
Decision Making under Uncertainty

Matthijs Spaan§ Frans Oliehoek∗

§Delft University of Technology
∗Maastricht University

The Netherlands

15th European Agent Systems Summer School (EASSS ’13)
London, UK

http://www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

July 2, 2013

http://www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

Outline

This lecture:

1. Introduction to decision making under uncertainty

2. Planning under action uncertainty (MDPs)

3. Planning under sensing uncertainty (POMDPs)

After the break:

1. Multiagent planning

2. Selected further topics

Introduction

Introduction

◮ Goal in Artificial Intelligence: to build intelligent agents.

◮ Our definition of “intelligent”: perform an assigned task as

well as possible.

◮ Problem: how to act?

◮ We will explicitly model uncertainty.

Applications

◮ Resource planning

◮ Maintenance

◮ Queue management

◮ Medical decision making

Agents

◮ An agent is a (rational) decision maker who is

able to perceive its external (physical)

environment and act autonomously upon it

(Russell and Norvig, 2003).

◮ Rationality means reaching the optimum of a

performance measure.

◮ Examples: humans, robots, some software

programs.

Agents

environment

agent

action

observation

state

◮ It is useful to think of agents as being involved in a

perception-action loop with their environment.

◮ But how do we make the right decisions?

Planning

Planning:

◮ A plan tells an agent how to act.

◮ For instance
◮ A sequence of actions to reach a goal.
◮ What to do in a particular situation.

◮ We need to model:
◮ the agent’s actions
◮ its environment
◮ its task

We will model planning as a sequence of decisions.

Classic planning

◮ Classic planning: sequence of actions from start to goal.

◮ Task: robot should get to gold as quickly as possible.

◮ Actions: → ↓ ← ↑

◮ Limitations:
◮ New plan for each start state.
◮ Environment is deterministic.

Classic planning

◮ Classic planning: sequence of actions from start to goal.

◮ Task: robot should get to gold as quickly as possible.

◮ Actions: → ↓ ← ↑

◮ Limitations:
◮ New plan for each start state.
◮ Environment is deterministic.

◮ Three optimal plans: →→ ↓,→ ↓ →, ↓ → →.

Conditional planning

◮ Assume our robot has noisy actions (wheel slip,

overshoot).

◮ We need conditional plans.

◮ Map situations to actions.

Decision-theoretic planning

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

◮ Positive reward when reaching goal, small penalty for all

other actions.

◮ Agent’s plan maximizes value: the sum of future rewards.

◮ Decision-theoretic planning successfully handles noise in

acting and sensing.

Decision-theoretic planning

Plan #1:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Plan #2:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Decision-theoretic planning

Optimal values (encode optimal plan):

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

Markov Decision Processes

Sequential decision making under uncertainty

◮ Uncertainty is abundant in real-world planning domains.

◮ Bayesian approach⇒ probabilistic models.

Main assumptions:

Sequential decisions: problems are formulated as a sequence

of “independent” decisions;

Markovian environment: the state at time t depends only on

the events at time t − 1;

Evaluative feedback: use of a reinforcement signal as

performance measure (reinforcement learning);

Transition model

◮ For instance, robot motion

is inaccurate.

◮ Transitions between states

are stochastic.

◮ p(s′|s, a) is the probability

to jump from state s to

state s′ after taking

action a.

?
??
?

?

MDP Agent

7

o environment

action a

obs. s

reward r

π

state s

MDP Agent

7

o environment

action a

obs. s

reward r

π

state s

p(s′|s, a)

MDP Agent

7

o environment

action a

obs. s

reward r

π

state s

R(s, a)

Optimality criterion

For instance, agent should maximize the value

E
[

h
∑

t=0

γtRt

]

, (1)

where

◮ h is the planning horizon, can be finite or∞

◮ γ is a discount rate, 0 ≤ γ < 1

Reward hypothesis (Sutton and Barto, 1998):

All goals and purposes can be formulated as the maximization

of the cumulative sum of a received scalar signal (reward).

Discrete MDP model

Discrete Markov Decision Process model (Puterman, 1994;

Bertsekas, 2000):

◮ Time t is discrete.

◮ State space S.

◮ Set of actions A.

◮ Reward function R : S × A 7→ R.

◮ Transition model p(s′|s, a), Ta : S × A 7→ ∆(S).

◮ Initial state s0 is drawn from ∆(S).

The Markov property entails that the next state st+1 only

depends on the previous state st and action at :

p(st+1|st , st−1, . . . , s0, at , at−1, . . . , a0) = p(st+1|st , at). (2)

A simple problem

Problem:

An autonomous robot must learn how to transport material from

a deposit to a building facility.

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

(thanks to F. Melo)

Load/Unload as an MDP

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

◮ States: S = {1U , 2U , 3U , 1L, 2L, 3L};
1U Robot in position 1 (unloaded);

2U Robot in position 2 (unloaded);

3U Robot in position 3 (unloaded);

1L Robot in position 1 (loaded);

2L Robot in position 2 (loaded);

3L Robot in position 3 (loaded)

◮ Actions: A = {Left, Right, Load, Unload};

Load/Unload as an MDP (1)

◮ Transition probabilities: “Left”/“Right” move the robot in the

corresponding direction; “Load” loads material (only in

position 1); “Unload” unloads material (only in position 3).

Ex:

(2L,Right) → 3L;

(3L,Unload) → 3U ;

(1L,Unload) → 1L.

◮ Reward: We assign a reward of +10 for every unloaded

package (payment for the service).

Load/Unload as an MDP (2)

◮ For each action a ∈ A, Ta is a matrix.

Ex:

TRight =

















0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

















◮ Recall: S = {1U , 2U , 3U , 1L, 2L, 3L}.

Load/Unload as an MDP (3)

◮ The reward R(s, a) can also be represented as a matrix

Ex:

R =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 +10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Policies and value

◮ Policy π: tells the agent how to act.

◮ A deterministic policy π : S 7→ A is a mapping from states

to actions.

◮ Value: how much reward E [
∑h

t=0 γ
tRt] does the agent

expect to gather.

◮ Value denoted as Qπ(s, a): start in s, do a and follow π

afterwards.

Policies and value (1)

◮ Extracting a policy π from a value function Q is easy:

π(s) = arg max
a∈A

Q(s, a). (3)

◮ Optimal policy π∗: one that maximizes E [
∑h

t=0 γ
tRt] (for

every state).

◮ In an infinite-horizon MDP there is always an optimal

deterministic stationary (time-independent) policy π∗.

◮ There can be many optimal policies π∗, but they all share

the same optimal value function Q∗.

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?
0 ? ? ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?
0 0 ? ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?
0 0 0 ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?

