
Decision Making under Uncertainty

Matthijs Spaan§ Frans Oliehoek∗

§Delft University of Technology

∗Maastricht University

The Netherlands

14th European Agent Systems Summer School (EASSS ’12)

Valencia, Spain

May 28, 2012

http://www.st.ewi.tudelft.nl/˜mtjspaan/tutorialDMuU/

Decision Making under Uncertainty p. 1/62

http://www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

Outline

Today:

1. Introduction to planning under uncertainty

2. Planning under action uncertainty (MDPs)

3. Planning under sensing uncertainty (POMDPs)

Tomorrow:

1. Multiagent planning

2. Selected further topics

Decision Making under Uncertainty p. 2/62

Introduction

Decision Making under Uncertainty p. 3/62

Introduction

• Goal in Artificial Intelligence: to build intelligent agents.

• Our definition of “intelligent”: perform an assigned task as

well as possible.

• Problem: how to act?

• We will explicitly model uncertainty.

Decision Making under Uncertainty p. 4/62

Applications

• Resource planning

• Maintenance

• Queue management

• Medical decision making

Decision Making under Uncertainty p. 5/62

Agents

• An agent is a (rational) decision maker who is

able to perceive its external (physical)

environment and act autonomously upon it

(Russell and Norvig, 2003).

• Rationality means reaching the optimum of a

performance measure.

• Examples: humans, robots, some software pro-

grams.

Decision Making under Uncertainty p. 6/62

Agents

environment

agent

action

observation

state

• It is useful to think of agents as being involved in a

perception-action loop with their environment.

• But how do we make the right decisions?

Decision Making under Uncertainty p. 7/62

Planning

Planning:

• A plan tells an agent how to act.

• For instance

◮ A sequence of actions to reach a goal.

◮ What to do in a particular situation.

• We need to model:

◮ the agent’s actions

◮ its environment

◮ its task

We will model planning as a sequence of decisions.

Decision Making under Uncertainty p. 8/62

Classic planning

• Classic planning: sequence of actions from start to goal.

• Task: robot should get to gold as quickly as possible.

• Actions: → ↓← ↑

• Limitations:

◮ New plan for each start state.

◮ Environment is deterministic.

Decision Making under Uncertainty p. 9/62

Classic planning

• Classic planning: sequence of actions from start to goal.

• Task: robot should get to gold as quickly as possible.

• Actions: → ↓← ↑

• Limitations:

◮ New plan for each start state.

◮ Environment is deterministic.

• Three optimal plans: →→ ↓,→ ↓→, ↓ →→.
Decision Making under Uncertainty p. 9/62

Conditional planning

• Assume our robot has noisy actions (wheel slip, overshoot).

• We need conditional plans.

• Map situations to actions.

Decision Making under Uncertainty p. 10/62

Decision-theoretic planning

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

• Positive reward when reaching goal, small penalty for all

other actions.

• Agent’s plan maximizes value: the sum of future rewards.

• Decision-theoretic planning successfully handles noise in

acting and sensing.

Decision Making under Uncertainty p. 11/62

Decision-theoretic planning

Plan #1:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision Making under Uncertainty p. 12/62

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision Making under Uncertainty p. 12/62

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision Making under Uncertainty p. 12/62

Decision-theoretic planning

Plan #2:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision Making under Uncertainty p. 12/62

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision Making under Uncertainty p. 12/62

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision Making under Uncertainty p. 12/62

Decision-theoretic planning

Optimal values (encode optimal plan):

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision Making under Uncertainty p. 12/62

Markov Decision Processes

Decision Making under Uncertainty p. 13/62

Sequential decision making under uncertainty

• Uncertainty is abundant in real-world planning domains.

• Bayesian approach⇒ probabilistic models.

Main assumptions:

Sequential decisions: problems are formulated as a sequence of

“independent” decisions;

Markovian environment: the state at time t depends only on the

events at time t− 1;

Evaluative feedback: use of a reinforcement signal as

performance measure (reinforcement learning);

Decision Making under Uncertainty p. 14/62

Transition model

• For instance, robot motion

is inaccurate.

