Decision Making under Uncertainty

Matthijs Spaan ${ }^{\S}$ Frans Oliehoek*

§Delft University of Technology
*Maastricht University
The Netherlands
15th European Agent Systems Summer School (EASSS '13)
London, UK
http://www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/
July 2, 2013

Outline

This lecture:

1. Introduction to decision making under uncertainty
2. Planning under action uncertainty (MDPs)
3. Planning under sensing uncertainty (POMDPs)

After the break:

1. Multiagent planning
2. Selected further topics

Introduction

Introduction

- Goal in Artificial Intelligence: to build intelligent agents.
- Our definition of "intelligent": perform an assigned task as well as possible.
- Problem: how to act?
- We will explicitly model uncertainty.

Applications

- Resource planning
- Maintenance
- Queue management
- Medical decision making

Agents

- An agent is a (rational) decision maker who is able to perceive its external (physical) environment and act autonomously upon it (Russell and Norvig, 2003).

- Rationality means reaching the optimum of a performance measure.
- Examples: humans, robots, some software programs.

Agents

- It is useful to think of agents as being involved in a perception-action loop with their environment.
- But how do we make the right decisions?

Planning

Planning:

- A plan tells an agent how to act.
- For instance
- A sequence of actions to reach a goal.
- What to do in a particular situation.
- We need to model:
- the agent's actions
- its environment
- its task

We will model planning as a sequence of decisions.

Classic planning

- Classic planning: sequence of actions from start to goal.
- Task: robot should get to gold as quickly as possible.
- Actions: $\rightarrow \downarrow \leftarrow \uparrow$
- Limitations:
- New plan for each start state.
- Environment is deterministic.

Classic planning

- Classic planning: sequence of actions from start to goal.
- Task: robot should get to gold as quickly as possible.
- Actions: $\rightarrow \downarrow \leftarrow \uparrow$
- Limitations:
- New plan for each start state.
- Environment is deterministic.
- Three optimal plans: $\rightarrow \rightarrow \downarrow, \rightarrow \downarrow \rightarrow, \downarrow \rightarrow \rightarrow$.

Conditional planning

- Assume our robot has noisy actions (wheel slip, overshoot).
- We need conditional plans.
- Map situations to actions.

Decision-theoretic planning

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

- Positive reward when reaching goal, small penalty for all other actions.
- Agent's plan maximizes value: the sum of future rewards.
- Decision-theoretic planning successfully handles noise in acting and sensing.

Decision-theoretic planning

Plan \#1:

Reward:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

Decision-theoretic planning

Values of this plan:

Reward:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

Decision-theoretic planning

Values of this plan:

Reward:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

Decision-theoretic planning

Plan \#2:

Reward:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

Decision-theoretic planning

Values of this plan:

Reward:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

Decision-theoretic planning

Values of this plan:

9.3	9.4	9.5	9.6	9.7
		10	9.9	9.8

Reward:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

Decision-theoretic planning

Reward:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

Markov Decision Processes

Sequential decision making under uncertainty

- Uncertainty is abundant in real-world planning domains.
- Bayesian approach \Rightarrow probabilistic models.

Main assumptions:
Sequential decisions: problems are formulated as a sequence of "independent" decisions;
Markovian environment: the state at time t depends only on the events at time $t-1$;
Evaluative feedback: use of a reinforcement signal as performance measure (reinforcement learning);

Transition model

- For instance, robot motion is inaccurate.
- Transitions between states are stochastic.
- $p\left(s^{\prime} \mid s, a\right)$ is the probability to jump from state s to state s^{\prime} after taking action a.

MDP Agent

environment

MDP Agent

environment

MDP Agent

environment

Optimality criterion

For instance, agent should maximize the value

$$
\begin{equation*}
E\left[\sum_{t=0}^{h} \gamma^{t} R_{t}\right] \tag{1}
\end{equation*}
$$

where

- h is the planning horizon, can be finite or ∞
- γ is a discount rate, $0 \leq \gamma<1$

Reward hypothesis (Sutton and Barto, 1998):
All goals and purposes can be formulated as the maximization of the cumulative sum of a received scalar signal (reward).

Discrete MDP model

Discrete Markov Decision Process model (Puterman, 1994; Bertsekas, 2000):

- Time t is discrete.
- State space S.
- Set of actions A.
- Reward function $R: S \times A \mapsto \mathbb{R}$.
- Transition model $p\left(s^{\prime} \mid s, a\right), T_{a}: S \times A \mapsto \Delta(S)$.
- Initial state s_{0} is drawn from $\Delta(S)$.

The Markov property entails that the next state s_{t+1} only depends on the previous state s_{t} and action a_{t} :

$$
\begin{equation*}
p\left(s_{t+1} \mid s_{t}, s_{t-1}, \ldots, s_{0}, a_{t}, a_{t-1}, \ldots, a_{0}\right)=p\left(s_{t+1} \mid s_{t}, a_{t}\right) \tag{2}
\end{equation*}
$$

A simple problem

Problem:

An autonomous robot must learn how to transport material from a deposit to a building facility.

(thanks to F. Melo)

Load/Unload as an MDP

- States: $S=\left\{1_{u}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}$;
$1 u$ Robot in position 1 (unloaded);
$2 u$ Robot in position 2 (unloaded);
$3 u$ Robot in position 3 (unloaded);
$1_{L} \quad$ Robot in position 1 (loaded);
$2_{L} \quad$ Robot in position 2 (loaded);
$3_{L} \quad$ Robot in position 3 (loaded)
- Actions: $A=\{$ Left, Right, Load, Unload $\}$;

Load/Unload as an MDP (1)

- Transition probabilities: "Left"/"Right" move the robot in the corresponding direction; "Load" loads material (only in position 1); "Unload" unloads material (only in position 3). Ex:

$$
\begin{aligned}
\left(2_{L}, \text { Right }\right) & \rightarrow 3_{L} ; \\
\left(3_{L}, \text { Unload }\right) & \rightarrow 3_{U} \\
\left(1_{L}, \text { Unload }\right) & \rightarrow 1_{L}
\end{aligned}
$$

- Reward: We assign a reward of +10 for every unloaded package (payment for the service).

Load/Unload as an MDP (2)

- For each action $a \in A, T_{a}$ is a matrix. Ex:

$$
T_{\text {Right }}=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- Recall: $S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}$.

Load/Unload as an MDP (3)

- The reward $R(s, a)$ can also be represented as a matrix Ex:

$$
R=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & +10
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Policies and value

- Policy π : tells the agent how to act.
- A deterministic policy $\pi: S \mapsto A$ is a mapping from states to actions.
- Value: how much reward $E\left[\sum_{t=0}^{h} \gamma^{t} R_{t}\right]$ does the agent expect to gather.
- Value denoted as $Q^{\pi}(s, a)$: start in s, do a and follow π afterwards.

Policies and value (1)

- Extracting a policy π from a value function Q is easy:

$$
\begin{equation*}
\pi(s)=\underset{a \in A}{\arg \max } Q(s, a) \tag{3}
\end{equation*}
$$

- Optimal policy π^{*} : one that maximizes $E\left[\sum_{t=0}^{h} \gamma^{t} R_{t}\right]$ (for every state).
- In an infinite-horizon MDP there is always an optimal deterministic stationary (time-independent) policy π^{*}.
- There can be many optimal policies π^{*}, but they all share the same optimal value function Q^{*}.

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}=\left[\begin{array}{llll}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}=\left[\begin{array}{llll}
0 & ? & ? & ? \\
0 & ? & ? & ? \\
0 & ? & ? & ? \\
0 & ? & ? & ? \\
0 & ? & ? & ? \\
0 & ? & ? & ?
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}=\left[\begin{array}{llll}
0 & ? & ? & ? \\
0 & ? & ? & ? \\
0 & ? & ? & ? \\
0 & ? & ? & ? \\
0 & ? & ? & ? \\
0 & ? & ? & ?
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}=\left[\begin{array}{llll}
0 & 0 & ? & ? \\
0 & 0 & ? & ? \\
0 & 0 & ? & ? \\
0 & 0 & ? & ? \\
0 & 0 & ? & ? \\
0 & 0 & ? & ?
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}=\left[\begin{array}{llll}
0 & 0 & ? & ? \\
0 & 0 & ? & ? \\
0 & 0 & ? & ? \\
0 & 0 & ? & ? \\
0 & 0 & ? & ? \\
0 & 0 & ? & ?
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & ? \\
0 & 0 & 0 & ? \\
0 & 0 & 0 & ? \\
0 & 0 & 0 & ? \\
0 & 0 & 0 & ? \\
0 & 0 & 0 & ?
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & ? \\
0 & 0 & 0 & ? \\
0 & 0 & 0 & ? \\
0 & 0 & 0 & ? \\
0 & 0 & 0 & ? \\
0 & 0 & 0 & ?
\end{array}\right]
$$