0 0 0 ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

















Q2 =

















? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

















Q2 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 ? 0 0

0 ? ? 10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

















Q2 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 9.5 0 0

0 9.5 9.5 10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Iterations of dynamic programming (γ = 0.95):

Q5 =

















0 0 8.57 0

0 0 0 0

0 0 0 0

8.57 9.03 8.57 8.57

8.57 9.5 9.03 9.03

9.03 9.5 9.5 10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Iterations of DP:

Q20 =

















18.53 17.61 19.51 18.54

18.53 16.73 17.61 17.61

17.61 16.73 16.73 16.73

19.51 20.54 19.51 19.51

19.51 21.62 20.54 20.54

20.54 21.62 21.62 26.73

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}

Dynamic programming

Final Q∗ and policy:

Q∗ =

















30.75 29.21 32.37 30.75

30.75 27.75 29.21 29.21

29.21 27.75 27.75 27.75

32.37 34.07 32.37 32.37

32.37 35.86 34.07 34.07

34.07 35.86 35.86 37.75

















π∗ =

















Load

Left

Left

Right

Right

Unload

















Value iteration

◮ Value iteration: successive approximation technique.

◮ Start with all values set to 0.

◮ In order to consider one step deeper into the future, i.e., to

compute V ∗
n+1 from V ∗

n :

Q∗
n+1(s, a) := R(s, a) + γ

∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗
n(s

′, a′), (4)

which is known as the dynamic programming update or

Bellman backup.

◮ Bellman (1957) equation:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗(s′, a′). (5)

Value iteration (1)

Initialize Q arbitrarily, e.g., Q(s, a) = 0, ∀s ∈ S, a ∈ A

repeat

δ ← 0

for all s ∈ S, a ∈ A do

v ← Q(s, a)
Q(s, a)← R(s, a) + γ

∑

s′∈S p(s′|s, a)maxa′∈A Q(s′, a′)
δ ← max(δ, |v −Q(s, a)|)

end for

until δ < ǫ

Return Q

Value iteration (2)

Value iteration discussion:

◮ As n→∞, value iteration converges.

◮ Value iteration has converged when the largest update δ in

an iteration is below a certain threshold ǫ.

◮ Exhaustive sweeps are not required for convergence,

provided that in the limit all states are visited infinitely often.

◮ This can be exploited by backing up the most promising

states first, known as prioritized sweeping.

Solution methods: MDPs

Model based

◮ Basic: dynamic programming (Bellman, 1957), value

iteration, policy iteration.

◮ Advanced: prioritized sweeping, function approximators.

Model free, reinforcement learning (Sutton and Barto, 1998)

◮ Basic: Q-learning, TD(λ), SARSA, actor-critic.

◮ Advanced: generalization in infinite state spaces,

exploration/exploitation issues.

POMDPs

Beyond MDPs

◮ Real agents cannot directly observe the state.

◮ Sensors provide partial and noisy information about the

world.

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

◮ Fault recovery

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

◮ Fault recovery

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

◮ Fault recovery

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

◮ Fault recovery

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

◮ Fault recovery

Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

◮ Fault recovery

Observation model

◮ Imperfect sensors.

◮ Partially observable environment:
◮ Sensors are noisy.
◮ Sensors have a limited view.

◮ p(o|s′, a) is the probability the agent receives observation

o in state s′ after taking action a.

POMDP Agent

7

o environment

action a

obs. o

reward r

π

state s

POMDP Agent

7

o environment

action a

obs. o

reward r

π

state s

p(s′|s, a)

POMDP Agent

7

o environment

action a

obs. o

reward r

π

state s

p(o|s′, a)

POMDP Agent

7

o environment

action a

obs. o

reward r

π

state s

R(s, a)

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

(s

A B

goA goB

−r−r

goA, +r

goB, +r

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy

POMDP: memoryless deterministic

POMDP: memoryless stochastic

POMDP: memory-based (optimal)

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic

POMDP: memoryless stochastic

POMDP: memory-based (optimal)

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr
1−γ

POMDP: memoryless stochastic

POMDP: memory-based (optimal)

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr
1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal)

Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):

A B

goA goB

−r−r

goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr
1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal) Vmin = γr
1−γ
− r

Beliefs

Beliefs:

◮ The agent maintains a belief b(s) of being at state s.

◮ After action a ∈ A and observation o ∈ O the belief b(s)
can be updated using Bayes’ rule:

b′(s′) ∝ p(o|s′)
∑

s

p(s′|s, a)b(s)

◮ The belief vector is a Markov signal for the planning task.

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

?
0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

?
0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Belief update example

True situation:

Robot’s belief:

0

0.25

0.5

◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

MDP-based algorithms

◮ Exploit belief state, and use the MDP solution as a

heuristic.

◮ Most likely state (Cassandra et al., 1996):

πMLS(b) = π∗(arg maxs b(s)).

◮ QMDP (Littman et al., 1995):

πQMDP
(b) = arg maxa

∑

s b(s)Q∗(s, a).

C

I

A

A

D

+1
c

ba

a

0.5

0.5
b

c

a

ab

b

−1

(Parr and Russell, 1995)

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

◮ Stochastic Markovian transition model

p(bo
a |b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

◮ Reward function R(b, a) =
∑

s R(s, a)b(s). This is the

average reward with respect to b(s).

◮ The robot fully ‘observes’ the new belief-state bo
a after

executing a and observing o.

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

◮ Stochastic Markovian transition model

p(bo
a |b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

◮ Reward function R(b, a) =
∑

s R(s, a)b(s). This is the

average reward with respect to b(s).

◮ The robot fully ‘observes’ the new belief-state bo
a after

executing a and observing o.

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

◮ Stochastic Markovian transition model

p(bo
a |b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

◮ Reward function R(b, a) =
∑

s R(s, a)b(s). This is the

average reward with respect to b(s).

◮ The robot fully ‘observes’ the new belief-state bo
a after

executing a and observing o.

POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

◮ Stochastic Markovian transition model

p(bo
a |b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

◮ Reward function R(b, a) =
∑

s R(s, a)b(s). This is the

average reward with respect to b(s).

◮ The robot fully ‘observes’ the new belief-state bo
a after

executing a and observing o.

Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

◮ The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(bo
a)
]

◮ Value iteration repeatedly applies Vn+1 = HVn starting

from an initial V0.

◮ Computing the optimal value function is a hard problem

(PSPACE-complete for finite horizon, undecidable for

infinite horizon).

Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

◮ The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(bo
a)
]

◮ Value iteration repeatedly applies Vn+1 = HVn starting

from an initial V0.

◮ Computing the optimal value function is a hard problem

(PSPACE-complete for finite horizon, undecidable for

infinite horizon).

Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

◮ The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(bo
a)
]

◮ Value iteration repeatedly applies Vn+1 = HVn starting

from an initial V0.

◮ Computing the optimal value function is a hard problem

(PSPACE-complete for finite horizon, undecidable for

infinite horizon).

Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

◮ The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(bo
a)
]

◮ Value iteration repeatedly applies Vn+1 = HVn starting

from an initial V0.

◮ Computing the optimal value function is a hard problem

(PSPACE-complete for finite horizon, undecidable for

infinite horizon).

Example V0

(1,0) (0,1)

b7

R

1

0.5

0

α1

α2

α3

b
R(s, a) a1 a2 a3

s1 1.00 0.50 −0.25

s2 0.25 0.75 1.25

PWLC shape of Vn

◮ Like V0, Vn is as well piecewise linear and convex.

◮ Rewards R(b, a) = b · R(s, a) are linear functions of b.

Note that the value of a point b satisfies:

Vn+1(b) = max
a

[

b · R(s, a) + γ
∑

o

p(o|b, a)Vn(b
o
a)
]

which involves a maximization over (at least) the vectors

R(s, a).