• Transitions between states

are stochastic.

• p(s′|s, a) is the probability

to jump from state s to state

s′ after taking action a.

?
??
?

?

Decision Making under Uncertainty p. 15/62

MDP Agent

environment

action a

obs. s
reward r

π

state s

Decision Making under Uncertainty p. 16/62

MDP Agent

environment

action a

obs. s
reward r

π

state s

p(s′|s, a)

Decision Making under Uncertainty p. 16/62

MDP Agent

environment

action a

obs. s
reward r

π

state s

R(s, a)

Decision Making under Uncertainty p. 16/62

Optimality criterion

For instance, agent should maximize the value

E
[

h
∑

t=0

γtRt

]

, (1)

where

• h is the planning horizon, can be finite or∞

• γ is a discount rate, 0 ≤ γ < 1

Reward hypothesis (Sutton and Barto, 1998):

All goals and purposes can be formulated as the maximization of

the cumulative sum of a received scalar signal (reward).

Decision Making under Uncertainty p. 17/62

Discrete MDP model

Discrete Markov Decision Process model (Puterman, 1994;

Bertsekas, 2000):

• Time t is discrete.

• State space S.

• Set of actions A.

• Reward function R : S × A 7→ R.

• Transition model p(s′|s, a), Ta : S × A 7→ ∆(S).

• Initial state s0 is drawn from ∆(S).

The Markov property entails that the next state st+1 only depends

on the previous state st and action at:

p(st+1|st, st−1, . . . , s0, at, at−1, . . . , a0) = p(st+1|st, at). (2)

Decision Making under Uncertainty p. 18/62

A simple problem

Problem:

An autonomous robot must learn how to transport material from

a deposit to a building facility.

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

(thanks to F. Melo)

Decision Making under Uncertainty p. 19/62

Load/Unload as an MDP

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

• States: S = {1U , 2U , 3U , 1L, 2L, 3L};

1U Robot in position 1 (unloaded);

2U Robot in position 2 (unloaded);

3U Robot in position 3 (unloaded);

1L Robot in position 1 (loaded);

2L Robot in position 2 (loaded);

3L Robot in position 3 (loaded)

• Actions: A = {Left, Right, Load, Unload};

Decision Making under Uncertainty p. 20/62

Load/Unload as an MDP (1)

• Transition probabilities: “Left”/“Right” move the robot in

the corresponding direction; “Load” loads material (only in

position 1); “Unload” unloads material (only in position 3).
Ex:

(2L,Right) → 3L;

(3L,Unload) → 3U ;

(1L,Unload) → 1L.

• Reward: We assign a reward of +10 for every unloaded
package (payment for the service).

Decision Making under Uncertainty p. 21/62

Load/Unload as an MDP (2)

• For each action a ∈ A, Ta is a matrix.

Ex:

TRight =





















0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1





















• Recall: S = {1U , 2U , 3U , 1L, 2L, 3L}.

Decision Making under Uncertainty p. 22/62

Load/Unload as an MDP (3)

• The reward R(s, a) can also be represented as a matrix

Ex:

R =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 +10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 23/62

Policies and value

• Policy π: tells the agent how to act.

• A deterministic policy π : S 7→ A is a mapping from states

to actions.

• Value: how much reward E[
∑h

t=0
γtRt] does the agent

expect to gather.

• Value denoted as Qπ(s, a): start in s, do a and follow π

afterwards.

Decision Making under Uncertainty p. 24/62

Policies and value (1)

• Extracting a policy π from a value function Q is easy:

π(s) = argmax
a∈A

Q(s, a). (3)

• Optimal policy π∗: one that maximizes E[
∑h

t=0
γtRt] (for

every state).

• In an infinite-horizon MDP there is always an optimal

deterministic stationary (time-independent) policy π∗.

• There can be many optimal policies π∗, but they all share the

same optimal value function Q∗.

Decision Making under Uncertainty p. 25/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 26/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 26/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















0 ? ? ?

0 ? ? ?

0 ? ? ?

0 ? ? ?

0 ? ? ?