$S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{$ Left, Right, Load, Unload $\}$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \quad Q_{1}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 10
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{1}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 10
\end{array}\right] \quad Q_{2}=\left[\begin{array}{cccc}
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ? \\
? & ? & ? & ?
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{1}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 10
\end{array}\right] \quad Q_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & ? & 0 & 0 \\
0 & ? & ? & 10
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Since S and A are finite, $Q^{*}(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma=0.95$):

$$
Q_{1}=\left[\begin{array}{lllc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 10
\end{array}\right] \quad Q_{2}=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 9.5 & 0 & 0 \\
0 & 9.5 & 9.5 & 10
\end{array}\right]
$$

$$
S=\left\{1 \cup, 2_{\cup}, 3_{\cup}, 1_{L}, 2_{L}, 3_{\llcorner }\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Iterations of dynamic programming $(\gamma=0.95)$:

$$
Q_{5}=\left[\begin{array}{cccc}
0 & 0 & 8.57 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
8.57 & 9.03 & 8.57 & 8.57 \\
8.57 & 9.5 & 9.03 & 9.03 \\
9.03 & 9.5 & 9.5 & 10
\end{array}\right]
$$

$$
S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{\text { Left, Right, Load, Unload }\}
$$

Dynamic programming

Iterations of DP:

$$
Q_{20}=\left[\begin{array}{llll}
18.53 & 17.61 & 19.51 & 18.54 \\
18.53 & 16.73 & 17.61 & 17.61 \\
17.61 & 16.73 & 16.73 & 16.73 \\
19.51 & 20.54 & 19.51 & 19.51 \\
19.51 & 21.62 & 20.54 & 20.54 \\
20.54 & 21.62 & 21.62 & 26.73
\end{array}\right]
$$

$S=\left\{1_{U}, 2_{U}, 3_{U}, 1_{L}, 2_{L}, 3_{L}\right\}, A=\{$ Left, Right, Load, Unload $\}$

Dynamic programming

Final Q^{*} and policy:

$$
Q^{*}=\left[\begin{array}{llll}
30.75 & 29.21 & 32.37 & 30.75 \\
30.75 & 27.75 & 29.21 & 29.21 \\
29.21 & 27.75 & 27.75 & 27.75 \\
32.37 & 34.07 & 32.37 & 32.37 \\
32.37 & 35.86 & 34.07 & 34.07 \\
34.07 & 35.86 & 35.86 & 37.75
\end{array}\right] \quad \pi^{*}=\left[\begin{array}{c}
\text { Load } \\
\text { Left } \\
\text { Left } \\
\text { Right } \\
\text { Right } \\
\text { Unload }
\end{array}\right]
$$

Value iteration

- Value iteration: successive approximation technique.
- Start with all values set to 0 .
- In order to consider one step deeper into the future, i.e., to compute V_{n+1}^{*} from V_{n}^{*} :

$$
\begin{equation*}
Q_{n+1}^{*}(s, a):=R(s, a)+\gamma \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right) \max _{a^{\prime} \in A} Q_{n}^{*}\left(s^{\prime}, a^{\prime}\right) \tag{4}
\end{equation*}
$$

which is known as the dynamic programming update or Bellman backup.

- Bellman (1957) equation:

$$
\begin{equation*}
Q^{*}(s, a)=R(s, a)+\gamma \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right) \max _{a^{\prime} \in A} Q^{*}\left(s^{\prime}, a^{\prime}\right) \tag{5}
\end{equation*}
$$

Value iteration (1)

Initialize Q arbitrarily, e.g., $Q(s, a)=0, \forall s \in S, a \in A$
repeat
$\delta \leftarrow 0$
for all $s \in S, a \in A$ do

$$
v \leftarrow Q(s, a)
$$

$$
Q(s, a) \leftarrow R(s, a)+\gamma \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right) \max _{a^{\prime} \in A} Q\left(s^{\prime}, a^{\prime}\right)
$$

$$
\delta \leftarrow \max (\delta,|v-Q(s, a)|)
$$

end for
until $\delta<\epsilon$
Return Q

Value iteration (2)

Value iteration discussion:

- As $n \rightarrow \infty$, value iteration converges.
- Value iteration has converged when the largest update δ in an iteration is below a certain threshold ϵ.
- Exhaustive sweeps are not required for convergence, provided that in the limit all states are visited infinitely often.
- This can be exploited by backing up the most promising states first, known as prioritized sweeping.

Solution methods: MDPs

Model based

- Basic: dynamic programming (Bellman, 1957), value iteration, policy iteration.
- Advanced: prioritized sweeping, function approximators.

Model free, reinforcement learning (Sutton and Barto, 1998)

- Basic: Q-learning, TD (λ), SARSA, actor-critic.
- Advanced: generalization in infinite state spaces, exploration/exploitation issues.

POMDPs

Beyond MDPs

- Real agents cannot directly observe the state.
- Sensors provide partial and noisy information about the world.

Beyond MDPs

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

Beyond MDPs

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

Beyond MDPs

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

Beyond MDPs

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

Beyond MDPs

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

Beyond MDPs

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

Observation model

- Imperfect sensors.
- Partially observable environment:
- Sensors are noisy.
- Sensors have a limited view.
- $p\left(o \mid s^{\prime}, a\right)$ is the probability the agent receives observation o in state s^{\prime} after taking action a.

POMDP Agent

environment

POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
> - Typically assumes discrete sets of states S, actions A and observations O.
> - Transition model $p\left(s^{\prime} \mid s, a\right):$ models the effect of actions.
> - Observation model $p\left(o \mid s^{\prime}, a\right)$: relates observations to states.
> - Task is defined by a reward model $R(s, a)$.
> - A planning horizon h (finite or ∞).
> - A discount rate $0 \leq \gamma<1$.
> - Goal is to compute plan, or policy π, that maximizes long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- Transition model $p\left(s^{\prime} \mid s, a\right)$: models the effect of actions.
- Observation model $p\left(o \mid s^{\prime}, a\right)$: relates observations to states.
- Task is defined by a reward model $R(s, a)$.
- A planning horizon h (finite or ∞).
- A discount rate $0 \leq \gamma<1$.
- Goal is to compute plan, or policy π, that maximizes long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- Transition model $p\left(s^{\prime} \mid s, a\right)$: models the effect of actions.
- Observation model $p\left(o \mid s^{\prime}, a\right)$: relates observations to states.
- Task is defined by a reward model $R(s, a)$.
- A planning horizon h (finite or ∞).
- A discount rate $0 \leq \gamma<1$.
- Goal is to compute plan, or policy π, that maximizes long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- Transition model $p\left(s^{\prime} \mid s, a\right)$: models the effect of actions.
- Observation model $p\left(o \mid s^{\prime}, a\right)$: relates observations to states.
- Task is defined by a reward model $R(s, a)$.
- A planning horizon h (finite or ∞).
- A discount rate $0 \leq \gamma<1$.
- Goal is to compute plan, or policy π, that maximizes long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- Transition model $p\left(s^{\prime} \mid s, a\right)$: models the effect of actions.
- Observation model $p\left(o \mid s^{\prime}, a\right)$: relates observations to states.
- Task is defined by a reward model $R(s, a)$.
- A planning horizon h (finite or ∞)
- A discount rate $0 \leq \gamma<1$.
- Goal is to compute plan, or policy π, that maximizes long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- Transition model $p\left(s^{\prime} \mid s, a\right)$: models the effect of actions.
- Observation model $p\left(o \mid s^{\prime}, a\right)$: relates observations to states.
- Task is defined by a reward model $R(s, a)$.
- A planning horizon h (finite or ∞).
- A discount rate $0 \leq \gamma<1$.
- Goal is to compute plan, or policy π, that maximizes long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- Transition model $p\left(s^{\prime} \mid s, a\right)$: models the effect of actions.
- Observation model $p\left(o \mid s^{\prime}, a\right)$: relates observations to states.
- Task is defined by a reward model $R(s, a)$.
- A planning horizon h (finite or ∞).
- A discount rate $0 \leq \gamma<1$.
- Goal is to compute plan, or policy π, that maximizes long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- Transition model $p\left(s^{\prime} \mid s, a\right)$: models the effect of actions.
- Observation model $p\left(o \mid s^{\prime}, a\right)$: relates observations to states.
- Task is defined by a reward model $R(s, a)$.
- A planning horizon h (finite or ∞).
- A discount rate $0 \leq \gamma<1$.
- Goal is to compute plan, or policy π, that maximizes long-term reward.

