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Outline

Today:

1. Introduction to planning under uncertainty

2. Planning under action uncertainty (MDPs)

3. Planning under sensing uncertainty (POMDPs)

Tomorrow:

1. Multiagent planning

2. Selected further topics
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Introduction
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Introduction

• Goal in Artificial Intelligence: to build intelligent agents.

• Our definition of “intelligent”: perform an assigned task as

well as possible.

• Problem: how to act?

• We will explicitly model uncertainty.

Decision Making under Uncertainty p. 4/62



Applications

• Resource planning

• Maintenance

• Queue management

• Medical decision making
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Agents

• An agent is a (rational) decision maker who is

able to perceive its external (physical)

environment and act autonomously upon it

(Russell and Norvig, 2003).

• Rationality means reaching the optimum of a

performance measure.

• Examples: humans, robots, some software pro-

grams.
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Agents

environment

agent

action

observation

state

• It is useful to think of agents as being involved in a

perception-action loop with their environment.

• But how do we make the right decisions?
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Planning

Planning:

• A plan tells an agent how to act.

• For instance

◮ A sequence of actions to reach a goal.

◮ What to do in a particular situation.

• We need to model:

◮ the agent’s actions

◮ its environment

◮ its task

We will model planning as a sequence of decisions.

Decision Making under Uncertainty p. 8/62



Classic planning

• Classic planning: sequence of actions from start to goal.

• Task: robot should get to gold as quickly as possible.

• Actions: → ↓← ↑

• Limitations:

◮ New plan for each start state.

◮ Environment is deterministic.
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Classic planning

• Classic planning: sequence of actions from start to goal.

• Task: robot should get to gold as quickly as possible.

• Actions: → ↓← ↑

• Limitations:

◮ New plan for each start state.

◮ Environment is deterministic.

• Three optimal plans: →→ ↓,→ ↓→, ↓ →→.
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Conditional planning

• Assume our robot has noisy actions (wheel slip, overshoot).

• We need conditional plans.

• Map situations to actions.
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Decision-theoretic planning

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

• Positive reward when reaching goal, small penalty for all

other actions.

• Agent’s plan maximizes value: the sum of future rewards.

• Decision-theoretic planning successfully handles noise in

acting and sensing.
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Decision-theoretic planning

Plan #1:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1
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Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1
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Decision-theoretic planning

Plan #2:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1
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Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1
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Decision-theoretic planning

Optimal values (encode optimal plan):

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1
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Markov Decision Processes
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Sequential decision making under uncertainty

• Uncertainty is abundant in real-world planning domains.

• Bayesian approach⇒ probabilistic models.

Main assumptions:

Sequential decisions: problems are formulated as a sequence of

“independent” decisions;

Markovian environment: the state at time t depends only on the

events at time t− 1;

Evaluative feedback: use of a reinforcement signal as

performance measure (reinforcement learning);
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Transition model

• For instance, robot motion

is inaccurate.

• Transitions between states

are stochastic.

• p(s′|s, a) is the probability

to jump from state s to state

s′ after taking action a.

?
??
?

?
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MDP Agent

environment

action a

obs. s
reward r

π

state s
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MDP Agent

environment

action a

obs. s
reward r

π

state s

p(s′|s, a)
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MDP Agent

environment

action a

obs. s
reward r

π

state s

R(s, a)
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Optimality criterion

For instance, agent should maximize the value

E
[

h
∑

t=0

γtRt

]

, (1)

where

• h is the planning horizon, can be finite or∞

• γ is a discount rate, 0 ≤ γ < 1

Reward hypothesis (Sutton and Barto, 1998):

All goals and purposes can be formulated as the maximization of

the cumulative sum of a received scalar signal (reward).

Decision Making under Uncertainty p. 17/62



Discrete MDP model

Discrete Markov Decision Process model (Puterman, 1994;

Bertsekas, 2000):

• Time t is discrete.

• State space S.

• Set of actions A.

• Reward function R : S × A 7→ R.

• Transition model p(s′|s, a), Ta : S × A 7→ ∆(S).

• Initial state s0 is drawn from ∆(S).

The Markov property entails that the next state st+1 only depends

on the previous state st and action at:

p(st+1|st, st−1, . . . , s0, at, at−1, . . . , a0) = p(st+1|st, at). (2)
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A simple problem

Problem:

An autonomous robot must learn how to transport material from

a deposit to a building facility.