0 ? ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 26/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















0 ? ? ?

0 ? ? ?

0 ? ? ?

0 ? ? ?

0 ? ? ?

0 ? ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 26/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















0 0 ? ?

0 0 ? ?

0 0 ? ?

0 0 ? ?

0 0 ? ?

0 0 ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 26/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















0 0 ? ?

0 0 ? ?

0 0 ? ?

0 0 ? ?

0 0 ? ?

0 0 ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 26/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 26/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 26/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 26/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10





















Q2 =





















? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 27/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10





















Q2 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 ? 0 0

0 ? ? 10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 27/62

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10





















Q2 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 9.5 0 0

0 9.5 9.5 10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 27/62

Dynamic programming

Iterations of dynamic programming (γ = 0.95):

Q5 =





















0 0 8.57 0

0 0 0 0

0 0 0 0

8.57 9.03 8.57 8.57

8.57 9.5 9.03 9.03

9.03 9.5 9.5 10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 28/62

Dynamic programming

Iterations of DP:

Q20 =





















18.53 17.61 19.51 18.54

18.53 16.73 17.61 17.61

17.61 16.73 16.73 16.73

19.51 20.54 19.51 19.51

19.51 21.62 20.54 20.54

20.54 21.62 21.62 26.73





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 29/62

Dynamic programming

Final Q∗ and policy:

Q∗ =



























30.75 29.21 32.37 30.75

30.75 27.75 29.21 29.21

29.21 27.75 27.75 27.75

32.37 34.07 32.37 32.37

32.37 35.86 34.07 34.07

34.07 35.86 35.86 37.75



























π∗ =



























Load

Left

Left

Right

Right

Unload



























Decision Making under Uncertainty p. 30/62

Value iteration

• Value iteration: successive approximation technique.

• Start with all values set to 0.

• In order to consider one step deeper into the future, i.e., to

compute V ∗
n+1 from V ∗

n :

Q∗
n+1(s, a) := R(s, a) + γ

∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗
n(s

′, a′), (4)

which is known as the dynamic programming update or

Bellman backup.

• Bellman (1957) equation:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗(s′, a′). (5)

Decision Making under Uncertainty p. 31/62

Value iteration (1)

Initialize Q arbitrarily, e.g., Q(s, a) = 0, ∀s ∈ S, a ∈ A

repeat

δ ← 0
for all s ∈ S, a ∈ A do

v ← Q(s, a)
Q(s, a)← R(s, a) + γ

∑

s′∈S p(s
′|s, a)maxa′∈A Q(s′, a′)

δ ← max(δ, |v −Q(s, a)|)
end for

until δ < ǫ

Return Q

Decision Making under Uncertainty p. 32/62

Value iteration (2)

Value iteration discussion:

• As n→∞, value iteration converges.

• Value iteration has converged when the largest update δ in

an iteration is below a certain threshold ǫ.

• Exhaustive sweeps are not required for convergence,

provided that in the limit all states are visited infinitely often.

• This can be exploited by backing up the most promising

states first, known as prioritized sweeping.

Decision Making under Uncertainty p. 33/62

Solution methods: MDPs

Model based

• Basic: dynamic programming (Bellman, 1957), value

iteration, policy iteration.

• Advanced: prioritized sweeping, function approximators.

Model free, reinforcement learning (Sutton and Barto, 1998)

• Basic: Q-learning, TD(λ), SARSA, actor-critic.

• Advanced: generalization in infinite state spaces,

exploration/exploitation issues.

Decision Making under Uncertainty p. 34/62

POMDPs

Decision Making under Uncertainty p. 35/62

Beyond MDPs

• Real agents cannot directly observe the state.

• Sensors provide partial and noisy information about the

world.

Decision Making under Uncertainty p. 36/62

Beyond MDPs

• MDPs have been very successful, but requires to have an

observable Markovian state.

• Many domains this is impossible (or expensive) to obtain:

• Diagnosis (medical, maintenance)

Decision Making under Uncertainty p. 37/62

Beyond MDPs

• MDPs have been very successful, but requires to have an

observable Markovian state.