Memory

- In POMDPs memory is required for optimal decision making.
- In this non-observable example (Singh et al., 1994):

Memory

- In POMDPs memory is required for optimal decision making.
- In this non-observable example (Singh et al., 1994):

Policy Value
MDP: optimal policy
POMDP: memoryless deterministic
POMDP: memoryless stochastic
POMDP: memory-based (optimal)

Memory

- In POMDPs memory is required for optimal decision making.
- In this non-observable example (Singh et al., 1994):

Policy	Value
MDP: optimal policy	$V=\sum_{t=0}^{\infty} \gamma^{t} r=\frac{r}{1-\gamma}$
POMDP: memoryless deterministic	
POMDP: memoryless stochastic	
POMDP: memory-based (optimal)	

Memory

- In POMDPs memory is required for optimal decision making.
- In this non-observable example (Singh et al., 1994):

Policy
Value
MDP: optimal policy
$V=\sum_{t=0}^{\infty} \gamma^{t} r=\frac{r}{1-\gamma}$
POMDP: memoryless deterministic $\quad V_{\max }=r-\frac{\gamma r}{1-\gamma}$
POMDP: memoryless stochastic
POMDP: memory-based (optimal)

Memory

- In POMDPs memory is required for optimal decision making.
- In this non-observable example (Singh et al., 1994):

Policy
MDP: optimal policy
POMDP: memoryless deterministic POMDP: memoryless stochastic POMDP: memory-based (optimal)

Memory

- In POMDPs memory is required for optimal decision making.
- In this non-observable example (Singh et al., 1994):

Policy
MDP: optimal policy
POMDP: memoryless deterministic POMDP: memoryless stochastic
POMDP: memory-based (optimal)

Value
$V=\sum_{t=0}^{\infty} \gamma^{t} r=\frac{r}{1-\gamma}$
$V_{\text {max }}=r-\frac{\gamma r}{1-\gamma}$
$V=0$
$V_{\text {min }}=\frac{\gamma r}{1-\gamma}-r$

Beliefs

Beliefs:

- The agent maintains a belief $b(s)$ of being at state s.
- After action $a \in A$ and observation $o \in O$ the belief $b(s)$ can be updated using Bayes' rule:

$$
b^{\prime}\left(s^{\prime}\right) \propto p\left(o \mid s^{\prime}\right) \sum_{s} p\left(s^{\prime} \mid s, a\right) b(s)
$$

- The belief vector is a Markov signal for the planning task.

Belief update example

True situation:

Robot's belief:

- Observations: door or corridor, 10\% noise.
- Action: moves 3 (20\%), 4 (60%), or 5 (20\%) states.

Belief update example

True situation:

Robot's belief:

- Observations: door or corridor, 10\% noise.
- Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot's belief:

- Observations: door or corridor, 10\% noise.
- Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot's belief:

- Observations: door or corridor, 10\% noise.
- Action: moves 3 (20\%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot's belief:

- Observations: door or corridor, 10\% noise.
- Action: moves 3 (20\%), 4 (60%), or 5 (20\%) states.

Belief update example

True situation:

Robot's belief:

- Observations: door or corridor, 10\% noise.
- Action: moves 3 (20\%), 4 (60%), or 5 (20\%) states.

MDP-based algorithms

- Exploit belief state, and use the MDP solution as a heuristic.
- Most likely state (Cassandra et al., 1996): $\pi_{M L S}(b)=\pi^{*}\left(\arg _{\max }^{s} b(s)\right)$.
- $Q_{\text {MDP }}$ (Littman et al., 1995):
$\pi_{Q_{\text {MDP }}}(b)=\arg \max _{a} \sum_{s} b(s) Q^{*}(s, a)$.

(Parr and Russell, 1995)

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

- Continuous state space Δ : a simplex in $[0,1]^{|S|-1}$.
- Stochastic Markovian transition model
$p\left(b_{a}^{O} \mid b, a\right)=p(o \mid b, a)$. This is the normalizer of Bayes' rule.
\triangleright Reward function $R(b, a)=\sum_{s} R(s, a) b(s)$. This is the average reward with respect to $b(s)$.
- The robot fully 'observes' the new belief-state b_{a}^{o} after executing a and observing 0 .

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

- Continuous state space Δ : a simplex in $[0,1]^{|S|-1}$.
- Stochastic Markovian transition model $p\left(b_{a}^{o} \mid b, a\right)=p(o \mid b, a)$. This is the normalizer of Bayes' rule.
- Reward function $R(b, a)=\sum_{s} R(s, a) b(s)$. This is the average reward with respect to $b(s)$.
- The robot fully 'observes' the new belief-state b_{a}^{0} after executing a and observing o.

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

- Continuous state space Δ : a simplex in $[0,1]^{|S|-1}$.
- Stochastic Markovian transition model $p\left(b_{a}^{\circ} \mid b, a\right)=p(o \mid b, a)$. This is the normalizer of Bayes' rule.
- Reward function $R(b, a)=\sum_{s} R(s, a) b(s)$. This is the average reward with respect to $b(s)$.
- The robot fully 'observes' the new belief-state b_{a}^{0} after executing a and observing o.

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state MDP:

- Continuous state space Δ : a simplex in $[0,1]^{|S|-1}$.
- Stochastic Markovian transition model $p\left(b_{a}^{\circ} \mid b, a\right)=p(o \mid b, a)$. This is the normalizer of Bayes' rule.
- Reward function $R(b, a)=\sum_{s} R(s, a) b(s)$. This is the average reward with respect to $b(s)$.
- The robot fully 'observes' the new belief-state b_{a}^{o} after executing a and observing o.

Solving POMDPs

- A solution to a POMDP is a policy, i.e., a mapping $\pi: \Delta \mapsto A$ from beliefs to actions.
- The optimal value V^{*} of a POMDP satisfies the Bellman optimality equation $V^{*}=H V^{*}$:

$$
V^{*}(b)=\max _{a}\left[R(b, a)+\gamma \sum_{0} p(o \mid b, a) V^{*}\left(b_{a}^{0}\right)\right]
$$

- Value iteration repeatedly applies $V_{n+1}=H V_{n}$ starting from an initial V_{0}.
- Computing the optimal value function is a hard problem (PSPACE-complete for finite horizon, undecidable for infinite horizon).

Solving POMDPs

- A solution to a POMDP is a policy, i.e., a mapping $\pi: \Delta \mapsto A$ from beliefs to actions.
- The optimal value V^{*} of a POMDP satisfies the Bellman optimality equation $V^{*}=H V^{*}$:

$$
V^{*}(b)=\max _{a}\left[R(b, a)+\gamma \sum_{o} p(o \mid b, a) V^{*}\left(b_{a}^{o}\right)\right]
$$

- Value iteration repeatedly applies $V_{n+1}=H V_{n}$ starting from an initial V_{0}.
- Computing the optimal value function is a hard problem (PSPACE-complete for finite horizon, undecidable for infinite horizon).

Solving POMDPs

- A solution to a POMDP is a policy, i.e., a mapping $\pi: \Delta \mapsto A$ from beliefs to actions.
- The optimal value V^{*} of a POMDP satisfies the Bellman optimality equation $V^{*}=H V^{*}$:

$$
V^{*}(b)=\max _{a}\left[R(b, a)+\gamma \sum_{o} p(o \mid b, a) V^{*}\left(b_{a}^{o}\right)\right]
$$

- Value iteration repeatedly applies $V_{n+1}=H V_{n}$ starting from an initial V_{0}.
- Computing the optimal value function is a hard problem (PSPACE-complete for finite horizon, undecidable for infinite horizon).

Solving POMDPs

- A solution to a POMDP is a policy, i.e., a mapping $\pi: \Delta \mapsto A$ from beliefs to actions.
- The optimal value V^{*} of a POMDP satisfies the Bellman optimality equation $V^{*}=H V^{*}$:

$$
V^{*}(b)=\max _{a}\left[R(b, a)+\gamma \sum_{o} p(o \mid b, a) V^{*}\left(b_{a}^{o}\right)\right]
$$

- Value iteration repeatedly applies $V_{n+1}=H V_{n}$ starting from an initial V_{0}.
- Computing the optimal value function is a hard problem (PSPACE-complete for finite horizon, undecidable for infinite horizon).

Example V_{0}

PWLC shape of V_{n}

- Like V_{0}, V_{n} is as well piecewise linear and convex.
- Rewards $R(b, a)=b \cdot R(s, a)$ are linear functions of b. Note that the value of a point b satisfies:

$$
V_{n+1}(b)=\max _{a}\left[b \cdot R(s, a)+\gamma \sum_{o} p(o \mid b, a) V_{n}\left(b_{a}^{o}\right)\right]
$$

which involves a maximization over (at least) the vectors $R(s, a)$.