◮ Intuitively: less uncertainty about the state (low-entropy

beliefs) means better decisions (thus higher value).

Exact value iteration

Value iteration computes a sequence of value function

estimates V1,V2, . . . ,Vn, using the POMDP backup operator H,

Vn+1 = HVn.

(1,0) (0,1)

V

−1

V1

V2

V3

Optimal value functions

The optimal value function of a (finite-horizon) POMDP is

piecewise linear and convex: V (b) = maxα b · α.

��

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

(1,0) (0,1)

α1

α2

α3

α4

V

−

V

Vector pruning

(1,0) (0,1)

V

b1 b2

α1

α2

α3

α4

α5

Linear program for pruning:

variables: ∀s ∈ S, b(s); x
maximize: x

subject to:

b · (α− α′) ≥ x , ∀α′ ∈ V , α′ 6= α

b ∈ ∆(S)

Optimal POMDP methods

Enumerate and prune:

◮ Most straightforward: Monahan (1982)’s enumeration

algorithm. Generates a maximum of |A||Vn|
|O| vectors at

each iteration, hence requires pruning.

◮ Incremental pruning (Zhang and Liu, 1996; Cassandra et al., 1997).

Search for witness points:

◮ One Pass (Sondik, 1971; Smallwood and Sondik, 1973).

◮ Relaxed Region, Linear Support (Cheng, 1988).

◮ Witness (Cassandra et al., 1994).

Sub-optimal techniques

◮ Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).

◮ Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).

◮ Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).

◮ Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

◮ Point-based techniques

(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati

et al., 2008).

◮ Monte Carlo tree search

(Silver and Veness, 2010).

Point-based backup

◮ For finite horizon V ∗ is piecewise linear and convex, and

for infinite horizons V ∗ can be approximated arbitrary well

by a PWLC value function (Smallwood and Sondik, 1973).

◮ Given value function Vn and a particular belief point b we

can easily compute the vector αb
n+1 of HVn such that

αb
n+1 = arg max

{αk
n+1

}k

b · αk
n+1,

where {αk
n+1}

|HVn|
k=1 is the (unknown) set of vectors for HVn.

We will denote this operation αb
n+1 = backup(b).

Point-based backup

◮ For finite horizon V ∗ is piecewise linear and convex, and

for infinite horizons V ∗ can be approximated arbitrary well

by a PWLC value function (Smallwood and Sondik, 1973).

◮ Given value function Vn and a particular belief point b we

can easily compute the vector αb
n+1 of HVn such that

αb
n+1 = arg max

{αk
n+1

}k

b · αk
n+1,

where {αk
n+1}

|HVn|
k=1 is the (unknown) set of vectors for HVn.

We will denote this operation αb
n+1 = backup(b).

Point-based (approximate) methods

Point-based (approximate) value iteration plans only on a

limited set of reachable belief points:

1. Let the robot explore the environment.

2. Collect a set B of belief points.

3. Run approximate value iteration on B.

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

���������������������
���������������������
���������������������

(1,0) (0,1)

V1

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V2

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V2

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V2

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V3

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V3

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V3

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V3

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V4

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V4

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V4

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.

(1,0) (0,1)

V1
V4

b1 b2 b3b4 b5 b6 b7

(Spaan and Vlassis, 2005)

Further reading

◮ Textbook on reinforcement learning
◮ R. S. Sutton and A. G. Barto. “Reinforcement Learning: An

Introduction”. MIT Press, 1998.

◮ Recent book containing chapters on many aspects of

decision-theoretic planning (MDPs, POMDPs,

Dec-POMDPs):

◮ Marco Wiering and Martijn van Otterlo, editors,

“Reinforcement Learning: State of the Art”, Springer, 2012.

References I

R. Bellman. Dynamic programming. Princeton University Press, 1957.

D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA, 2nd edition, 2000.

B. Bonet. An epsilon-optimal grid-based algorithm for partially observable Markov decision processes. In
International Conference on Machine Learning, 2002.

R. I. Brafman. A heuristic variable grid solution method for POMDPs. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, 1997.

A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic domains. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, 1994.

A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile
robot navigation. In Proc. of International Conference on Intelligent Robots and Systems, 1996.

A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact method for partially
observable Markov decision processes. In Proc. of Uncertainty in Artificial Intelligence, 1997.

H. T. Cheng. Algorithms for partially observable Markov decision processes. PhD thesis, University of British
Columbia, 1988.

A. W. Drake. Observation of a Markov process through a noisy channel. Sc.D. thesis, Massachusetts Institute of
Technology, 1962.

E. A. Hansen. Finite-memory control of partially observable systems. PhD thesis, University of Massachusetts,
Amherst, 1998a.

E. A. Hansen. Solving POMDPs by searching in policy space. In Proc. of Uncertainty in Artificial Intelligence, 1998b.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains.
Artificial Intelligence, 101:99–134, 1998.

H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally
reachable belief spaces. In Robotics: Science and Systems, 2008.

M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable environments: Scaling
up. In International Conference on Machine Learning, 1995.

W. S. Lovejoy. Computationally feasible bounds for partially observed Markov decision processes. Operations
Research, 39(1):162–175, 1991.

References II
G. E. Monahan. A survey of partially observable Markov decision processes: theory, models and algorithms.

Management Science, 28(1), Jan. 1982.

R. Parr and S. Russell. Approximating optimal policies for partially observable stochastic domains. In Proc. Int. Joint
Conf. on Artificial Intelligence, 1995.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In Proc. Int.
Joint Conf. on Artificial Intelligence, 2003.

L. K. Platzman. A feasible computational approach to infinite-horizon partially-observed Markov decision problems.
Technical Report J-81-2, School of Industrial and Systems Engineering, Georgia Institute of Technology, 1981.
Reprinted in working notes AAAI 1998 Fall Symposium on Planning with POMDPs.

P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In Advances in Neural Information Processing
Systems 15. MIT Press, 2003.

P. Poupart and C. Boutilier. Bounded finite state controllers. In Advances in Neural Information Processing
Systems 16. MIT Press, 2004.

M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
New York, NY, 1994.

N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief compression. Journal of
Artificial Intelligence Research, 23:1–40, 2005.

S. J. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice Hall, 2nd edition, 2003.

J. K. Satia and R. E. Lave. Markovian decision processes with probabilistic observation of states. Management
Science, 20(1):1–13, 1973.

G. Shani, R. I. Brafman, and S. E. Shimony. Forward search value iteration for POMDPs. In Proc. Int. Joint Conf. on
Artificial Intelligence, 2007.

D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In Advances in Neural Information Processing
Systems 23, 2010.

S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in partially observable Markovian decision
processes. In International Conference on Machine Learning, 1994.

R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov decision processes over a
finite horizon. Operations Research, 21:1071–1088, 1973.

References III

T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Proc. of Uncertainty in Artificial
Intelligence, 2004.

E. J. Sondik. The optimal control of partially observable Markov processes. PhD thesis, Stanford University, 1971.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs. Journal of Artificial
Intelligence Research, 24:195–220, 2005.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Y. Virin, G. Shani, S. E. Shimony, and R. Brafman. Scaling up: Solving POMDPs through value based clustering. In
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007.