• Many domains this is impossible (or expensive) to obtain:

• Diagnosis (medical, maintenance)

• Robot navigation

Decision Making under Uncertainty p. 37/62

Beyond MDPs

• MDPs have been very successful, but requires to have an

observable Markovian state.

• Many domains this is impossible (or expensive) to obtain:

• Diagnosis (medical, maintenance)

• Robot navigation

• Tutoring

Decision Making under Uncertainty p. 37/62

Beyond MDPs

• MDPs have been very successful, but requires to have an

observable Markovian state.

• Many domains this is impossible (or expensive) to obtain:

• Diagnosis (medical, maintenance)

• Robot navigation

• Tutoring

• Dialog systems

Decision Making under Uncertainty p. 37/62

Beyond MDPs

• MDPs have been very successful, but requires to have an

observable Markovian state.

• Many domains this is impossible (or expensive) to obtain:

• Diagnosis (medical, maintenance)

• Robot navigation

• Tutoring

• Dialog systems

• Vision-based robotics

Decision Making under Uncertainty p. 37/62

Beyond MDPs

• MDPs have been very successful, but requires to have an

observable Markovian state.

• Many domains this is impossible (or expensive) to obtain:

• Diagnosis (medical, maintenance)

• Robot navigation

• Tutoring

• Dialog systems

• Vision-based robotics

• Fault recovery

Decision Making under Uncertainty p. 37/62

Beyond MDPs

• MDPs have been very successful, but requires to have an

observable Markovian state.

• Many domains this is impossible (or expensive) to obtain:

• Diagnosis (medical, maintenance)

• Robot navigation

• Tutoring

• Dialog systems

• Vision-based robotics

• Fault recovery

Decision Making under Uncertainty p. 37/62

A partially observable problem

Task: start at random position (×)→ pick up mail at P→
deliver mail at D (△).

Characteristics: motion noise, perceptual aliasing.

Decision Making under Uncertainty p. 38/62

Observation model

• Imperfect sensors.

• Partially observable environment:

◮ Sensors are noisy.

◮ Sensors have a limited view.

• p(o|s′, a) is the probability the agent receives observation o
in state s′ after taking action a.

Decision Making under Uncertainty p. 39/62

POMDP Agent

environment

action a

obs. o
reward r

π

state s

Decision Making under Uncertainty p. 40/62

POMDP Agent

environment

action a

obs. o
reward r

π

state s

p(s′|s, a)

Decision Making under Uncertainty p. 40/62

POMDP Agent

environment

action a

obs. o
reward r

π

state s

p(o|s′, a)

Decision Making under Uncertainty p. 40/62

POMDP Agent

environment

action a

obs. o
reward r

π

state s

R(s, a)

Decision Making under Uncertainty p. 40/62

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.

Decision Making under Uncertainty p. 41/62

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.

• Typically assumes discrete sets of states S, actions A and

observations O.

Decision Making under Uncertainty p. 41/62

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.

• Typically assumes discrete sets of states S, actions A and

observations O.

• Transition model p(s′|s, a): models the effect of actions.

Decision Making under Uncertainty p. 41/62

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.

• Typically assumes discrete sets of states S, actions A and

observations O.

• Transition model p(s′|s, a): models the effect of actions.

• Observation model p(o|s′, a): relates observations to states.

Decision Making under Uncertainty p. 41/62

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.

• Typically assumes discrete sets of states S, actions A and

observations O.

• Transition model p(s′|s, a): models the effect of actions.

• Observation model p(o|s′, a): relates observations to states.

• Task is defined by a reward model R(s, a).

Decision Making under Uncertainty p. 41/62

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.

• Typically assumes discrete sets of states S, actions A and

observations O.

• Transition model p(s′|s, a): models the effect of actions.

• Observation model p(o|s′, a): relates observations to states.

• Task is defined by a reward model R(s, a).

• A planning horizon h (finite or∞).

Decision Making under Uncertainty p. 41/62

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.

• Typically assumes discrete sets of states S, actions A and

observations O.

• Transition model p(s′|s, a): models the effect of actions.