- Intuitively: less uncertainty about the state (low-entropy beliefs) means better decisions (thus higher value).

Exact value iteration

Value iteration computes a sequence of value function estimates $V_{1}, V_{2}, \ldots, V_{n}$, using the POMDP backup operator H, $V_{n+1}=H V_{n}$.

Optimal value functions

The optimal value function of a (finite-horizon) POMDP is piecewise linear and convex: $V(b)=\max _{\alpha} b \cdot \alpha$.

Vector pruning

Linear program for pruning:
variables: $\forall s \in S, b(s) ; x$
maximize: x
subject to:

$$
\begin{aligned}
& b \cdot\left(\alpha-\alpha^{\prime}\right) \geq x, \forall \alpha^{\prime} \in V, \alpha^{\prime} \neq \alpha \\
& b \in \Delta(S)
\end{aligned}
$$

Optimal POMDP methods

Enumerate and prune:

- Most straightforward: Monahan (1982)'s enumeration algorithm. Generates a maximum of $|A|\left|V_{n}\right|^{|O|}$ vectors at each iteration, hence requires pruning.
- Incremental pruning (Zhang and Liu, 1996; Cassandra et al., 1997).

Search for witness points:

- One Pass (Sondik, 1971; Smallwood and Sondik, 1973).
- Relaxed Region, Linear Support (Cheng, 1988).
- Witness (Cassandra et al., 1994).

Sub-optimal techniques

- Grid-based approximations
(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).
- Optimizing finite-state controllers
(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).
- Heuristic search in the belief tree
(Satia and Lave, 1973; Hansen, 1998a).
- Compression or clustering
(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).
- Point-based techniques
(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati et al., 2008).
- Monte Carlo tree search
(Silver and Veness, 2010).

Point-based backup

- For finite horizon V^{*} is piecewise linear and convex, and for infinite horizons V^{*} can be approximated arbitrary well by a PWLC value function (Smallwood and Sondik, 1973).
- Given value function V_{n} and a particular belief point b we can easily compute the vector α_{n+1}^{b} of $H V_{n}$ such that
where $\left\{\alpha_{n+1}^{k}\right\}_{k=1}^{\left|H V_{n}\right|}$ is the (unknown) set of vectors for $H V_{n}$. We will denote this operation $\alpha_{n+1}^{b}=\operatorname{backup}(b)$.

Point-based backup

- For finite horizon V^{*} is piecewise linear and convex, and for infinite horizons V^{*} can be approximated arbitrary well by a PWLC value function (Smallwood and Sondik, 1973).
- Given value function V_{n} and a particular belief point b we can easily compute the vector α_{n+1}^{b} of $H V_{n}$ such that

$$
\alpha_{n+1}^{b}=\underset{\left\{\alpha_{n+1}^{k}\right\}_{k}}{\arg \max } b \cdot \alpha_{n+1}^{k},
$$

where $\left\{\alpha_{n+1}^{k}\right\}_{k=1}^{\left|H V_{n}\right|}$ is the (unknown) set of vectors for $H V_{n}$. We will denote this operation $\alpha_{n+1}^{b}=\operatorname{backup}(b)$.

Point-based (approximate) methods

Point-based (approximate) value iteration plans only on a limited set of reachable belief points:

1. Let the robot explore the environment.
2. Collect a set B of belief points.
3. Run approximate value iteration on B.

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all $b \in B$.

PERSEUS: randomized point-based VI

 Idea: at every backup stage improve the value of all $b \in B$.

Perseus: randomized point-based VI

 Idea: at every backup stage improve the value of all $b \in B$.

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all $b \in B$.

Perseus: randomized point-based VI

Idea: at every backup stage improve the value of all $b \in B$.

PERSEUS: randomized point-based VI

 Idea: at every backup stage improve the value of all $b \in B$.

Perseus: randomized point-based VI

 Idea: at every backup stage improve the value of all $b \in B$.

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all $b \in B$.

Perseus: randomized point-based VI

Idea: at every backup stage improve the value of all $b \in B$.

Perseus: randomized point-based VI

Idea: at every backup stage improve the value of all $b \in B$.

Perseus: randomized point-based VI

 Idea: at every backup stage improve the value of all $b \in B$.

Perseus: randomized point-based VI

Idea: at every backup stage improve the value of all $b \in B$.

Further reading

- Textbook on reinforcement learning
- R. S. Sutton and A. G. Barto. "Reinforcement Learning: An Introduction". MIT Press, 1998.
- Recent book containing chapters on many aspects of decision-theoretic planning (MDPs, POMDPs, Dec-POMDPs):
- Marco Wiering and Martijn van Otterlo, editors, "Reinforcement Learning: State of the Art", Springer, 2012.

References I

R. Bellman. Dynamic programming. Princeton University Press, 1957.
D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA, 2nd edition, 2000.
B. Bonet. An epsilon-optimal grid-based algorithm for partially observable Markov decision processes. In International Conference on Machine Learning, 2002.
R. I. Brafman. A heuristic variable grid solution method for POMDPs. In Proceedings of the Fourteenth National Conference on Artificial Intelligence, 1997.
A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic domains. In Proceedings of the Twelfth National Conference on Artificial Intelligence, 1994.
A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile robot navigation. In Proc. of International Conference on Intelligent Robots and Systems, 1996.
A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact method for partially observable Markov decision processes. In Proc. of Uncertainty in Artificial Intelligence, 1997.
H. T. Cheng. Algorithms for partially observable Markov decision processes. PhD thesis, University of British Columbia, 1988.
A. W. Drake. Observation of a Markov process through a noisy channel. Sc.D. thesis, Massachusetts Institute of Technology, 1962.
E. A. Hansen. Finite-memory control of partially observable systems. PhD thesis, University of Massachusetts, Amherst, 1998a.
E. A. Hansen. Solving POMDPs by searching in policy space. In Proc. of Uncertainty in Artificial Intelligence, 1998b.
L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101:99-134, 1998.
H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In Robotics: Science and Systems, 2008.
M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable environments: Scaling up. In International Conference on Machine Learning, 1995.
W. S. Lovejoy. Computationally feasible bounds for partially observed Markov decision processes. Operations Research, 39(1):162-175, 1991.

References II

G. E. Monahan. A survey of partially observable Markov decision processes: theory, models and algorithms. Management Science, 28(1), Jan. 1982.
R. Parr and S. Russell. Approximating optimal policies for partially observable stochastic domains. In Proc. Int. Joint Conf. on Artificial Intelligence, 1995.
J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2003.
L. K. Platzman. A feasible computational approach to infinite-horizon partially-observed Markov decision problems. Technical Report J-81-2, School of Industrial and Systems Engineering, Georgia Institute of Technology, 1981. Reprinted in working notes AAAI 1998 Fall Symposium on Planning with POMDPs.
P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In Advances in Neural Information Processing Systems 15. MIT Press, 2003.
P. Poupart and C. Boutilier. Bounded finite state controllers. In Advances in Neural Information Processing Systems 16. MIT Press, 2004.
M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley \& Sons, Inc., New York, NY, 1994.
N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief compression. Journal of Artificial Intelligence Research, 23:1-40, 2005.
S. J. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice Hall, 2nd edition, 2003.
J. K. Satia and R. E. Lave. Markovian decision processes with probabilistic observation of states. Management Science, 20(1):1-13, 1973.
G. Shani, R. I. Brafman, and S. E. Shimony. Forward search value iteration for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2007.
D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In Advances in Neural Information Processing Systems 23, 2010.
S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in partially observable Markovian decision processes. In International Conference on Machine Learning, 1994.
R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov decision processes over a finite horizon. Operations Research, 21:1071-1088, 1973.

References III

T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Proc. of Uncertainty in Artificial Intelligence, 2004.
E. J. Sondik. The optimal control of partially observable Markov processes. PhD thesis, Stanford University, 1971.
M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs. Journal of Artificial Intelligence Research, 24:195-220, 2005.
R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.
Y. Virin, G. Shani, S. E. Shimony, and R. Brafman. Scaling up: Solving POMDPs through value based clustering. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007.
N. L. Zhang and W. Liu. Planning in stochastic domains: problem characteristics and approximations. Technical Report HKUST-CS96-31, Department of Computer Science, The Hong Kong University of Science and Technology, 1996.
R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2001.

Decision making under uncertainty

Matthijs Spaan ${ }^{1}$ and Frans Oliehoek ${ }^{2}$
${ }^{1}$ Delft University of Technology
${ }^{2}$ Maastricht University

Part 3: Multiagent Frameworks

European Agent Systems Summer School (EASSS '13)

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

Multiagent Systems (MASs)

Why MASs?