N. L. Zhang and W. Liu. Planning in stochastic domains: problem characteristics and approximations. Technical
Report HKUST-CS96-31, Department of Computer Science, The Hong Kong University of Science and
Technology, 1996.

R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for POMDPs. In Proc. Int. Joint Conf.
on Artificial Intelligence, 2001.

2013-07-02 EASSS – Spaan & Oliehoek 1/96

Decision making under uncertainty

Matthijs Spaan1 and Frans Oliehoek2

1 Delft University of Technology
2 Maastricht University

Part 3: Multiagent Frameworks

European Agent Systems Summer School (EASSS '13)

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

2013-07-02 EASSS – Spaan & Oliehoek 2/96

Multiagent Systems (MASs)

Why MASs?
 If we can make intelligent agents, soon there will be

many...
 Physically distributed systems: centralized solutions

expensive and brittle.
 can potentially provide [Vlassis, 2007,Sycara, 1998]

 Speedup and efficiency
 Robustness and reliability (‘graceful degradation’)
 Scalability and flexibility (adding additional agents)

2013-07-02 EASSS – Spaan & Oliehoek 3/96

Example: Predator-Prey Domain

 Predator-Prey domain – still single agent!
 1 agent: the predator (blue)
 prey (red) is part of the

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing

??

2013-07-02 EASSS – Spaan & Oliehoek 4/96

Example: Predator-Prey Domain

 Predator-Prey domain
 1 agent: the predator (blue)
 prey (red) is part of the

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probability of failing to move, prey moves

 rewards reward for capturing

2013-07-02 EASSS – Spaan & Oliehoek 5/96

Example: Predator-Prey Domain

 Predator-Prey domain
 1 agent: the predator (blue)
 prey (red) is part of the

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probability of failing to move, prey moves

 rewards reward for capturing

Markov decision process (MDP)Markov decision process (MDP)

2013-07-02 EASSS – Spaan & Oliehoek 6/96

Example: Predator-Prey Domain

 Predator-Prey domain
 1 agent: the predator (blue)
 prey (red) is part of the

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probability of failing to move, prey moves

 rewards reward for capturing

Markov decision process (MDP)

● Markovian state s...
● ...which is observed
● policy π maps states → actions
● Value function Q(s,a)
● Value iteration: way to compute it.

Markov decision process (MDP)

● Markovian state s...
● ...which is observed
● policy π maps states → actions
● Value function Q(s,a)
● Value iteration: way to compute it.

2013-07-02 EASSS – Spaan & Oliehoek 7/96

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=' nothing '

2013-07-02 EASSS – Spaan & Oliehoek 8/96

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

2013-07-02 EASSS – Spaan & Oliehoek 9/96

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

π(b)=a

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions π(b)=a

2013-07-02 EASSS – Spaan & Oliehoek 10/96

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions π(b)=a

Partially Observable MDP (POMDP)

Partially Observable MDP (POMDP)

2013-07-02 EASSS – Spaan & Oliehoek 11/96

Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions π(b)=a

Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iterations:
● make use of α-vectors

(correspond to complete policies)
● perform pruning: eliminate dominated α's

Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iterations:
● make use of α-vectors

(correspond to complete policies)
● perform pruning: eliminate dominated α's

2013-07-02 EASSS – Spaan & Oliehoek 12/96

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing jointly

??

2013-07-02 EASSS – Spaan & Oliehoek 13/96

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probability of failing to move, prey moves

 rewards reward for capturing jointly

2013-07-02 EASSS – Spaan & Oliehoek 14/96

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probability of failing to move, prey moves

 rewards reward for capturing jointly

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉

π(s)=a

2013-07-02 EASSS – Spaan & Oliehoek 15/96

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probability of failing to move, prey moves

 rewards reward for capturing jointly

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉

π(s)=a

Catch: …?

2013-07-02 EASSS – Spaan & Oliehoek 16/96

Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probability of failing to move, prey moves

 rewards reward for capturing jointly

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉

π(s)=a

Catch: number of joint actions is exponential!
(but other than that, conceptually simple.)

2013-07-02 EASSS – Spaan & Oliehoek 17/96

Multiple Agents &
Partial Observability

 Now: Both
 partial observability
 multiple agents

2013-07-02 EASSS – Spaan & Oliehoek 18/96

Multiple Agents &
Partial Observability

 Now: Both
 partial observability
 multiple agents

 Decentralized POMDPs
(Dec-POMDPs) [Bernstein et al. 2002]

 both
 joint actions and
 joint observations

2013-07-02 EASSS – Spaan & Oliehoek 19/96

Multiple Agents &
Partial Observability

 Again we can make a reduction...

any idea?

2013-07-02 EASSS – Spaan & Oliehoek 20/96

Multiple Agents &
Partial Observability

 Again we can make a reduction...

Dec-POMDPs → MPOMDP

(multiagent POMDP)

 'puppeteer' agent that
 receives joint observations

 takes joint actions

 requires broadcasting observations!
 instantaneous, cost-free, noise-free communication → optimal

[Pynadath and Tambe 2002]

 Without such communication: no easy reduction.

2013-07-02 EASSS – Spaan & Oliehoek 21/96

The Dec-POMDP Model

2013-07-02 EASSS – Spaan & Oliehoek 22/96

Acting Based On Local
Observations

 MPOMDP: Act on global information
 Can be impractical:

 communication not possible
 significant cost (e.g battery power)

 not instantaneous or noise free
 scales poorly with number of agents!

 Alternative: act based only on local observations
 Other side of the spectrum: no communication at all
 (Also other intermediate approaches: delayed communication,

stochastic delays)

2013-07-02 EASSS – Spaan & Oliehoek 23/96

Formal Model

 A Dec-POMDP


 n agents
 S – set of states
 A – set of joint actions

 P
T
 – transition function

 O – set of joint observations

 P
O
 – observation function

 R – reward function
 h – horizon (finite)

〈S , A , PT ,O , PO , R ,h〉

a=〈a1,a2, ... ,an〉

o=〈o1,o2, ... , on〉

P(s '∣s , a)

P(o∣a , s ')

R (s , a)

2013-07-02 EASSS – Spaan & Oliehoek 24/96

Running Example

 2 generals problem

 small army large army

2013-07-02 EASSS – Spaan & Oliehoek 25/96

Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Transitions
● Both Observe: no state change
● At least 1 Attack: reset with 50% probability

Observations
● Probability of correct observation: 0.85
● E.g., P(<L, L> | s

L
) = 0.85 * 0.85 = 0.7225

S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Transitions
● Both Observe: no state change
● At least 1 Attack: reset with 50% probability

Observations
● Probability of correct observation: 0.85
● E.g., P(<L, L> | s

L
) = 0.85 * 0.85 = 0.7225

2013-07-02 EASSS – Spaan & Oliehoek 26/96

Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

2013-07-02 EASSS – Spaan & Oliehoek 27/96

Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

suppose h=3,
what do you think is optimal in

this problem?

