);

A = neutr ⊕ e([1,1]) ⊕ e([1,2]) ⊕ e([1,3])
⊕ e([2,1]) ⊕ e([2,2]) ⊕ e([2,3])

(⊕ denotes associative, commutative binary function.)

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Single Assignment C: Outline

Design Rationale of SAC

Language Design of SAC

SAC Arrays

Abstraction and Composition

Case Study: Convolution

Compilation Challenge

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Principle of Abstraction

Element-wise subtraction of arrays:

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B)

{

res = with {

([0 ,0] <= iv < [20 ,20]) : A[iv] - B[iv];

}: genarray([20,20], 0);

return(res);

}

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Principle of Abstraction

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B)

{

res = with {

([0 ,0] <= iv < [20 ,20]) : A[iv] - B[iv];

}: genarray([20,20], 0);

return(res);

}

Shape-generic code

int[.,.] (-) (int[.,.] A, int[.,.] B)

{

shp = min(shape(A), shape(B));

res = with {

([0 ,0] <= iv < shp) : A[iv] - B[iv];

}: genarray(shp , 0);

return(res);

}

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Principle of Abstraction
int[.,.] (-) (int[.,.] A, int[.,.] B)

{

shp = min(shape(A), shape(B));

res = with {

([0 ,0] <= iv < shp) : A[iv] - B[iv];

}: genarray(shp , 0);

return(res);

}

Rank-generic code

int [*] (-) (int [*] A, int [*] B)

{

shp = min(shape(A), shape(B));

res = with {

(0* shp <= iv < shp) : A[iv] - B[iv];

}: genarray(shp , 0);

return(res);

}

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Shapely Array Type Hierarchy With Subtyping

...

...int int[1] int[42]

int[.]

int[]

int[.,.]

int[1,1] int[3,7]

rank: dynamic

shape: static

shape: dynamic

rank: static

shape: dynamic

rank: static

*

AUD Class:

AKD Class:

AKS Class:

AUD : Array of Unknown Dimension
AKD : Array of Known Dimension
AKS : Array of Known Shape

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Function Overloading

Example:

int [20 ,20] (-) (int [20 ,20] A, int [20 ,20] B) {...}

int[.,.] (-) (int[.,.] A, int[.,.] B) {...}

int [*] (-) (int [*] A, int [*] B) {...}

Features:

I Multiple function definitions with same name, but
I different numbers of arguments
I different base types
I different shapely types

I No restriction on function semantics

I Argument subtyping must be monotonous

I Dynamic function dispatch

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Principle of Composition

Characteristics:

I Step-wise composition of functions

I from previously defined functions

I or basic building blocks (with-loop defined)

Example: convergence test

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return(all(abs(new - old) < eps));

}

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Principle of Composition

Example: convergence test

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return(all(abs(new - old) < eps));

}

Advantages:

I Rapid prototyping

I High confidence in correctness

I Good readability of code

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Execution through Context-Free Substitution

Convergence Test:

is convergent([1,2,3,8], [3,2,1,4], 3)

all(abs([1,2,3,8] - [3,2,1,4]) < 3)

all(abs([-2,0,2,4]) < 3)

all([2,0,2,4] < 3)

all([true, true, true, false])

false

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Shape-Generic Programming

2-dimensional convergence test:

is convergent(

(
1 2
3 8

)
,

(
3 2
1 7

)
, 3)

3-dimensional convergence test:

is convergent(


(

1 2
3 8

)
(

6 7
2 8

)
,


(

2 1
0 8

)
(

1 1
3 7

)
, 3)

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Shape-Generic Programming

2-dimensional convergence test:

is convergent(

(
1 2
3 8

)
,

(
3 2
1 7

)
, 3)

3-dimensional convergence test:

is convergent(


(

1 2
3 8

)
(

6 7
2 8

)
,


(

2 1
0 8

)
(

1 1
3 7

)
, 3)

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The Power of With-Loops

I NO large collection of built-in operations
I Simplified compiler design

I INSTEAD: library of array operations
I Improved maintainability
I Improved extensibility

I Composition of building blocks
I Rapid prototyping
I High confidence in correctness
I Good readability of code

I General intermediate representation
for array operations

I Basis for code optimization
I Basis for implicit parallelization

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Single Assignment C: Outline

Design Rationale of SAC

Language Design of SAC

SAC Arrays

Abstraction and Composition

Case Study: Convolution

Compilation Challenge

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Case Study: Convolution

Algorithmic principle:

Compute weighted sums
of neighbouring elements

Fixed boundary conditions (1-dimensional):

Periodic boundary conditions (1-dimensional):

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Case Study: Convolution

Algorithmic principle:

Compute weighted sums
of neighbouring elements

Fixed boundary conditions (1-dimensional):

Periodic boundary conditions (1-dimensional):

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Case Study: Convolution

Algorithmic principle:

Compute weighted sums
of neighbouring elements

Fixed boundary conditions (1-dimensional):

Periodic boundary conditions (1-dimensional):

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Case Study: Convolution

Problem:

I 9 different situations in 2-dimensional grids

I 27 different situations in 3-dimensional grids

I ...