- If we can make intelligent agents, soon there will be many...
- Physically distributed systems: centralized solutions expensive and brittle.
- can potentially provide [Vlassis, 2007,Sycara, 1998]
- Speedup and efficiency
- Robustness and reliability ('graceful degradation')
- Scalability and flexibility (adding additional agents)

Example: Predator-Prey Domain

- Predator-Prey domain - still single agent!
- 1 agent: the predator (blue)
- prey (red) is part of the environment
- on a torus ('wrap around world')
- Formalization:
- states
- actions
- transitions
- rewards

Example: Predator-Prey Domain

- Predator-Prey domain
- 1 agent: the predator (blue)
- prey (red) is part of the environment
- on a torus ('wrap around world')
- Formalization:

- states
- actions
- transitions
- rewards
$(-3,4)$
N,W,S,E probability of failing to move, prey moves reward for capturing

Example: Predator-Prey Domain

- Predator-Prey domain

Markov decision process (MDP)

orey moves

Example: Predator-Prey Domain

- Predator-Prey domain

Markov decision process (MDP)

- Markovian state s...
- ...which is observed
- policy 7 maps states \rightarrow actions
- Value function Q(s,a)
- Value iteration: way to compute it.

Partial Observability

- Now: partial observability
- E.g., limited range of sight
- MDP + observations
- explicit observations
- observation probabilities
- noisy observations (detection probability)

$o=$ 'nothing '

Partial Observability

- Now: partial observability
- E.g., limited range of sight
- MDP + observations
- explicit observations
- observation probabilities
- noisy observations (detection probability)

$o=(-1,1)$

Partial Observability

- Now: partial observability
- E.g., limited range of sight
- MDP + observations
- explicit observations
- observation probabilities
- noisy observations (detection probability)

$o=(-1,1)$

Can not observe the state
\rightarrow Need to maintain a belief over states $b(s)$
\rightarrow Policy maps beliefs to actions $\pi(b)=a$

Partial Observability

- Now: partial observability

Partially Observable MDP (POMDP)

- N

$$
o=(-1,1)
$$

Can not observe the state

\rightarrow Need to maintain a belief over states $b(s)$
\rightarrow Policy maps beliefs to actions $\pi(b)=a$

Partial Observability

- Now: partial observability

Partially Observable MDP (POMDP)

- reduction \rightarrow continuous state MDP (in which the belief is the state)
- Value iterations:
- make use of α-vectors
(correspond to complete policies)
- perform pruning: eliminate dominated a's

$o=(-1,1)$

Can not observe the state
\rightarrow Need to maintain a belief over states $b(s)$
\rightarrow Policy maps beliefs to actions $\pi(b)=a$

Multiple Agents

- Now: multiple agents
- fully observable
- Formalization:
- states
- actions
- joint actions

- transitions
- rewards

Multiple Agents

- Now: multiple agents
- fully observable
- Formalization:
- states
- actions
- joint actions
- transitions
- rewards
((3,-4), (1,1), (-2,0))

\{N,W,S,E\}
$\{(N, N, N),(N, N, W), \ldots,(E, E, E)\}$
probability of failing to move, prey moves reward for capturing jointly

Multiple Agents

- Now: multiple agents

Multiagent MDP [Boutilier 1996]

- Differences with MDP
- n agents
- joint actions $a=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- Fo - transitions and rewards depend on joint actions
- Solution:
- Treat as normal MDP with 1 'puppeteer agent'
- Optimal policy $\pi(s)=a$
- Every agent executes its part
- rewards reward for capturing jointly

Multiple Agents

- Now: multiple agents

```
Catch: ...?
```

Multiage

- Differences with MDP
- n agents
- joint actions $q=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- Fo - transitions ard rewards depend on joint actions
- Solution:
- Treat as normal MDP with 1 'puppeteer agent'
- Optimal policy $\pi(s)=a$
- Every agent executes its part

- rewards reward for capturing jointly

Multiple Agents

- Now: multiple agents Multiage, (but other than that, conceptually simple.)
- Differences with MDP
- n agents
- joint actions $q=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
- Fo - transitions ardá rewards depend on joint actions
- Solution:
- Treat as normal MDP with 1 'puppeteer agent'
- Optimal policy $\pi(s)=a$
- Every agent executes its part


```
-Every agent executes its part
```

- rewards reward for capturing jointly

Multiple Agents \& Partial Observability

- Now: Both
- partial observability
- multiple agents

Multiple Agents \& Partial Observability

- Now: Both
- partial observability
- multiple agents
- Decentralized POMDPs (Dec-POMDPs) [Bernstein et al. 2002]

- both
- joint actions and
- joint observations

Multiple Agents \& Partial Observability

- Again we can make a reduction... any idea?

Multiple Agents \& Partial Observability

- Again we can make a reduction... Dec-POMDPs \rightarrow MPOMDP (multiagent POMDP)
- 'puppeteer' agent that
- receives joint observations
- takes joint actions

- requires broadcasting observations!
- instantaneous, cost-free, noise-free communication \rightarrow optimal [Pynadath and Tambe 2002]
- Without such communication: no easy reduction.

The Dec-POMDP Model

Acting Based On Local Observations

- MPOMDP: Act on global information
- Can be impractical:
- communication not possible
- significant cost (e.g battery power)
- not instantaneous or noise free
- scales poorly with number of agents!
- Alternative: act based only on local observations
- Other side of the spectrum: no communication at all
- (Also other intermediate approaches: delayed communication, stochastic delays)

Formal Model

- A Dec-POMDP
- $\left\langle S, A, P_{T}, O, P_{O}, R, h\right\rangle$
- n agents
- S - set of states
- A - set of joint actions
- P_{T} - transition function
- O - set of joint observations
- P_{o} - observation function
- R - reward function
- h - horizon (finite)

$a=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$
$P\left(s^{\prime} \mid s, a\right)$
$o=\left\langle o_{1}, o_{2}, \ldots, o_{n}\right\rangle$
$P\left(o \mid a, s^{\prime}\right)$
$R(s, a)$

Running Example

- 2 generals problem

Running Example

- 2 generals problem
S - $\left\{\mathrm{s}_{\mathrm{L}}, \mathrm{s}_{\mathrm{S}}\right\}$
$A_{i}-\{(\mathrm{O})$ bserve, (A)ttack $\}$
O_{i} - \{ (L)arge, (S)mall $\}$

Transitions

- Both Observe: no state change
- At least 1 Attack: reset with 50% probability

Observations

- Probability of correct observation: 0.85
- E.g., $P\left(<L, L>\mid S_{L}\right)=0.85$ * $0.85=0.7225$

Running Example

- 2 generals problem
$S-\left\{\mathrm{s}_{\mathrm{L}}, \mathrm{s}_{\mathrm{S}}\right\}$
$A_{i}-\{(\mathrm{O})$ bserve, (A)ttack $\}$
$\mathrm{O}_{i}-\{(\mathrm{L})$ arge, (S)mall $\}$
Rewards
- 1 general attacks: he loses the battle
- $R\left({ }^{*},<A, O>\right)=-10$
- Both generals Observe: small cost - $\mathrm{R}\left({ }^{*},<\mathrm{O}, \mathrm{O}>\right)=-1$
- Both Attack: depends on state
- $\mathrm{R}\left(\mathrm{s}_{\mathrm{L}},<\mathrm{A}, \mathrm{A}>\right)=-20$
- $R\left(\mathrm{~S}_{\mathrm{R}},<\mathrm{A}, \mathrm{A}>\right)=+5$

Running Example

- 2 generals problem
$S-\left\{\mathrm{s}_{\mathrm{L}}, \mathrm{s}_{\mathrm{S}}\right\}$
$A_{i}-\{(\mathrm{O})$ bserve, (A)ttack $\}$
$O_{i}-\{$ (L)arge, (S)mall $\}$
Rewards
- 1 general attacks: he loses the battle
- $R\left({ }^{*},<A, O>\right)=-10$
- Both generals Observe: small cost - $R\left({ }^{*},<\mathrm{O}, \mathrm{O}>\right)=-1$
- Both Attack: depends on state
- $\mathrm{R}\left(\mathrm{s}_{\mathrm{L}},<\mathrm{A}, \mathrm{A}>\right)=-20$
- $R\left(\mathrm{~S}_{\mathrm{R}},<\mathrm{A}, \mathrm{A}>\right)=+5$

Off-line / On-line phases

- off-line planning, on-line execution is decentralized

Planning Phase

Execution Phase

Policy Domain

- What do policies look like?
- In general histories \rightarrow actions
- before: more compact representations...
- Now, this is difficult: no such representation known!
\rightarrow So we will be stuck with histories

Policy Domain

- What do policies look like?
- In general histories \rightarrow actions
- before: more compact representations...
- Now, this is difficult: no such representation known!
\rightarrow So we will be stuck with histories

Most general, AOHs:

$$
\left(a_{i}^{0,} o_{i}^{1,} a_{i}^{1}, \ldots, a_{i}^{t-1}, o_{i}^{t}\right)
$$

But: can restrict to deterministic policies \rightarrow only need OHs:

$$
\vec{o}_{i}=\left(o_{i}^{1,} \ldots, o_{i}^{t}\right)
$$

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, $b(s)$ (as in MPOMDP) [Pynadath and Tambe 2002]
- compute b(s) using joint actions and observations
- Problem:
?