2013-07-02 EASSS – Spaan & Oliehoek 28/96

Off-line / On-line phases

 off-line planning, on-line execution is decentralized

Planning Phase Execution Phase

π=〈π1,π2〉

2013-07-02 EASSS – Spaan & Oliehoek 29/96

Policy Domain

 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories

2013-07-02 EASSS – Spaan & Oliehoek 30/96

Policy Domain

 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

(ai
0,oi

1,ai
1 , ... , ai

t−1 , oi
t)

o⃗i=(oi
1, ... ,oi

t)

2013-07-02 EASSS – Spaan & Oliehoek 31/96

No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s) (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: ??

2013-07-02 EASSS – Spaan & Oliehoek 32/96

No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s) (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: agents do not know those during execution

2013-07-02 EASSS – Spaan & Oliehoek 33/96

No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s) (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: agents do not know those during execution

 Multiagent belief, b
i
(s,q

-i
) [Hansen et al. 2004]

 belief over (future) policies of other agents
 Need to be able to predict the other agents!

 for belief update P(s'|s,a
i
,a

-i
), P(o|a

i
,a

-i
,s'), and prediction of R(s,a

i
,a

-i
)

 form of those other policies? most general:

 if they use beliefs? → infinite recursion of beliefs!

π j : o⃗ j→ a j

2013-07-02 EASSS – Spaan & Oliehoek 34/96

Goal of Planning

 Find the optimal joint policy
 where individual policies map OHs to actions

 What is the optimal one?
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]

2013-07-02 EASSS – Spaan & Oliehoek 35/96

Goal of Planning

 Find the optimal joint policy
 where individual policies map OHs to actions

 What is the optimal one?
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

2013-07-02 EASSS – Spaan & Oliehoek 36/96

Goal of Planning

 Find the optimal joint policy
 where individual policies map OHs to actions

 What is the optimal one?
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

conceptually:

what should policy optimize to
allow for good coordination (thus

high value)

?

2013-07-02 EASSS – Spaan & Oliehoek 37/96

Coordination vs. Exploitation of
Local Information

 Inherent trade-off

coordination vs. exploitation of local information

 Ignore own observations → 'open loop plan'
 E.g., “ATTACK on 2nd time step”

+ maximally predictable
- low quality

 Ignore coordination
 E.g., compute an individual belief b

i
(s)

and execute the MPOMDP policy
+ uses local information
- likely to result in mis-coordination

 Optimal policy should balance between these.

bi(s)=∑q−i

b(s , q−i)

π∗

2013-07-02 EASSS – Spaan & Oliehoek 38/96

Planning Methods

2013-07-02 EASSS – Spaan & Oliehoek 39/96

Brute Force Search

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012]

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153

2013-07-02 EASSS – Spaan & Oliehoek 40/96

Brute Force Search

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012]

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153

No easy way out...

The problem is
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP)
doubly exponential time required.

No easy way out...

The problem is
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP)
doubly exponential time required.

2013-07-02 EASSS – Spaan & Oliehoek 41/96

Brute Force Search

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012]

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153

No easy way out...

The problem is
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP)
doubly exponential time required.

No easy way out...

The problem is
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP)
doubly exponential time required.

● Still, there are better algorithms that work better for
at least some problems...

● Useful to understand what optimal really means!
(trying to compute it helps understanding)

2013-07-02 EASSS – Spaan & Oliehoek 42/96

Dynamic Programming – 1

 Generate all policies in a special way:
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.

2013-07-02 EASSS – Spaan & Oliehoek 43/96

Dynamic Programming – 1

 Generate all policies in a special way:
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

2013-07-02 EASSS – Spaan & Oliehoek 44/96

Dynamic Programming – 1

 Generate all policies in a special way:
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

2013-07-02 EASSS – Spaan & Oliehoek 45/96

Dynamic Programming – 1

 Generate all policies in a special way:
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

? ?

S L

2013-07-02 EASSS – Spaan & Oliehoek 46/96

Dynamic Programming – 1

 Generate all policies in a special way:
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

S L

2013-07-02 EASSS – Spaan & Oliehoek 47/96

Dynamic Programming – 1

 Generate all policies in a special way:
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

a new qτ+1

S L

2013-07-02 EASSS – Spaan & Oliehoek 48/96

Dynamic Programming – 1

 Generate all policies in a special way:
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

S L

To generate all Qτ+1

● All actions
● All assignments of qτ to observations

To generate all Qτ+1

● All actions
● All assignments of qτ to observations

S L

2013-07-02 EASSS – Spaan & Oliehoek 49/96

Dynamic Programming – 2

 (obviously) this scales very poorly...

A O

Q1
τ=1 Q2

τ=1

A O

2013-07-02 EASSS – Spaan & Oliehoek 50/96

Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=2 Q2

τ=2

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

2013-07-02 EASSS – Spaan & Oliehoek 51/96

Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=3 Q2

τ=3

2013-07-02 EASSS – Spaan & Oliehoek 52/96

Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=3 Q2

τ=3

h num. indiv. policies

1 2

2 8

3 128

4 32768

5 2.1475e+09

6 9.2234e+18

7 1.7014e+38

8 5.7896e+76

This does not get us anywhere!

but...

This does not get us anywhere!

but...

2013-07-02 EASSS – Spaan & Oliehoek 53/96

Dynamic Programming – 3

 Perhaps not all those are useful!
 Perform pruning of 'dominated policies'!

 Algorithm [Hansen et al. 2004]

Qi
τ

Initialize Q1(1), Q2(1)
for tau=2 to h
 Q1(tau) = ExhaustiveBackup(Q1(tau-1))
 Q2(tau) = ExhaustiveBackup(Q2(tau-1))
 Prune(Q1,Q2,tau)
end

Initialize Q1(1), Q2(1)
for tau=2 to h
 Q1(tau) = ExhaustiveBackup(Q1(tau-1))
 Q2(tau) = ExhaustiveBackup(Q2(tau-1))
 Prune(Q1,Q2,tau)
end

Qi
τ=1

=A i

2013-07-02 EASSS – Spaan & Oliehoek 54/96

Dynamic Programming – 3

 Perhaps not all those are useful!
 Perform pruning of 'dominated policies'!

 Algorithm [Hansen et al. 2004]

Qi
τ

Initialize Q1(1), Q2(1)
for tau=2 to h
 Q1(tau) = ExhaustiveBackup(Q1(tau-1))
 Q2(tau) = ExhaustiveBackup(Q2(tau-1))
 Prune(Q1,Q2,tau)
end

Initialize Q1(1), Q2(1)
for tau=2 to h
 Q1(tau) = ExhaustiveBackup(Q1(tau-1))
 Q2(tau) = ExhaustiveBackup(Q2(tau-1))
 Prune(Q1,Q2,tau)
end

Qi
τ=1

=A i

Note: cannot prune independently!

● usefulness of a q
1
depends on Q

2

● and vice versa
→ Iterated elimination of policies

2013-07-02 EASSS – Spaan & Oliehoek 55/96

Dynamic Programming – 4

 Initialization

A O

Q1
τ=1 Q2

τ=1

A O

2013-07-02 EASSS – Spaan & Oliehoek 56/96

Dynamic Programming – 4

 Exhaustive Backups gives

Q1
τ=2 Q2

τ=2

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

2013-07-02 EASSS – Spaan & Oliehoek 57/96

Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=2 Q2

τ=2

O

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

Hypothetical Pruning
(not the result of actual pruning)

2013-07-02 EASSS – Spaan & Oliehoek 58/96

Dynamic Programming – 4

 Pruning agent 2...