• Observation model p(o|s′, a): relates observations to states.

• Task is defined by a reward model R(s, a).

• A planning horizon h (finite or∞).

• A discount rate 0 ≤ γ < 1.

Decision Making under Uncertainty p. 41/62

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.

• Typically assumes discrete sets of states S, actions A and

observations O.

• Transition model p(s′|s, a): models the effect of actions.

• Observation model p(o|s′, a): relates observations to states.

• Task is defined by a reward model R(s, a).

• A planning horizon h (finite or∞).

• A discount rate 0 ≤ γ < 1.

• Goal is to compute plan, or policy π, that maximizes

long-term reward.

Decision Making under Uncertainty p. 41/62

Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Decision Making under Uncertainty p. 42/62

Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy

Decision Making under Uncertainty p. 42/62

Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0
γtr = r

1−γ

POMDP: memoryless deterministic

Decision Making under Uncertainty p. 42/62

Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0
γtr = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr

1−γ

POMDP: memoryless stochastic

Decision Making under Uncertainty p. 42/62

Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0
γtr = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr

1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal)

Decision Making under Uncertainty p. 42/62

Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0
γtr = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr

1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal) Vmin =
γr

1−γ
− r

Decision Making under Uncertainty p. 42/62

Beliefs

Beliefs:

• The agent maintains a belief b(s) of being at state s.

• After action a ∈ A and observation o ∈ O the belief b(s) can
be updated using Bayes’ rule:

b′(s′) ∝ p(o|s′)
∑

s

p(s′|s, a)b(s)

• The belief vector is a Markov signal for the planning task.

Decision Making under Uncertainty p. 43/62

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

• Observations: door or corridor, 10% noise.

• Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Decision Making under Uncertainty p. 44/62

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

• Observations: door or corridor, 10% noise.

• Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Decision Making under Uncertainty p. 44/62

Belief update example

True situation:

Robot’s belief:

?
0

0.25

0.5

• Observations: door or corridor, 10% noise.

• Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Decision Making under Uncertainty p. 44/62

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

• Observations: door or corridor, 10% noise.

• Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Decision Making under Uncertainty p. 44/62

Belief update example

True situation:

Robot’s belief:

?
0

0.25

0.5

• Observations: door or corridor, 10% noise.

• Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Decision Making under Uncertainty p. 44/62

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

• Observations: door or corridor, 10% noise.

• Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Decision Making under Uncertainty p. 44/62

MDP-based algorithms

• Exploit belief state, and use the MDP solution as a heuristic.

• Most likely state (Cassandra et al., 1996):

πMLS(b) = π∗(argmaxs b(s)).

• QMDP (Littman et al., 1995):

πQMDP
(b) = argmaxa

∑

s b(s)Q
∗(s, a).

C

I

A

A

D

+1
c

ba

a

0.5

0.5
b

c

a

ab

b

−1

(Parr and Russell, 1995)
Decision Making under Uncertainty p. 45/62

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

• Continuous state space ∆: a simplex in [0, 1]|S|−1.

Decision Making under Uncertainty p. 46/62

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

• Continuous state space ∆: a simplex in [0, 1]|S|−1.

• Stochastic Markovian transition model

p(boa|b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

Decision Making under Uncertainty p. 46/62

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

• Continuous state space ∆: a simplex in [0, 1]|S|−1.

• Stochastic Markovian transition model

p(boa|b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

• Reward function R(b, a) =
∑

s R(s, a)b(s). This is the
average reward with respect to b(s).

Decision Making under Uncertainty p. 46/62

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

• Continuous state space ∆: a simplex in [0, 1]|S|−1.

• Stochastic Markovian transition model

p(boa|b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

• Reward function R(b, a) =
∑

s R(s, a)b(s). This is the
average reward with respect to b(s).

• The robot fully ‘observes’ the new belief-state boa after

executing a and observing o.

Decision Making under Uncertainty p. 46/62

Solving POMDPs

• A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

Decision Making under Uncertainty p. 47/62

Solving POMDPs

• A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

• The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(boa)
]

Decision Making under Uncertainty p. 47/62

Solving POMDPs

• A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

• The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(boa)
]

• Value iteration repeatedly applies Vn+1 = HVn starting from

an initial V0.