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, $b(s)$ (as in MPOMDP) [Pynadath and Tambe 2002]
- compute b(s) using joint actions and observations
- Problem: agents do not know those during execution

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, $b(s)$ (as in MPOMDP) [Pynadath and Tambe 2002]
- compute b(s) using joint actions and observations
- Problem: agents do not know those during execution
- Multiagent belief, $b_{i}\left(s, q_{-i}\right)$ [Hansen et al. 2004]
- belief over (future) policies of other agents
- Need to be able to predict the other agents!
- for belief update $P\left(s^{\prime} \mid s, a_{i}, a_{-i}\right), P\left(o \mid a_{i}, a_{i j}, s^{\prime}\right)$, and prediction of $R\left(s, a_{i}, a_{-i}\right)$
- form of those other policies? most general: $\pi_{j}: \vec{o}_{j} \rightarrow a_{j}$
- if they use beliefs? \rightarrow infinite recursion of beliefs!

Goal of Planning

- Find the optimal joint policy $\pi^{*}=\left\langle\pi_{1}, \pi_{2}\right\rangle$
- where individual policies map OHs to actions $\pi_{i}: \vec{O}_{i} \rightarrow A_{i}$
- What is the optimal one?
- Define value as the expected sum of rewards:

$$
V(\pi)=\boldsymbol{E}\left[\sum_{t=0}^{h-1} R(s, a) \mid \pi, b^{0}\right]
$$

- optimal joint policy is one with maximal value (can be more that achieve this)

Goal of Planning

- Find Optimal policy for 2 generals, h=3

- wh

```
value=-2.86743
```

- What () --> observe $\begin{aligned} & \text { (o_small) --> observe }\end{aligned}$
- Def (o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(O_large,o_large) --> observe
() --> observe
(o_small) --> observe
(o_large) --> observe
- opti(o_small,o_small) --> attack
(cal (o_small,o_large) --> attack
(o_large,o_small) --> attack
(O_large,o_large) --> observe

Goal of Planning

- Find Optimal policy for 2 generals, $\mathrm{h}=3$
- whe
value $=-2.86743$
- What () --> observe $\begin{aligned} & \text { (o_small) --> observe }\end{aligned}$
- De_(olarge) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(O_large,o_large) --> observe
() --> observe
(o_small) --> observe
(o_large) --> observe
- opti (o_small,o_small) --> attack (cal (o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Coordination vs. Exploitation of Local Information

- Inherent trade-off

coordination vs. exploitation of local information

- Ignore own observations \rightarrow 'open loop plan'
- E.g., "ATTACK on 2nd time step"
+ maximally predictable
- low quality
- Ignore coordination

$$
b_{i}(s)=\sum_{q_{-i}} b\left(s, q_{-i}\right)
$$

- E.g., compute an individual belief $b_{i}(s)$ and execute the MPOMDP policy
+ uses local information
- likely to result in mis-coordination
- Optimal policy π^{*} should balance between these.

Planning Methods

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
- using a Bellman-like equation [oliehoek 2012]
- So the stupidest algorithm is:
- compute $V(\pi)$, for all π
- select a π with maximum value
- Number of joint policies is huge! (doubly exponential in horizon h)
- Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	$1.0737 \mathrm{e}+09$
5	$4.6117 \mathrm{e}+18$
6	$8.5071 \mathrm{e}+37$
7	$2.8948 \mathrm{e}+76$
8	$3.3520 \mathrm{e}+153$

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
- using a Bellman-like equation [Oliehoek 2012]

No easy way out...
The problem is NEXP-complete [Bernstein et al. 2002]
most likely (assuming EXP != NEXP) doubly exponential time required.
(auaviy expulientar mionzorr)

- Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	$1.0737 \mathrm{e}+09$
5	$4.6117 \mathrm{e}+18$
6	$8.5071 \mathrm{e}+37$
7	$2.8948 \mathrm{e}+76$
8	$3.3520 \mathrm{e}+153$

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
- using a Bellman-like equation [Oliehoek 2012]

No easy way out...

h	num. joint policies
1	4
2	64
3	16384
4	$1.0737 e+09$
5	$4.6117 e+18$
6	$8.5071 e+37$
7	$2.8948 e+76$

- Clearly intract́́ • Still, there are better algorithms that work better for at least some problems...
- Useful to understand what optimal really means! (trying to compute it helps understanding)

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{r=1}$
- construct all 2-stages-to-go policies $Q^{r=2}$, etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {=1 }}$

Exhaustive backup operation

etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {r=1 }}$

Exhaustive backup operation
etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {=1 }}$

Exhaustive backup operation

etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {=1 }}$

Exhaustive backup operation
etc.

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {=1 }}$

Dynamic Programming - 1

- Generate all policies in a special way:
- from 1 stage-to-go policies $Q^{\text {r=1 }}$

Dynamic Programming - 2

- (obviously) this scales very poorly...

Dynamic Programming - 2

- (obviously) this scales very poorly...

$$
Q_{1}^{\mathrm{T}=2}
$$

$$
Q_{2}^{\tau=2}
$$

Dynamic Programming - 2

- (obviously) this scales very poorly...

$$
Q_{1}^{r=3}
$$

ภీ

 గీ

 గీళ గీ శీ

$$
Q_{2}^{\tau=3}
$$

 ภీ\% శి
 ภీ\% శి

Dynamic Programming－ 2

－（obviously）this scales very poorly．．．

$$
Q_{1}^{\mathrm{T}=3}
$$

Rీ

శీ

纤 but．．．

及品
 \％ 888880
ภో
Rీ శీ

Dynamic Programming - 3

- Perhaps not all those Q_{i}^{τ} are useful!
- Perform pruning of 'dominated policies'!
- Algorithm [Hansen et al. 2004] $\quad Q_{i}^{\mathrm{r}=1}=A_{i}$

```
Initialize Q1(1), Q2(1)
for tau=2 to h
    Q1(tau) = ExhaustiveBackup(Q1(tau-1))
    Q2(tau) = ExhaustiveBackup(Q2(tau-1))
    Prune(Q1,Q2,tau)
end
```


Dynamic Programming - 3

- Perhaps not all those Q_{i}^{τ} are useful!
- Perform pruning of 'dominated policies'!
- Algorithm [Hansen et al. 2004]

$$
Q_{i}^{\tau=1}=A_{i}
$$

```
Initialize Q1(1), Q2(1)
for tau=2 to h
    Q1(tau) = ExhaustiveBackup(Q1(tau-1))
    Q2(tau) = ExhaustiveBackup(Q2(tau-1))
    Prune(Q1,Q2,tau)
```

end

Note: cannot prune independently!

- usefulness of a q_{1} depends on Q_{2}
- and vice versa
\rightarrow Iterated elimination of policies

Dynamic Programming - 4

- Initialization

$$
Q_{1}^{\tau=1}
$$

$$
Q_{2}^{\mathrm{T}=1}
$$

(A) 0

Dynamic Programming - 4

- Exhaustive Backups gives

$$
Q_{1}^{\mathrm{T}=2}
$$

$$
Q_{2}^{\mathrm{T}=2}
$$

Dynamic Programming - 4

- Pruning agent 1 ...

Hypothetical Pruning
(not the result of actual pruning)

$$
Q_{1}^{\mathrm{T}=2}
$$

$$
Q_{2}^{\tau=2}
$$

Dynamic Programming - 4

- Pruning agent 2...

$$
\begin{array}{l|l}
Q_{1}^{\tau=2} & Q_{2}^{\tau=2}
\end{array}
$$

-

Dynamic Programming - 4

- Pruning agent 1 ...

$$
Q_{1}^{\mathrm{T}=2}
$$

$$
Q_{2}^{\mathrm{T}=2}
$$

Dynamic Programming - 4

- Etc...

Dynamic Programming - 4

- Etc...