Q1
τ=2 Q2

τ=2

O

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

O

A A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

2013-07-02 EASSS – Spaan & Oliehoek 59/96

Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=2 Q2

τ=2

O

A A

S L

O

O O

S L

O

A O

S L
O

A A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

2013-07-02 EASSS – Spaan & Oliehoek 60/96

Dynamic Programming – 4

 Etc...

Q1
τ=2 Q2

τ=2

O

A A

S L

O

O O

S L

O

A O

S L
O

A A

S L

O

O O

S L

O

A O

S L

2013-07-02 EASSS – Spaan & Oliehoek 61/96

Dynamic Programming – 4

 Etc...

Q1
τ=2 Q2

τ=2

O

A A

S L

O

O O

S L

O

A O

S L
O

A A

S L

O

O O

S L

O

A O

S L

In this case: symmetric
→ but need not be in general!

In this case: symmetric
→ but need not be in general!

2013-07-02 EASSS – Spaan & Oliehoek 62/96

Dynamic Programming – 4

 Exhaustive backups:

Q1
τ=3 Q2

τ=3

We avoid generation of many policies!

2013-07-02 EASSS – Spaan & Oliehoek 63/96

Dynamic Programming – 4

 Exhaustive backups:

Q1
τ=3 Q2

τ=3

2013-07-02 EASSS – Spaan & Oliehoek 64/96

Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=3 Q2

τ=3

2013-07-02 EASSS – Spaan & Oliehoek 65/96

Dynamic Programming – 4

 Pruning agent 2...

Q1
τ=3 Q2

τ=3

2013-07-02 EASSS – Spaan & Oliehoek 66/96

Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3

2013-07-02 EASSS – Spaan & Oliehoek 67/96

Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3
At the very end:

● …?

At the very end:

● …?

2013-07-02 EASSS – Spaan & Oliehoek 68/96

Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3
At the very end:

● evaluate all the remaining combinations of
policies (i.e., the 'induced joint policies')

● select the best one

At the very end:

● evaluate all the remaining combinations of
policies (i.e., the 'induced joint policies')

● select the best one

2013-07-02 EASSS – Spaan & Oliehoek 69/96

Bottom-up vs. Top-down

 DP constructs bottom-up
 Alternatively try and construct top down

→ leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]

2013-07-02 EASSS – Spaan & Oliehoek 70/96

Heuristic Search – Intro

 Core idea is the same as DP:
 incrementally construct all (joint) policies
 try to avoid work

 Differences
 different starting point and increments
 use heuristics (rather than pruning) to avoid work

2013-07-02 EASSS – Spaan & Oliehoek 71/96

Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

A O

S L
A

A O

S L

O

A

S L

A A

S L
O

A O

S L

1 joint policy

2013-07-02 EASSS – Spaan & Oliehoek 72/96

Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

1 partial joint policy

Start with unspecified policyStart with unspecified policy

2013-07-02 EASSS – Spaan & Oliehoek 73/96

Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

?

S L

? ?

S L
?

? ?

S L

O

?

S L

S L
?

S L

? ?? ?

1 partial joint policy

2013-07-02 EASSS – Spaan & Oliehoek 74/96

Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

? ?

S L
A

? ?

S L

O

A

S L

S L
O

S L

? ?? ?

1 partial joint policy

2013-07-02 EASSS – Spaan & Oliehoek 75/96

Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

A O

S L
A

A O

S L

O

A

S L

A A

S L
O

A O

S L

1 complete joint policy
(full-length)

2013-07-02 EASSS – Spaan & Oliehoek 76/96

Heuristic Search – 2

 Creating ALL joint policies → tree structure!

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

Root node:
unspecified joint policy

why?

2013-07-02 EASSS – Spaan & Oliehoek 77/96

Heuristic Search – 2

 Creating ALL joint policies → tree structure!

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

O

?

S L

? ?

S L
?

? ?

S L

O

?

S L

S L
?

S L

? ?? ?

Creating a child node:
 assignment actions at t=0

2013-07-02 EASSS – Spaan & Oliehoek 78/96

Heuristic Search – 2

 Creating ALL joint policies → tree structure!

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

O

?

S L

? ?

S L
?

? ?

S L

O

?

S L

S L
?

S L

? ?? ?

A

?

S L

? ?

S L
?

? ?

S L

A

?

S L

S L
?

S L

? ?? ?

...

Node expansion:
create all children
Node expansion:
create all children

2013-07-02 EASSS – Spaan & Oliehoek 79/96

Heuristic Search – 2

 Creating ALL joint policies → tree structure!

 t=0

2013-07-02 EASSS – Spaan & Oliehoek 80/96

Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...
 t=1

Expand next nodeExpand next node

2013-07-02 EASSS – Spaan & Oliehoek 81/96

Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...

Many more children!

need to assign action to
4 OHs now: 2^4 = 16

Many more children!

need to assign action to
4 OHs now: 2^4 = 16

 t=1

2013-07-02 EASSS – Spaan & Oliehoek 82/96

Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...
 t=2

Last stage: even more!

need to assign action to
8 OHs now: 2^8 = 256 children
(for each node at level 2!)

Last stage: even more!

need to assign action to
8 OHs now: 2^8 = 256 children
(for each node at level 2!)

...

2013-07-02 EASSS – Spaan & Oliehoek 83/96

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics

 avoid going down
non-promising branches!

 Apply A* → Multiagent A* [Szer et al. 2005]

2013-07-02 EASSS – Spaan & Oliehoek 84/96

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics

 avoid going down
non-promising branches!

 Apply A* → Multiagent A* [Szer et al. 2005]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

2013-07-02 EASSS – Spaan & Oliehoek 85/96

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics

 avoid going down
non-promising branches!

 Apply A* → Multiagent A* [Szer et al. 2005]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

5

3.53

2013-07-02 EASSS – Spaan & Oliehoek 86/96

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics

 avoid going down
non-promising branches!

 Apply A* → Multiagent A* [Szer et al. 2005]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

5

3.53

Select highest
valued node
& expand...

2013-07-02 EASSS – Spaan & Oliehoek 87/96

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics

 avoid going down
non-promising branches!

 Apply A* → Multiagent A* [Szer et al. 2005]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

42.9 3.53

2013-07-02 EASSS – Spaan & Oliehoek 88/96

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics

 avoid going down
non-promising branches!