Decision Making under Uncertainty p. 47/62

Solving POMDPs

• A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

• The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(boa)
]

• Value iteration repeatedly applies Vn+1 = HVn starting from

an initial V0.

• Computing the optimal value function is a hard problem

(PSPACE-complete for finite horizon, undecidable for

infinite horizon).

Decision Making under Uncertainty p. 47/62

Solving POMDPs

• A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

• The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(boa)
]

• Value iteration repeatedly applies Vn+1 = HVn starting from

an initial V0.

• Computing the optimal value function is a hard problem

(PSPACE-complete for finite horizon, undecidable for

infinite horizon).

Decision Making under Uncertainty p. 47/62

Example V0

(1,0) (0,1)

R

1

0.5

0

α1

α2

α3

b

R(s, a) a1 a2 a3

s1 1.00 0.50 −0.25

s2 0.25 0.75 1.25
Decision Making under Uncertainty p. 48/62

PWLC shape of Vn

• Like V0, Vn is as well piecewise linear and convex.

• Rewards R(b, a) = b ·R(s, a) are linear functions of b. Note
that the value of a point b satisfies:

Vn+1(b) = max
a

[

b ·R(s, a) + γ
∑

o

p(o|b, a)Vn(b
o
a)
]

which involves a maximization over (at least) the vectors

R(s, a).

• Intuitively: less uncertainty about the state (low-entropy

beliefs) means better decisions (thus higher value).

Decision Making under Uncertainty p. 49/62

Exact value iteration

Value iteration computes a sequence of value function estimates

V1, V2, . . . , Vn, using the POMDP backup operator H ,

Vn+1 = HVn.

(1,0) (0,1)

V

V1

V2

V3

Decision Making under Uncertainty p. 50/62

Optimal value functions

The optimal value function of a (finite-horizon) POMDP is

piecewise linear and convex: V (b) = maxα b · α.

��

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

(1,0) (0,1)

α1

α2

α3

α4

V

Decision Making under Uncertainty p. 51/62

Vector pruning

(1,0) (0,1)

V

b1 b2

α1

α2

α3

α4

α5

Linear program for pruning:

variables: ∀s ∈ S, b(s); x
maximize: x

subject to:

b · (α− α′) ≥ x, ∀α′ ∈ V, α′ 6= α

b ∈ ∆(S)

Decision Making under Uncertainty p. 52/62

Optimal POMDP methods

Enumerate and prune:

• Most straightforward: Monahan (1982)’s enumeration

algorithm. Generates a maximum of |A||Vn|
|O| vectors at

each iteration, hence requires pruning.

• Incremental pruning (Zhang and Liu, 1996; Cassandra et al., 1997).

Search for witness points:

• One Pass (Sondik, 1971; Smallwood and Sondik, 1973).

• Relaxed Region, Linear Support (Cheng, 1988).

• Witness (Cassandra et al., 1994).

Decision Making under Uncertainty p. 53/62

Sub-optimal techniques

• Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).

• Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).

• Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).

• Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

• Point-based techniques

(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al.,

2007; Kurniawati et al., 2008).

• Monte Carlo tree search

(Silver and Veness, 2010).

Decision Making under Uncertainty p. 54/62

Point-based backup

• For finite horizon V ∗ is piecewise linear and convex, and for

infinite horizons V ∗ can be approximated arbitrary well by a

PWLC value function (Smallwood and Sondik, 1973).

Decision Making under Uncertainty p. 55/62

Point-based backup

• For finite horizon V ∗ is piecewise linear and convex, and for

infinite horizons V ∗ can be approximated arbitrary well by a

PWLC value function (Smallwood and Sondik, 1973).

• Given value function Vn and a particular belief point b we

can easily compute the vector αb
n+1 of HVn such that

αb
n+1 = argmax

{αk

n+1
}k

b · αk
n+1,

where {αk
n+1}

|HVn|
k=1

is the (unknown) set of vectors for HVn.