Dynamic Programming - 4

- Exhaustive backups:

$$
Q_{1}^{\mathrm{T}=3}
$$

ఓీ షి గ్ R"
 గ్ గ్

 Kix గ్రిషి

We avoid generation of many policies!

$$
Q_{2}^{\mathrm{T}=3}
$$

గ్ గ్ గీ గి గి

 Kి

Dynamic Programming - 4

- Exhaustive backups:
$Q_{1}^{\tau=3}$

గీ శీ
 గి గి గి గి

$$
Q_{2}^{\mathrm{T}=3}
$$

Rీ

Dynamic Programming - 4

- Pruning agent 1 ...

$$
Q_{1}^{\mathrm{T}=3}
$$

శో ณః గ్రీ గీ గి

$$
Q_{2}^{\tau=3}
$$

 గీ

Dynamic Programming - 4

- Pruning agent 2...

Dynamic Programming - 4

- Etc...

Dynamic Programming - 4

Dynamic Programming - 4

- Etc...

At the very end:

- evaluate all the remaining combinations of policies (i.e., the 'induced joint policies')
- select the best one

Bottom-up vs. Top-down

- DP constructs bottom-up
- Alternatively try and construct top down
\rightarrow leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]

Heuristic Search - Intro

- Core idea is the same as DP:
- incrementally construct all (joint) policies
- try to avoid work
- Differences
- different starting point and increments
- use heuristics (rather than pruning) to avoid work

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 joint policy

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 partial joint policy

Start with unspecified policy

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 partial joint policy

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 partial joint policy

Heuristic Search - 1

- Incrementally construct all (joint) policies
- 'forward in time'

1 complete joint policy (full-length)

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 2

- Creating ALL joint policies \rightarrow tree structure!

Heuristic Search - 3

- too big to create completely...
- Idea: use heuristics
- avoid going down non-promising branches!

- Apply A* \rightarrow Multiagent A* [Szer et al. 2005]

Heuristic Search - 3

- too biatn cranta complataly
- Idea:

Main intuition A^{*}

- Apply
- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Heuristic Search - 3

- too biatn cranta complataly
- Idea:

Main intuition A^{*}

- Apply

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Heuristic Search - 3

- too biatn ornata complataly
- Idea:

Main intuition A^{*}

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Heuristic Search - 3

- too biato cronta complatalv
- Idea:

Main intuition A^{*}

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Heuristic Search - 3

- too biato oronto
- Idea:

Main intuitior

F-Value of a node n

- $F(n)$ is a optimistic estimate
- I.e., $\mathrm{F}(\mathrm{n})>=\mathrm{V}(\mathrm{n}$ ') for any descendant n ' of n
- $F(n)=G(n)+H(n)$

Optimistic estimate of reward below n
(reward for stages $\mathrm{t}, \mathrm{t}+1, \ldots, \mathrm{~h}-1$)

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel\&Norvig 2003]

Heuristic Search - 4

- Use heuristics $F(n)=G(n)+H(n)$
- $G(n)$ - actual reward of reaching n
- a node at depth t specifies φ^{t} (i.e., actions for first t stages)
\rightarrow can compute $\mathrm{V}\left(\varphi^{t}\right)$ over stages $0 . . . t-1$
- H(n) - should overestimate!
- E.g., pretend that it is an MDP
- compute

$$
H(n)=H\left(\phi^{t}\right)=\sum_{s} P\left(s \mid \phi^{t}, b^{0}\right) \hat{V}_{M D P}(s)
$$

Heuristics - 1

- QPOMDP: Solve 'underlying POMDP'
- corresponds to immediate communication

$$
H\left(\phi^{t}\right)=\sum_{\vec{\theta}^{\prime}} P\left(\vec{\theta}^{t} \mid \phi^{t}, b^{0}\right) \hat{V}_{\text {POMDP }}\left(b^{\vec{b}^{\prime}}\right)
$$

- QBG corresponds to 1-step delayed communication
- Hierarchy of upper bounds [Oliehoek et al. 2008]

$$
Q^{*} \leq \hat{Q}_{k B G} \leq \hat{Q}_{B G} \leq \hat{Q}_{P O M D P} \leq \hat{Q}_{M D P}
$$

Further Developments

- DP
- Improvements to exhaustive backup [Amato et al. 2009]
- Compression of values (LPC) [Boularias \& Chaib-draa 2008]
- (Point-based) Memory bounded DP [Seuken \& Zilberstein 2007a]
- Improvements to PB backup [Seuken \& Zilberstein 2007b, Carlin and Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]
- Heuristic Search
- No backtracking: just most promising path [Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]
- Clustering of histories: reduce number of child nodes [Oliehoek et al. 2009]
- Incremental expansion: avoid expanding all child nodes [Spaan et al. 2011]
- MILP [Aras and Dutech 2010]

h	MILP	DP-LPC	DP-IPG	GMAA - Q_{BG}		
				IC	ICE	heur
Broadcast Channel, ICE solvable to $h=900$						
2	0.38	≤ 0.01	0.09	≤ 0.01	≤ 0.01	≤ 0.01
3	1.83	0.50	56.66	≤ 0.01	≤ 0.01	≤ 0.01
4	34.06	*	*	≤ 0.01	≤ 0.01	≤ 0.01
5	48.94			≤ 0.01	≤ 0.01	≤ 0.01
Dec-Tiger, ICE solvable to $h=6$						
2	0.69	0.05	0.32	≤ 0.01	≤ 0.01	≤ 0.01
3	23.99	60.73	55.46	≤ 0.01	≤ 0.01	≤ 0.01
4	*	-	2286.38	0.27	≤ 0.01	0.03
5			-	21.03	0.02	0.09

FireFighting (2 agents, 3 houses, 3 firelevels), ICE solvable to $h \gg 1000$

2	4.45	8.13	10.34	≤ 0.01	≤ 0.01	≤ 0.01
3	-	-	569.27	0.11	0.10	0.07
4			-	950.51	1.00	0.65

GridSmall, ICE solvable to $h=6$

2	6.64	11.58	0.18	0.01	≤ 0.01	≤ 0.01
3	$*$	-	4.09	0.10	≤ 0.01	0.42
4			77.44	1.77	≤ 0.01	67.39

Recycling Robots, ICE solvable to $h=70$

2	1.18	0.05	0.30	≤ 0.01	≤ 0.01	≤ 0.01
3	$*$	2.79	1.07	≤ 0.01	≤ 0.01	≤ 0.01
4		2136.16	42.02	≤ 0.01	≤ 0.01	0.02
5		-	1812.15	≤ 0.01	≤ 0.01	0.02

Hotel 1, ICE solvable to $h=9$

2	1.92	6.14	0.22	≤ 0.01	≤ 0.01	0.03
3	315.16	2913.42	0.54	≤ 0.01	≤ 0.01	1.51
4	-	-	0.73	≤ 0.01	≤ 0.01	3.74
5			1.11	≤ 0.01	≤ 0.01	4.54
9			8.43	0.02	≤ 0.01	20.26
10			17.40	$\#$	$\#$	
15			283.76			

Cooperative Box Pushing ($\mathrm{Q}_{\text {Pomdp }}$), ICE solvable to $h=4$

2	3.56	15.51	1.07	≤ 0.01	≤ 0.01	≤ 0.01
3	2534.08	-	6.43	0.91	0.02	0.15
4	-		1138.61	$*$	328.97	0.63

State of the Art

h	V^{*}	$T_{G M A A *}(\mathrm{~s})$	$T_{I C}(\mathrm{~s})$	$T_{I C E}(\mathrm{~s})$
Recycling Robots				
3	10.660125	≤ 0.01	≤ 0.01	≤ 0.01
4	13.380000	713.41	≤ 0.01	≤ 0.01
5	16.486000	-	≤ 0.01	≤ 0.01
6	19.554200		≤ 0.01	≤ 0.01
10	31.863889		≤ 0.01	≤ 0.01
15	47.248521		≤ 0.01	≤ 0.01
20	62.633136		≤ 0.01	≤ 0.01
30	93.402367		0.08	0.05
40	124.171598		0.42	0.25
50	154.940828		2.02	1.27
70	216.479290		-	28.66
80			-	
BroadcastChannel				
4	3.890000	≤ 0.01	≤ 0.01	≤ 0.01
5	4.790000	1.27	≤ 0.01	≤ 0.01
6	5.690000	-	≤ 0.01	≤ 0.01
7	6.590000		≤ 0.01	≤ 0.01
10	9.290000		≤ 0.01	≤ 0.01
25	22.881523		≤ 0.01	≤ 0.01
50	45.501604		≤ 0.01	≤ 0.01
100	90.760423		≤ 0.01	≤ 0.01
250	226.500545		0.06	0.07
500	452.738119		0.81	0.94
700	633.724279		0.52	0.63
800			-	-
900	814.709393		9.57	11.11
1000			-	-

Scalability w.r.t. \#agents

Cases that compress well

* excluding heuristic

State of The Art

Approximate (no quality guarantees)