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Convolution Step in SaC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = A + rotate(1, A) + rotate(-1, A);

return(R / 3.0);

}

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Convolution Step in SaC

1-dimensional:

double [.] convolution_step (double [.] A)

{

R = A + rotate(1, A) + rotate(-1, A);

return(R / 3.0);

}

N-dimensional:

double [*] convolution_step (double [*] A)

{

R = A;

for (i=0; i<dim(A); i++) {

R = R + rotate(i, 1, A) + rotate(i, -1, A);

}

return(R / tod(2 * dim(A) + 1));

}

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Convolution in SaC

Fixed number of iterations:

double [*] convolution (double [*] A, int iter)

{

for (i=0; i<iter; i++) {

A = convolution_step(A);

}

return(A);

}

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Convolution in SaC

Variable number of iterations with convergence check:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step(A_old);

}

while (! is_convergent(A, A_old , eps));

return(A);

}

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Convolution in SaC

Variable number of iterations with convergence test:

double [*] convolution (double [*] A, double eps)

{

do {

A_old = A;

A = convolution_step(A_old);

}

while (! is_convergent(A, A_old , eps));

return(A);

}

Convergence criterion:

bool

is_convergent (double [*] new , double [*] old , double eps)

{

return(all(abs(new - old) < eps));

}

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Single Assignment C: Outline

Design Rationale of SAC

Language Design of SAC

SAC Arrays

Abstraction and Composition

Case Study: Convolution

Compilation Challenge

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Compilation Challenge

programming

environment

layer

computer

architecture

layer

compiler

technology

layer

MicroGrid

Architecure

Amsterdam Systems
on a

Chip

Symmetric

Processors
Multicore

Manycore
GPGPU

Boards

Functional Array Programming

Advanced Compiler Technology

SAC

SAC2C

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Some Compilation Challenges

I Challenge 1: Stateless Arrays
I How to avoid copying?
I How to avoid boxing small arrays?
I How to do memory management efficiently?

I Challenge 2: Compositional Specifications
I How to avoid temporary arrays?
I How to avoid multiple array traversals?

I Challenge 3: Shape-Invariant Specifications
I How to generate efficient loop nestings?
I How to represent arrays with different static knowledge?

I Challenge 4: Organisation of Concurrent Execution
I How to schedule index spaces to threads ?
I When to synchronise (and when not) ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Some Compilation Challenges

I Challenge 1: Stateless Arrays
I How to avoid copying?
I How to avoid boxing small arrays?
I How to do memory management efficiently?

I Challenge 2: Compositional Specifications
I How to avoid temporary arrays?
I How to avoid multiple array traversals?

I Challenge 3: Shape-Invariant Specifications
I How to generate efficient loop nestings?
I How to represent arrays with different static knowledge?

I Challenge 4: Organisation of Concurrent Execution
I How to schedule index spaces to threads ?
I When to synchronise (and when not) ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Some Compilation Challenges

I Challenge 1: Stateless Arrays
I How to avoid copying?
I How to avoid boxing small arrays?
I How to do memory management efficiently?

I Challenge 2: Compositional Specifications
I How to avoid temporary arrays?
I How to avoid multiple array traversals?

I Challenge 3: Shape-Invariant Specifications
I How to generate efficient loop nestings?
I How to represent arrays with different static knowledge?

I Challenge 4: Organisation of Concurrent Execution
I How to schedule index spaces to threads ?
I When to synchronise (and when not) ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Some Compilation Challenges

I Challenge 1: Stateless Arrays
I How to avoid copying?
I How to avoid boxing small arrays?
I How to do memory management efficiently?

I Challenge 2: Compositional Specifications
I How to avoid temporary arrays?
I How to avoid multiple array traversals?

I Challenge 3: Shape-Invariant Specifications
I How to generate efficient loop nestings?
I How to represent arrays with different static knowledge?

I Challenge 4: Organisation of Concurrent Execution
I How to schedule index spaces to threads ?
I When to synchronise (and when not) ?

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Challenge 5: Implementing a Fully-Fledged Compiler

Scanner / Parser

Code Generation

Function Inlining

Dead Code Removal
Common Subexpression Elimination
Constant Propagation
Constant Folding
Copy Propagation
Algebraic Simplification
Loop Unrolling

Loop Invariant Removal
Memory Management

With−Loop Folding
With−Loop Scalarisation
With−Loop Fusion

Functionalisation

High−Level Optimisations

Type Inference

Type Specialisation

De−Functionalisation

Parallelisation Automatic Array Padding
Index Vector Elimination

With−Loop Invariant Removal
With−Loop Unrolling

Array Elimination

Memory Reuse

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Compiler Engineering

sac2c is a large-scale compilation technology project

I SAC compiler + runtime library:
I 300,000 lines of code
I about 1000 files
I about 250 compiler passes
I + standard prelude
I + standard library

I More than 15 years of research and development

I Approaching one hundred man years of investment

I Complete compiler construction infrastructure

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The SAC Project

International partners:

I University of Kiel, Germany (1994–2005)

I University of Toronto, Canada (since 2000)

I University of Lübeck, Germany (2001–2008)

I University of Hertfordshire, England (2003–2012)

I University of Amsterdam, Netherlands (since 2008)

I Heriot-Watt University, Scotland (since 2011)

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Always Looking for New Faces !!

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Summary

Language design:

I High-level array processing

I Functional state-less semantics but C-like syntax

I Abstraction and composition

I Shape-generic programming

I (Almost) index-free programming

Language implementation:

I Fully-fledged compiler

I Automatic parallelisation

I Automatic memory management

I High-level program transformation

I Large-scale machine-independent optimisation

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

Summary

Language design:

I High-level array processing

I Functional state-less semantics but C-like syntax

I Abstraction and composition

I Shape-generic programming

I (Almost) index-free programming

Language implementation:

I Fully-fledged compiler

I Automatic parallelisation

I Automatic memory management

I High-level program transformation

I Large-scale machine-independent optimisation

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

The End

Questions ?

Check out www.sac-home.org !!

Clemens Grelck, University of Amsterdam Single Assignment C (SAC)

	Design Rationale of SAC
	Language Design of SAC
	SAC Arrays
	Abstraction and Composition
	Case Study: Convolution
	Compilation Challenge