We will denote this operation αb
n+1 = backup(b).

Decision Making under Uncertainty p. 55/62

Point-based (approximate) methods

Point-based (approximate) value iteration plans only on a

limited set of reachable belief points:

1. Let the robot explore the environment.

2. Collect a set B of belief points.

3. Run approximate value iteration on B.

Decision Making under Uncertainty p. 56/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

(1,0) (0,1)

V1

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V2

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V2

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V2

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V3

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V3

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V3

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V3

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V4

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V4

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V4

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V4

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
Decision Making under Uncertainty p. 57/62

High dimensional sensor readings

Omnidirectional camera images.

Example images⇒

Dimension reduction:

• Collect a database of images and record their location.

• Apply Principal Component Analysis on the image data.

• Project each image to the first 3 eigenvectors, resulting in a

3D feature vector for each image.

Decision Making under Uncertainty p. 58/62

Observation model

p(s|o)
• We cluster the feature

vectors into 10 prototype

observations.

• We compute a discrete ob-

servation model p(o|s, a)
by a histogram operation.

Decision Making under Uncertainty p. 59/62

States, actions and rewards

D

P

• State: s = (x, j) with x
the robot’s location and

j the mail bit.

• Grid X into 500

locations.

• Actions: {↑,→, ↓,←,

pickup, deliver}.

• Positive reward: only

upon successful mail

delivery.

(Spaan and Vlassis, 2004)

Decision Making under Uncertainty p. 60/62

Further reading

• Recent book containing chapters on many aspects of

decision-theoretic planning (MDPs, POMDPs,

Dec-POMDPs):

◮ Marco Wiering and Martijn van Otterlo, editors,

“Reinforcement Learning: State of the Art”, Springer,

2012.

Decision Making under Uncertainty p. 61/62

References

R. Bellman. Dynamic programming. Princeton University Press, 1957.

D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA, 2nd edition, 2000.

B. Bonet. An epsilon-optimal grid-based algorithm for partially observable Markov decision processes. In International Conference on Machine Learning, 2002.

R. I. Brafman. A heuristic variable grid solution method for POMDPs. In Proc. of the National Conference on Artificial Intelligence, 1997.

A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic domains. In Proc. of the National Conference on Artificial Intelligence, 1994.

A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile robot navigation. In Proc. of International Conference on Intelligent Robots and Systems, 1996.

A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact method for partially observable Markov decision processes. In Proc. of Uncertainty in Artificial Intelligence, 1997.

H. T. Cheng. Algorithms for partially observable Markov decision processes. PhD thesis, University of British Columbia, 1988.

A. W. Drake. Observation of a Markov process through a noisy channel. Sc.D. thesis, Massachusetts Institute of Technology, 1962.

E. A. Hansen. Finite-memory control of partially observable systems. PhD thesis, University of Massachusetts, Amherst, 1998a.

E. A. Hansen. Solving POMDPs by searching in policy space. In Proc. of Uncertainty in Artificial Intelligence, 1998b.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101:99–134, 1998.

H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In Robotics: Science and Systems, 2008.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable environments: Scaling up. In International Conference on Machine Learning, 1995.

W. S. Lovejoy. Computationally feasible bounds for partially observed Markov decision processes. Operations Research, 39(1):162–175, 1991.

G. E. Monahan. A survey of partially observable Markov decision processes: theory, models and algorithms. Management Science, 28(1), Jan. 1982.

R. Parr and S. Russell. Approximating optimal policies for partially observable stochastic domains. In Proc. Int. Joint Conf. on Artificial Intelligence, 1995.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2003.

L. K. Platzman. A feasible computational approach to infinite-horizon partially-observed Markov decision problems. Technical Report J-81-2, School of Industrial and Systems Engineering, Georgia Institute of Technology, 1981. Reprinted in working notes

AAAI 1998 Fall Symposium on Planning with POMDPs.

P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In Advances in Neural Information Processing Systems 15. MIT Press, 2003.

P. Poupart and C. Boutilier. Bounded finite state controllers. In Advances in Neural Information Processing Systems 16. MIT Press, 2004.