 Apply A* → Multiagent A* [Szer et al. 2005]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

42.9 3.53

F-Value of a node n

● F(n) is a optimistic estimate
● I.e., F(n) >= V(n') for any descendant n' of n

● F(n) = G(n) + H(n)

reward up to n
(for first t stages)

Optimistic estimate of reward
below n
(reward for stages t,t+1,...,h-1)

2013-07-02 EASSS – Spaan & Oliehoek 89/96

Heuristic Search – 4

 Use heuristics F(n) = G(n) + H(n)

 G(n) – actual reward of reaching n
 a node at depth t specifies φt (i.e., actions for first t stages)

→ can compute V(φt) over stages 0...t-1

 H(n) – should overestimate!
 E.g., pretend that it is an MDP
 compute

 H (n)=H (φ
t
)=∑s

P (s∣φ t , b0
)V̂ MDP (s)

2013-07-02 EASSS – Spaan & Oliehoek 90/96

Heuristics – 1

 QPOMDP: Solve 'underlying POMDP'
 corresponds to immediate communication

 QBG corresponds to 1-step delayed communication
 Hierarchy of upper bounds [Oliehoek et al. 2008]

Q∗
≤Q̂ kBG≤Q̂ BG≤Q̂POMDP≤Q̂MDP

H (φ
t
)=∑θ⃗t

P (θ⃗
t
∣φ

t , b0
)V̂ POMDP(b

θ⃗
t

)

2013-07-02 EASSS – Spaan & Oliehoek 91/96

Further Developments
 DP

 Improvements to exhaustive backup [Amato et al. 2009]

 Compression of values (LPC) [Boularias & Chaib-draa 2008]

 (Point-based) Memory bounded DP [Seuken & Zilberstein 2007a]

 Improvements to PB backup [Seuken & Zilberstein 2007b, Carlin and
Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

 Heuristic Search
 No backtracking: just most promising path

[Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]

 Clustering of histories: reduce number of child nodes
[Oliehoek et al. 2009]

 Incremental expansion: avoid expanding all child nodes
[Spaan et al. 2011]

 MILP [Aras and Dutech 2010]

2013-07-02 EASSS – Spaan & Oliehoek 92/96

State of the Art

2013-07-02 EASSS – Spaan & Oliehoek 93/96

State of the Art

Cases that compress well
* excluding heuristic

Scalability w.r.t. #agents

2013-07-02 EASSS – Spaan & Oliehoek 94/96

State of The Art

Approximate (no quality guarantees)
 MBDP: linear in horizon [Seuken & zilberstein 2007a]

 Rollout sampling extension: up to 20 agents [Wu et al. 2010b]

 Transfer planning: use smaller problems to solve large
(structured) problems (up to 1000) agents [Oliehoek et al. 2013]

2013-07-02 EASSS – Spaan & Oliehoek 95/96

Related Areas

 Partially observable stochastic games [Hansen et al. 2004]

 Non-identical payoff

 Interactive POMDPs [Gmytrasiewicz & Doshi 2005, JAIR]

 Subjective view of MAS

 Imperfect information extensive form games
 Represented by game tree
 E.g., poker [Sandholm 2010, AI Magazine]

2013-07-02 EASSS – Spaan & Oliehoek 96/96

References

 References can be found on the tutorial website:

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

 Further references can be found in
Frans A. Oliehoek. Decentralized POMDPs. In Wiering, Marco and
van Otterlo, Martijn, editors, Reinforcement Learning: State of the Art,
Adaptation, Learning, and Optimization, pp. 471–503, Springer Berlin
Heidelberg, Berlin, Germany, 2012.

 Available from http://people.csail.mit.edu/fao/

2013-07-02 1/40

Decision making under uncertainty

Matthijs Spaan1 and Frans Oliehoek2

1 Delft University of Technology
2 Maastricht University

Part 4: Selected Further Topics

European Agent Systems Summer School (EASSS '13)

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

2013-07-02 2/40

Some Further Topics

High-level overview:
 Communication
 Factored Models

 Single Agent
 Multiple agents

2013-07-02 3/40

Communication

 Already discussed:
instantaneous cost-free and noise-free communication

 Dec-MDP → multiagent MDP (MMDP)
 Dec-POMDP → multiagent POMDP (MPOMDP)

 but in practice:
 probability of failure
 delays
 costs

 Also: implicit communication!
(via observations and actions)

2013-07-02 4/40

Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

2013-07-02 5/40

Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

2013-07-02 6/40

Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

 E.g. communication bit

 doubles the #actions and observations!
 Clearly, useful... but intractable for general settings

(perhaps for analysis of very small communication systems)

2013-07-02 7/40

Explicit Communication

 perform a particular information update (e.g., sync) as
in the MPOMDP:

 each agent broadcasts its information, and
 each agent uses that to perform joint belief update

 Other approaches:
 Communication cost [Becker et al. 2005]

 Delayed communication [Hsu 1982, Spaan 2008, Oliehoek 2012]

 communicate every k stages [Goldman & Zilberstein 2008]

2013-07-02 8/40

Some Further Topics

Overview:
 On-line planning
 Communication
 Factored Models

 Single Agent
 Multiple agents

2013-07-02 9/40

Factored MDPs
 So far: used 'states'
 But in many problems states are factored

 state is an assignment of variables s=<f
1
,f

2
,...,f

k
>

 factored MDP [Boutilier et al. 99 JAIR]

Examples:

 Predator-prey: x, y coordinate!

 Robotic P.A.

 location of robot (lab, hallway, kitchen, mail room), tidiness of lab, coffee
request, robot holds coffee, mail present, robot holds mail, etc.

 Actions: move (2 directions), pickup coffee/mail, deliver coffee/mail

2013-07-02 10/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

2013-07-02 11/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st

2013-07-02 12/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

2013-07-02 13/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”

P(st+ 1∣st , a=MTL)

2013-07-02 14/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”

P(st+ 1∣st , a=MTL)

But there is
conditional

independence!

E.g.: 'M' does not
influence 'loc'

But there is
conditional

independence!

E.g.: 'M' does not
influence 'loc'

2013-07-02 15/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”

2013-07-02 16/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”
L H K M

L 1 .9 0 0

t+1 H 0 .1 .9 0

K 0 0 .1 .9

M 0 0 0 .1

conditional
probability table

(CPT)

2013-07-02 17/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”
L H K M

L 1 .9 0 0

t+1 H 0 .1 .9 0

K 0 0 .1 .9

M 0 0 0 .1

conditional
probability table

(CPT)

● Each next-stage variable has a CPT
● This allows for a much more compact representation!
● “Two-stage dynamic Bayesian network” (2DBN)

● Each next-stage variable has a CPT
● This allows for a much more compact representation!
● “Two-stage dynamic Bayesian network” (2DBN)

2013-07-02 18/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

L H K M

L 1 .9 0 0

t+1 H 0 .1 .9 0

K 0 0 .1 .9

M 0 0 0 .1

conditional
probability table

(CPT)

Do we always have so much
independence?

(what about other actions?)

Do we always have so much
independence?

(what about other actions?)

2013-07-02 19/40

Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

“Deliver coffee”“Deliver coffee”
CPT encodes that IF

● loc=lab
● CR=1

→ high probability of
CR becoming 0

CPT encodes that IF
● loc=lab
● CR=1

→ high probability of
CR becoming 0

2013-07-02 20/40

Solving Factored MDPs

 CPT also representable as a decision tree

loc

CR

RHC

P(CR'=1) = 0.05
P(CR'=0) = 0.95

0 1
CR

0 1

0 1

Lotherwise

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 0.05
P(CR'=0) = 0.95

P(CR'=1) = 0.05
P(CR'=0) = 0.95

2013-07-02 21/40

Solving Factored MDPs

 CPT also representable as a decision tree

loc

CR

RHC

P(CR'=1) = 0.05
P(CR'=0) = 0.95

0 1
CR

0 1

0 1

Lotherwise

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 0.05
P(CR'=0) = 0.95

P(CR'=1) = 0.05
P(CR'=0) = 0.95

Similarly: rewards can be represented
as decision trees (or ADDs)

→ So…?