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

(thanks to F. Melo)
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Load/Unload as an MDP

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

• States: S = {1U , 2U , 3U , 1L, 2L, 3L};

1U Robot in position 1 (unloaded);

2U Robot in position 2 (unloaded);

3U Robot in position 3 (unloaded);

1L Robot in position 1 (loaded);

2L Robot in position 2 (loaded);

3L Robot in position 3 (loaded)

• Actions: A = {Left, Right, Load, Unload};
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Load/Unload as an MDP (1)

• Transition probabilities: “Left”/“Right” move the robot in

the corresponding direction; “Load” loads material (only in

position 1); “Unload” unloads material (only in position 3).
Ex:

(2L,Right) → 3L;

(3L,Unload) → 3U ;

(1L,Unload) → 1L.

• Reward: We assign a reward of +10 for every unloaded
package (payment for the service).
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Load/Unload as an MDP (2)

• For each action a ∈ A, Ta is a matrix.

Ex:

TRight =





















0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1





















• Recall: S = {1U , 2U , 3U , 1L, 2L, 3L}.
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Load/Unload as an MDP (3)

• The reward R(s, a) can also be represented as a matrix

Ex:

R =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 +10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}
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Policies and value

• Policy π: tells the agent how to act.

• A deterministic policy π : S 7→ A is a mapping from states

to actions.

• Value: how much reward E[
∑h

t=0
γtRt] does the agent

expect to gather.

• Value denoted as Qπ(s, a): start in s, do a and follow π

afterwards.
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Policies and value (1)

• Extracting a policy π from a value function Q is easy:

π(s) = argmax
a∈A

Q(s, a). (3)

• Optimal policy π∗: one that maximizes E[
∑h

t=0
γtRt] (for

every state).

• In an infinite-horizon MDP there is always an optimal

deterministic stationary (time-independent) policy π∗.

• There can be many optimal policies π∗, but they all share the

same optimal value function Q∗.

Decision Making under Uncertainty p. 25/62



Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):
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
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





















Q1 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10





















Q2 =





















? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?

? ? ? ?





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10





















Q2 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 ? 0 0

0 ? ? 10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10





















Q2 =





















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 9.5 0 0

0 9.5 9.5 10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 27/62



Dynamic programming

Iterations of dynamic programming (γ = 0.95):

Q5 =





















0 0 8.57 0

0 0 0 0

0 0 0 0

8.57 9.03 8.57 8.57

8.57 9.5 9.03 9.03

9.03 9.5 9.5 10





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}
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Dynamic programming

Iterations of DP:

Q20 =





















18.53 17.61 19.51 18.54

18.53 16.73 17.61 17.61

17.61 16.73 16.73 16.73

19.51 20.54 19.51 19.51

19.51 21.62 20.54 20.54

20.54 21.62 21.62 26.73





















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Decision Making under Uncertainty p. 29/62



Dynamic programming

Final Q∗ and policy:

Q∗ =



























30.75 29.21 32.37 30.75

30.75 27.75 29.21 29.21

29.21 27.75 27.75 27.75

32.37 34.07 32.37 32.37

32.37 35.86 34.07 34.07

34.07 35.86 35.86 37.75



























π∗ =



























Load

Left

Left

Right

Right

Unload


























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Value iteration

• Value iteration: successive approximation technique.

• Start with all values set to 0.

• In order to consider one step deeper into the future, i.e., to

compute V ∗
n+1 from V ∗

n :

Q∗
n+1(s, a) := R(s, a) + γ

∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗
n(s

′, a′), (4)

which is known as the dynamic programming update or

Bellman backup.

• Bellman (1957) equation:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗(s′, a′). (5)
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Value iteration (1)

Initialize Q arbitrarily, e.g., Q(s, a) = 0, ∀s ∈ S, a ∈ A

repeat

δ ← 0
for all s ∈ S, a ∈ A do

v ← Q(s, a)
Q(s, a)← R(s, a) + γ

∑

s′∈S p(s
′|s, a)maxa′∈A Q(s′, a′)

δ ← max(δ, |v −Q(s, a)|)
end for

until δ < ǫ

Return Q
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Value iteration (2)

Value iteration discussion:

• As n→∞, value iteration converges.