M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York, NY, 1994.

N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief compression. Journal of Artificial Intelligence Research, 23:1–40, 2005.

S. J. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice Hall, 2nd edition, 2003.

J. K. Satia and R. E. Lave. Markovian decision processes with probabilistic observation of states. Management Science, 20(1):1–13, 1973.

G. Shani, R. I. Brafman, and S. E. Shimony. Forward search value iteration for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2007.

D. Silver and J. Veness. Monte-carlo planning in large POMDPs. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 2164–2172, 2010.

S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in partially observable Markovian decision processes. In International Conference on Machine Learning, 1994.

R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov decision processes over a finite horizon. Operations Research, 21:1071–1088, 1973.

T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Proc. of Uncertainty in Artificial Intelligence, 2004.

E. J. Sondik. The optimal control of partially observable Markov processes. PhD thesis, Stanford University, 1971.

M. T. J. Spaan and N. Vlassis. A point-based POMDP algorithm for robot planning. In Proceedings of the IEEE International Conference on Robotics and Automation, pages 2399–2404, New Orleans, Louisiana, 2004.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs. Journal of Artificial Intelligence Research, 24:195–220, 2005.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Y. Virin, G. Shani, S. E. Shimony, and R. Brafman. Scaling up: Solving POMDPs through value based clustering. In Proc. of the National Conference on Artificial Intelligence, 2007.

N. L. Zhang and W. Liu. Planning in stochastic domains: problem characteristics and approximations. Technical Report HKUST-CS96-31, Department of Computer Science, The Hong Kong University of Science and Technology, 1996.

R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2001.

Decision Making under Uncertainty p. 62/62

	Outline
	Introduction
	Applications
	Agents
	Agents
	Planning
	Classic planning
	Classic planning

	Conditional planning
	Decision-theoretic planning
	Decision-theoretic planning
	Decision-theoretic planning
	Decision-theoretic planning
	Decision-theoretic planning
	Decision-theoretic planning
	Decision-theoretic planning
	Decision-theoretic planning

	Sequential decision making under uncertainty
	Transition model
	MDP Agent
	MDP Agent
	MDP Agent

	Optimality criterion
	Discrete MDP model
	A simple problem
	Load/Unload as an MDP
	Load/Unload as an MDP (1)
	Load/Unload as an MDP (2)
	Load/Unload as an MDP (3)
	Policies and value
	Policies and value (1)
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming
	Dynamic programming

	Dynamic programming
	Dynamic programming
	Dynamic programming

	Dynamic programming
	Dynamic programming
	Dynamic programming
	Value iteration
	Value iteration (1)
	Value iteration (2)
	Solution methods: MDPs
	Beyond MDPs
	Beyond MDPs
	Beyond MDPs
	Beyond MDPs
	Beyond MDPs
	Beyond MDPs
	Beyond MDPs
	Beyond MDPs

	A partially observable problem
	Observation model
	POMDP Agent
	POMDP Agent
	POMDP Agent
	POMDP Agent

	POMDPs
	POMDPs
	POMDPs
	POMDPs
	POMDPs
	POMDPs
	POMDPs
	POMDPs

	Memory
	Memory
	Memory
	Memory
	Memory
	Memory

	Beliefs
	Belief update example
	Belief update example
	Belief update example
	Belief update example
	Belief update example
	Belief update example

	MDP-based algorithms
	POMDPs as continuous-state MDPs
	POMDPs as continuous-state MDPs
	POMDPs as continuous-state MDPs
	POMDPs as continuous-state MDPs

	Solving POMDPs
	Solving POMDPs
	Solving POMDPs
	Solving POMDPs
	Solving POMDPs

	Example V_0
	PWLC shape of V_n
	Exact value iteration
	Optimal value functions
	Vector pruning
	Optimal POMDP methods
	Sub-optimal techniques
	Point-based backup
	Point-based backup

	Point-based (approximate)
methods
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI
	<P>: randomized point-based VI

	High dimensional sensor readings
	Observation model
	States, actions and rewards
	Further reading
	References