- MBDP: linear in horizon [Seuken \& zilberstein 2007a]
- Rollout sampling extension: up to 20 agents [Wu et al. 2010b]
- Transfer planning: use smaller problems to solve large (structured) problems (up to 1000) agents [Oliehoek et al. 2013]

Related Areas

- Partially observable stochastic games [Hansen et al. 2004]
- Non-identical payoff
- Interactive POMDPs [Gmytrasiewicz \& Doshi 2005, JAIR]
- Subjective view of MAS
- Imperfect information extensive form games
- Represented by game tree
- E.g., poker [Sandholm 2010, Al Magazine]

References

- References can be found on the tutorial website:

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

- Further references can be found in Frans A. Oliehoek. Decentralized POMDPs. In Wiering, Marco and van Otterlo, Martijn, editors, Reinforcement Learning: State of the Art, Adaptation, Learning, and Optimization, pp. 471-503, Springer Berlin Heidelberg, Berlin, Germany, 2012.
- Available from http://people.csail.mit.edu/fao/

Decision making under uncertainty

Matthiis Spaan ${ }^{1}$ and Frans Oliehoek ${ }^{2}$

${ }^{1}$ Delft University of Technology
${ }^{2}$ Maastricht University

Part 4: Selected Further Topics

European Agent Systems Summer School (EASSS '13)

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

Some Further Topics

High-level overview:

- Communication
- Factored Models
- Single Agent
- Multiple agents

Communication

- Already discussed: instantaneous cost-free and noise-free communication
- Dec-MDP \rightarrow multiagent MDP (MMDP)
- Dec-POMDP \rightarrow multiagent POMDP (MPOMDP)
- but in practice:
- probability of failure
- delays
- costs
- Also: implicit communication! (via observations and actions)

Implicit Communication

- Encode communications by actions and observations

- Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zillberstein 2003, Spaan et al. 2006]

Implicit Communication

- Encode communications by actions and observations

- Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

Implicit Communication

- Encode communications by actions and observations

- Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
- E.g. communication bit
- doubles the \#actions and observations!
- Clearly, useful... but intractable for general settings (perhaps for analysis of very small communication systems)

Explicit Communication

- perform a particular information update (e.g., sync) as in the MPOMDP:
- each agent broadcasts its information, and
- each agent uses that to perform joint belief update
- Other approaches:
- Communication cost [Becker et al. 2005]
- Delayed communication [Hsu 1982, Spaan 2008, Oliehoek 2012]
- communicate every k stages [Goldman \& Zilberstein 2008]

Some Further Topics

Overview:

- On-line planning
- Communication
- Factored Models
- Single Agent
- Multiple agents

Factored MDPs

- So far: used 'states'
- But in many problems states are factored
- state is an assignment of variables $s=\left\langle f_{1}, f_{2}, \ldots, f_{k}\right\rangle$
- factored MDP [Boutilier et al. 99 JAIR]

Examples:

- Predator-prey: x, y coordinate!
- Robotic P.A.

- location of robot (lab, hallway, kitchen, mail room), tidiness of lab, coffee request, robot holds coffee, mail present, robot holds mail, etc.
- Actions: move (2 directions), pickup coffee/mail, deliver coffee/mail

Factored States \& Transitions

$$
s^{t+1}
$$

Factored States \& Transitions

CPT encodes that IF

- loc=lab
- $\mathrm{CR}=1$
\rightarrow high probability of CR becoming 0

Solving Factored MDPs

- CPT also representable as a decision tree

Solving Factored MDPs

- CPT also representable as a decision tree

Solving Factored MDPs

- CPT also representable as a decision tree

$$
\begin{array}{ll}
\left.R^{\prime}=1\right)=1 & P\left(C R^{\prime}=1\right)=0.05 \\
\left.R^{\prime}=0\right)=0 & P\left(C R^{\prime}=0\right)=0.95
\end{array}
$$ policies as decision trees [Boutilier et al 99]

Factored POMDPs

- Of course POMDP models can also be factored
- Similar ideas applied [Hansen \& Feng 2000, Poupart 2005, Shani et al. 2008]
- α-vectors represented by ADDs
- beliefs too.
- This does not solve all problems:
- over time state factors get more and more correlated, so representation grows large.

Factored Multiagent Models

- Of course multiagent models can also be factored!
- Work can be categorized in a few directions:
- Trying to execute the factored (PO)MDP policy [Roth et al. 2007, Messias et al. 2011]
- Trying to execute independently as much as possible [Spaan \& Melo 2008, Melo \& Veloso 2011]
- Exploiting graphical structure between agents (ND-POMDPs, Factored Dec-POMDPs)
- Influence-based abstraction of policies of other agents (TOI-Dec-MDPs, TD-POMDPs, IBA for POSGs)

Graphical Structure between Agents

- Exploit (conditional) independence between agents
- E.g., sensor networks [Nair et al '05 AAAI, Varakantham et al. '07 AAMAS]

Graphical Structure between Agents

- Exploit (conditional These problems have
- E.g., sensor networ

- State that cannot be influenced
- Factored reward function

$$
R(s, a)=\sum_{e} R_{e}\left(s, a_{e}\right)
$$

Graphical Structure between Agents

- Exploit (conditional These problems have
- E.g., sensor networ

- State that cannot be influenced
- Factored reward function

$$
R(s, a)=\sum_{e} R_{e}\left(s, a_{e}\right)
$$

This allows a reformulation as a (D)COP

Graphical Structure between Agents

- Exploit (conditional These problems have
- E.g., sensor networ
- State that cannot be influenced
- Factored reward function

$$
R(s, a)=\sum_{e} R_{e}\left(s, a_{e}\right)
$$

Graphical Structure between Agents

- Factored Dec-POMDPs [Oliehoek et al. 2008 AAMAS]

Graphical Structure between Agents

- Factored Dec-POMDPs [Oliehoek et al. 2008 AAMAS]

Solution Methods

- reduction to a type of COP
- but now: one for each stage!

- $\bar{\delta}$ is a decision rule (part of policy for 1 stage t)
\rightarrow leads to factored form of heuristic search [Oliehoek 2013 AAMAS]

Influence-Based Abstraction

- Try to define agents' local state
- Analyze how policies of other agents affect it
- find compact description for this influence
- Example: Mars Rovers [Becker et al. 2004 JAIR]
- 2 rovers collect data at 4 sites

Influence-Based Abstraction

Transitions independent: Rovers drive independently Rewards are dependent:

- 2 same soil samples of same site not so useful (sub additive)
- 2 pictures of (different sides) of same rock is useful (super additive)
- Example: Mars Rovers [Becker et al. 2004 JAIR]
- 2 rovers collect data at 4 sites

Influence-Based Abstraction

- TI Dec-MDP
- extra reward (or penalty) at the end if 'joint event' happens
- joint event $E=<e_{1}, e_{2}>$
- From agent i's perspective: if it realizes e_{i}
\rightarrow extra reward with probability $P\left(e_{j}\right)$

Influence-Based Abstraction

- TI Dec-MDP

- extra reward (or penalty) at the end if 'joint event' happens
- joint event $E=<e_{1}, e_{2}>$

Much further research, e.g.:

- Event-driven Dec-MDPS [Becker et al. 04 AAMAS]
- Transition-decoupled POMDPs [Witwicki 2011 PhD]
- EDI-CR [Mostafa \& Lesser 2009 WIIAT]
- IBA for Factored POSGs [Oliehoek et al. 2012 AAAI]

Recap: Decision Making under Uncertainty

Recap: MDPs

- MDPs:
- 1 agent
- perfectly observable
- outcome uncertainty

- Bellman equation
- Value iteration

Recap: POMDPs

- POMDP
- 1 agent

- state uncertainty
- Reduction: belief-state MDP
- continuous states
- vectors for value iteration

Recap: Multiagent MDP

- Multiagent MDP (MMDP)
- multiple agents
- outcome uncertainty
- fully observable
- Reduction to single-agent problem
- 'puppeteer'

- value iteration, etc.
- but exponentially many joint actions - e.g., [Guestrin et al. 2002 NIPS]

Recap: Partially Observable MAS

- Multiagent POMDP
- Free communication
- Reduces to single-agent problem
- Dec-POMDP
- No (free) communication
- Harder: NEXP-complete
- Solution methods:

- Bottom-up: dynamic programming
- Top-down: heuristic search

References

- References can be found on the tutorial website: www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/
- Further references can be found in Frans A. Oliehoek. Decentralized POMDPs. In Wiering, Marco and van Otterlo, Martijn, editors, Reinforcement Learning: State of the Art, Adaptation, Learning, and Optimization, pp. 471-503, Springer Berlin Heidelberg, Berlin, Germany, 2012.
- Available from http://people.csail.mit.edu/fao/