• Value iteration has converged when the largest update δ in

an iteration is below a certain threshold ǫ.

• Exhaustive sweeps are not required for convergence,

provided that in the limit all states are visited infinitely often.

• This can be exploited by backing up the most promising

states first, known as prioritized sweeping.
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Solution methods: MDPs

Model based

• Basic: dynamic programming (Bellman, 1957), value

iteration, policy iteration.

• Advanced: prioritized sweeping, function approximators.

Model free, reinforcement learning (Sutton and Barto, 1998)

• Basic: Q-learning, TD(λ), SARSA, actor-critic.

• Advanced: generalization in infinite state spaces,

exploration/exploitation issues.
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POMDPs

Decision Making under Uncertainty p. 35/62



Beyond MDPs

• Real agents cannot directly observe the state.

• Sensors provide partial and noisy information about the

world.
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Beyond MDPs

• MDPs have been very successful, but requires to have an

observable Markovian state.

• Many domains this is impossible (or expensive) to obtain:

• Diagnosis (medical, maintenance)
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A partially observable problem

Task: start at random position (×)→ pick up mail at P→
deliver mail at D (△).

Characteristics: motion noise, perceptual aliasing.
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Observation model

• Imperfect sensors.

• Partially observable environment:

◮ Sensors are noisy.

◮ Sensors have a limited view.

• p(o|s′, a) is the probability the agent receives observation o
in state s′ after taking action a.
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POMDP Agent

environment

action a

obs. o
reward r

π

state s
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POMDP Agent

environment

action a

obs. o
reward r

π

state s

p(s′|s, a)
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POMDP Agent

environment

action a

obs. o
reward r

π

state s

R(s, a)
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POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.
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POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

• Framework for agent planning under uncertainty.

• Typically assumes discrete sets of states S, actions A and

observations O.

• Transition model p(s′|s, a): models the effect of actions.

• Observation model p(o|s′, a): relates observations to states.

• Task is defined by a reward model R(s, a).

• A planning horizon h (finite or∞).

• A discount rate 0 ≤ γ < 1.

• Goal is to compute plan, or policy π, that maximizes

long-term reward.
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Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r
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Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy
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Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0
γtr = r

1−γ

POMDP: memoryless deterministic
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Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0
γtr = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr

1−γ

POMDP: memoryless stochastic
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Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0
γtr = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr

1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal)
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Memory

• In POMDPs memory is required for optimal decision

making.

• In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0
γtr = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr

1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal) Vmin =
γr

1−γ
− r
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Beliefs

Beliefs:

• The agent maintains a belief b(s) of being at state s.

• After action a ∈ A and observation o ∈ O the belief b(s) can
be updated using Bayes’ rule:

b′(s′) ∝ p(o|s′)
∑

s

p(s′|s, a)b(s)

• The belief vector is a Markov signal for the planning task.
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Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

• Observations: door or corridor, 10% noise.

• Action: moves 3 (20%), 4 (60%), or 5 (20%) states.
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MDP-based algorithms

• Exploit belief state, and use the MDP solution as a heuristic.

• Most likely state (Cassandra et al., 1996):

πMLS(b) = π∗(argmaxs b(s)).

• QMDP (Littman et al., 1995):

πQMDP
(b) = argmaxa

∑

s b(s)Q
∗(s, a).

C

I

A

A

D

+1
c

ba

a

0.5

0.5
b

c

a

ab

b

−1

(Parr and Russell, 1995)
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POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

• Continuous state space ∆: a simplex in [0, 1]|S|−1.
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p(boa|b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

• Reward function R(b, a) =
∑

s R(s, a)b(s). This is the
average reward with respect to b(s).
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POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

• Continuous state space ∆: a simplex in [0, 1]|S|−1.

• Stochastic Markovian transition model

p(boa|b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

• Reward function R(b, a) =
∑

s R(s, a)b(s). This is the
average reward with respect to b(s).

• The robot fully ‘observes’ the new belief-state boa after

executing a and observing o.
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Solving POMDPs

• A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.
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Solving POMDPs

• A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

• The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(boa)
]
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• Value iteration repeatedly applies Vn+1 = HVn starting from

an initial V0.
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Example V0

(1,0) (0,1)

R

1

0.5

0

α1

α2

α3

b

R(s, a) a1 a2 a3

s1 1.00 0.50 −0.25

s2 0.25 0.75 1.25
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PWLC shape of Vn

• Like V0, Vn is as well piecewise linear and convex.