Similarly: rewards can be represented
as decision trees (or ADDs)

→ So…?

2013-07-02 22/40

Solving Factored MDPs

 CPT also representable as a decision tree

loc

CR

RHC

P(CR'=1) = 0.05
P(CR'=0) = 0.95

0 1
CR

0 1

0 1

Lotherwise

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 0.05
P(CR'=0) = 0.95

P(CR'=1) = 0.05
P(CR'=0) = 0.95

Similarly: rewards can be represented
as decision trees (or ADDs)

→ Can also represent value functions,
policies as decision trees [Boutilier et al 99]

Similarly: rewards can be represented
as decision trees (or ADDs)

→ Can also represent value functions,
policies as decision trees [Boutilier et al 99]

2013-07-02 23/40

Factored POMDPs

 Of course POMDP models can also be factored
 Similar ideas applied [Hansen & Feng 2000, Poupart 2005, Shani et al.

2008]

 α-vectors represented by ADDs
 beliefs too.

 This does not solve all problems:
 over time state factors get more and more correlated,

so representation grows large.

2013-07-02 24/40

Factored Multiagent Models

 Of course multiagent models can also be factored!
 Work can be categorized in a few directions:

 Trying to execute the factored (PO)MDP policy
[Roth et al. 2007, Messias et al. 2011]

 Trying to execute independently as much as possible
[Spaan & Melo 2008, Melo & Veloso 2011]

 Exploiting graphical structure between agents
(ND-POMDPs, Factored Dec-POMDPs)

 Influence-based abstraction of policies of other agents
(TOI-Dec-MDPs, TD-POMDPs, IBA for POSGs)

2013-07-02 25/40

Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham et al. '07 AAMAS]

2013-07-02 26/40

Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham '07 AAMAS]

These problems have
● State that cannot be influenced
● Factored reward function

These problems have
● State that cannot be influenced
● Factored reward function

R (s , a)=∑
e

Re(s ,ae)

2013-07-02 27/40

Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham '07 AAMAS]

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

π
7

π
6

π
4

π
1

π
2

π
3

π
5

V (π)=∑
e

V e(πe)

R (s , a)=∑
e

Re(s ,ae)

2013-07-02 28/40

Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham '07 AAMAS]

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

π
7

π
6

π
4

π
1

π
2

π
3

π
5

V (π)=∑
e

V e(πe)

R (s , a)=∑
e

Re(s ,ae)

This can be solved more
efficiently than by

looping through all π !

2013-07-02 29/40

Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]

st st+ 1

FL
1

FL
2

FL
3

FL
4

a
1

a
2

a
3

FL
1

FL
2

FL
3

FL
4

R
1

R
2

R
3

R
4

2013-07-02 30/40

Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]

st st+ 1

FL
1

FL
2

FL
3

FL
4

a
1

a
2

a
3

FL
1

FL
2

FL
3

FL
4

R
1

R
2

R
3

R
4

Solution Methods
● reduction to a type of COP
● but now: one for each stage!

● δ is a decision rule
(part of policy for 1 stage t)

→ leads to factored form of heuristic search
[Oliehoek 2013 AAMAS]

Solution Methods
● reduction to a type of COP
● but now: one for each stage!

● δ is a decision rule
(part of policy for 1 stage t)

→ leads to factored form of heuristic search
[Oliehoek 2013 AAMAS]

δ
4

δ
1

δ
2

δ
3

2013-07-02 31/40

Influence-Based Abstraction

 Try to define agents' local state
 Analyze how policies of other agents affect it

 find compact description for this influence

 Example: Mars Rovers [Becker et al. 2004 JAIR]

 2 rovers collect data at 4 sites

A

B
C

D

2013-07-02 32/40

Influence-Based Abstraction

 Try to define agents' local state
 Analyze how policies of other agents affect it

 find compact description for this influence

 Example: Mars Rovers [Becker et al. 2004 JAIR]

 2 rovers collect data at 4 sites

A

B
C

D

Transitions independent: Rovers drive independently
Rewards are dependent:

● 2 same soil samples of same site not so useful (sub additive)
● 2 pictures of (different sides) of same rock is useful (super additive)

Transitions independent: Rovers drive independently
Rewards are dependent:

● 2 same soil samples of same site not so useful (sub additive)
● 2 pictures of (different sides) of same rock is useful (super additive)

2013-07-02 33/40

Influence-Based Abstraction

 TI Dec-MDP
 extra reward (or penalty)

at the end if 'joint event'
happens

 joint event E=<e
1
,e

2
>

 From agent i's perspective:
if it realizes e

i

→ extra reward with
probability P(e

j
)

2013-07-02 34/40

Influence-Based Abstraction

 TI Dec-MDP
 extra reward (or penalty)

at the end if 'joint event'
happens

 joint event E=<e
1
,e

2
>

 From agent i's perspective:
if it realizes e

i

→ extra reward with
probability P(e

j
)

But most problems are not transition independent!?

Much further research, e.g.:
● Event-driven Dec-MDPs [Becker et al.04 AAMAS]
● Transition-decoupled POMDPs [Witwicki 2011 PhD]
● EDI-CR [Mostafa & Lesser 2009 WIIAT]
● IBA for Factored POSGs [Oliehoek et al. 2012 AAAI]

But most problems are not transition independent!?

Much further research, e.g.:
● Event-driven Dec-MDPs [Becker et al.04 AAMAS]
● Transition-decoupled POMDPs [Witwicki 2011 PhD]
● EDI-CR [Mostafa & Lesser 2009 WIIAT]
● IBA for Factored POSGs [Oliehoek et al. 2012 AAAI]

2013-07-02 35/40

Recap: Decision Making under Uncertainty

2013-07-02 36/40

Recap: MDPs

 MDPs:
 1 agent
 perfectly observable
 outcome uncertainty

 Bellman equation

 Value iteration

2013-07-02 37/40

Recap: POMDPs

 POMDP
 1 agent
 state uncertainty

 Reduction: belief-state MDP
 continuous states
 vectors for value iteration

V
(b

)

← belief → s
1

s
2

2013-07-02 38/40

Recap: Multiagent MDP

 Multiagent MDP (MMDP)
 multiple agents
 outcome uncertainty
 fully observable

 Reduction to single-agent problem
 'puppeteer'

 value iteration, etc.

 but exponentially many joint actions – e.g., [Guestrin et al. 2002 NIPS]

2013-07-02 39/40

Recap: Partially Observable MAS

 Multiagent POMDP
 Free communication
 Reduces to single-agent problem

 Dec-POMDP
 No (free) communication
 Harder: NEXP-complete
 Solution methods:

 Bottom-up: dynamic programming
 Top-down: heuristic search

2013-07-02 40/40

References

 References can be found on the tutorial website:

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

 Further references can be found in
Frans A. Oliehoek. Decentralized POMDPs. In Wiering, Marco and
van Otterlo, Martijn, editors, Reinforcement Learning: State of the Art,
Adaptation, Learning, and Optimization, pp. 471–503, Springer Berlin
Heidelberg, Berlin, Germany, 2012.

 Available from http://people.csail.mit.edu/fao/