• Rewards R(b, a) = b ·R(s, a) are linear functions of b. Note
that the value of a point b satisfies:

Vn+1(b) = max
a

[

b ·R(s, a) + γ
∑

o

p(o|b, a)Vn(b
o
a)
]

which involves a maximization over (at least) the vectors

R(s, a).

• Intuitively: less uncertainty about the state (low-entropy

beliefs) means better decisions (thus higher value).
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Exact value iteration

Value iteration computes a sequence of value function estimates

V1, V2, . . . , Vn, using the POMDP backup operator H ,

Vn+1 = HVn.

(1,0) (0,1)

V

V1

V2

V3
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Optimal value functions

The optimal value function of a (finite-horizon) POMDP is

piecewise linear and convex: V (b) = maxα b · α.
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α1

α2

α3

α4

V
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Vector pruning

(1,0) (0,1)

V

b1 b2

α1

α2

α3

α4

α5

Linear program for pruning:

variables: ∀s ∈ S, b(s); x
maximize: x

subject to:

b · (α− α′) ≥ x, ∀α′ ∈ V, α′ 6= α

b ∈ ∆(S)
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Optimal POMDP methods

Enumerate and prune:

• Most straightforward: Monahan (1982)’s enumeration

algorithm. Generates a maximum of |A||Vn|
|O| vectors at

each iteration, hence requires pruning.

• Incremental pruning (Zhang and Liu, 1996; Cassandra et al., 1997).

Search for witness points:

• One Pass (Sondik, 1971; Smallwood and Sondik, 1973).

• Relaxed Region, Linear Support (Cheng, 1988).

• Witness (Cassandra et al., 1994).
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Sub-optimal techniques

• Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).

• Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).

• Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).

• Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

• Point-based techniques

(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al.,

2007; Kurniawati et al., 2008).

• Monte Carlo tree search

(Silver and Veness, 2010).
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Point-based backup

• For finite horizon V ∗ is piecewise linear and convex, and for

infinite horizons V ∗ can be approximated arbitrary well by a

PWLC value function (Smallwood and Sondik, 1973).
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Point-based backup

• For finite horizon V ∗ is piecewise linear and convex, and for

infinite horizons V ∗ can be approximated arbitrary well by a

PWLC value function (Smallwood and Sondik, 1973).

• Given value function Vn and a particular belief point b we

can easily compute the vector αb
n+1 of HVn such that

αb
n+1 = argmax

{αk

n+1
}k

b · αk
n+1,

where {αk
n+1}

|HVn|
k=1

is the (unknown) set of vectors for HVn.

We will denote this operation αb
n+1 = backup(b).
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Point-based (approximate) methods

Point-based (approximate) value iteration plans only on a

limited set of reachable belief points:

1. Let the robot explore the environment.

2. Collect a set B of belief points.

3. Run approximate value iteration on B.
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PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.
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(1,0) (0,1)

V1

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
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PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V2

b1 b2 b3 b4 b5 b6 b7

(Spaan and Vlassis, 2005)
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PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.
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PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all b ∈ B.
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Idea: at every backup stage improve the value of all b ∈ B.
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High dimensional sensor readings

Omnidirectional camera images.

Example images⇒

Dimension reduction:

• Collect a database of images and record their location.

• Apply Principal Component Analysis on the image data.

• Project each image to the first 3 eigenvectors, resulting in a

3D feature vector for each image.
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Observation model

p(s|o)
• We cluster the feature

vectors into 10 prototype

observations.

• We compute a discrete ob-

servation model p(o|s, a)
by a histogram operation.
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States, actions and rewards

D

P

• State: s = (x, j) with x
the robot’s location and

j the mail bit.

• Grid X into 500

locations.

• Actions: {↑,→, ↓,←,

pickup, deliver}.

• Positive reward: only

upon successful mail

delivery.

(Spaan and Vlassis, 2004)
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Further reading

• Recent book containing chapters on many aspects of

decision-theoretic planning (MDPs, POMDPs,

Dec-POMDPs):

◮ Marco Wiering and Martijn van Otterlo, editors,

“Reinforcement Learning: State of the Art”, Springer,

2012.
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