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Outline

This lecture:

1. Introduction to decision making under uncertainty

2. Planning under action uncertainty (MDPs)

3. Planning under sensing uncertainty (POMDPs)

After the break:

1. Multiagent planning

2. Selected further topics



Introduction



Introduction

◮ Goal in Artificial Intelligence: to build intelligent agents.

◮ Our definition of “intelligent”: perform an assigned task as

well as possible.

◮ Problem: how to act?

◮ We will explicitly model uncertainty.



Applications

◮ Resource planning

◮ Maintenance

◮ Queue management

◮ Medical decision making



Agents

◮ An agent is a (rational) decision maker who is

able to perceive its external (physical)

environment and act autonomously upon it

(Russell and Norvig, 2003).

◮ Rationality means reaching the optimum of a

performance measure.

◮ Examples: humans, robots, some software

programs.



Agents

environment

agent

action

observation

state

◮ It is useful to think of agents as being involved in a

perception-action loop with their environment.

◮ But how do we make the right decisions?



Planning

Planning:

◮ A plan tells an agent how to act.

◮ For instance
◮ A sequence of actions to reach a goal.
◮ What to do in a particular situation.

◮ We need to model:
◮ the agent’s actions
◮ its environment
◮ its task

We will model planning as a sequence of decisions.



Classic planning

◮ Classic planning: sequence of actions from start to goal.

◮ Task: robot should get to gold as quickly as possible.

◮ Actions: → ↓ ← ↑

◮ Limitations:
◮ New plan for each start state.
◮ Environment is deterministic.



Classic planning

◮ Classic planning: sequence of actions from start to goal.

◮ Task: robot should get to gold as quickly as possible.

◮ Actions: → ↓ ← ↑

◮ Limitations:
◮ New plan for each start state.
◮ Environment is deterministic.

◮ Three optimal plans: →→ ↓,→ ↓ →, ↓ → →.



Conditional planning

◮ Assume our robot has noisy actions (wheel slip,

overshoot).

◮ We need conditional plans.

◮ Map situations to actions.



Decision-theoretic planning

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1

◮ Positive reward when reaching goal, small penalty for all

other actions.

◮ Agent’s plan maximizes value: the sum of future rewards.

◮ Decision-theoretic planning successfully handles noise in

acting and sensing.



Decision-theoretic planning

Plan #1:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1
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Decision-theoretic planning

Plan #2:

Reward:
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Decision-theoretic planning

Values of this plan:

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1



Decision-theoretic planning

Optimal values (encode optimal plan):

Reward:

10 −0.1−0.1−0.1

−0.1−0.1−0.1−0.1−0.1

−0.1



Markov Decision Processes



Sequential decision making under uncertainty

◮ Uncertainty is abundant in real-world planning domains.

◮ Bayesian approach⇒ probabilistic models.

Main assumptions:

Sequential decisions: problems are formulated as a sequence

of “independent” decisions;

Markovian environment: the state at time t depends only on

the events at time t − 1;

Evaluative feedback: use of a reinforcement signal as

performance measure (reinforcement learning);



Transition model

◮ For instance, robot motion

is inaccurate.

◮ Transitions between states

are stochastic.

◮ p(s′|s, a) is the probability

to jump from state s to

state s′ after taking

action a.

?
??
?

?



MDP Agent
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o environment
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MDP Agent

7

o environment

action a

obs. s

reward r

π

state s

R(s, a)



Optimality criterion

For instance, agent should maximize the value

E
[

h
∑

t=0

γtRt

]

, (1)

where

◮ h is the planning horizon, can be finite or∞

◮ γ is a discount rate, 0 ≤ γ < 1

Reward hypothesis (Sutton and Barto, 1998):

All goals and purposes can be formulated as the maximization

of the cumulative sum of a received scalar signal (reward).



Discrete MDP model

Discrete Markov Decision Process model (Puterman, 1994;

Bertsekas, 2000):

◮ Time t is discrete.

◮ State space S.

◮ Set of actions A.

◮ Reward function R : S × A 7→ R.

◮ Transition model p(s′|s, a), Ta : S × A 7→ ∆(S).

◮ Initial state s0 is drawn from ∆(S).

The Markov property entails that the next state st+1 only

depends on the previous state st and action at :

p(st+1|st , st−1, . . . , s0, at , at−1, . . . , a0) = p(st+1|st , at). (2)



A simple problem

Problem:

An autonomous robot must learn how to transport material from

a deposit to a building facility.

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

(thanks to F. Melo)



Load/Unload as an MDP

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility

◮ States: S = {1U , 2U , 3U , 1L, 2L, 3L};
1U Robot in position 1 (unloaded);

2U Robot in position 2 (unloaded);

3U Robot in position 3 (unloaded);

1L Robot in position 1 (loaded);

2L Robot in position 2 (loaded);

3L Robot in position 3 (loaded)

◮ Actions: A = {Left, Right, Load, Unload};



Load/Unload as an MDP (1)

◮ Transition probabilities: “Left”/“Right” move the robot in the

corresponding direction; “Load” loads material (only in

position 1); “Unload” unloads material (only in position 3).

Ex:

(2L,Right) → 3L;

(3L,Unload) → 3U ;

(1L,Unload) → 1L.

◮ Reward: We assign a reward of +10 for every unloaded

package (payment for the service).



Load/Unload as an MDP (2)

◮ For each action a ∈ A, Ta is a matrix.

Ex:

TRight =

















0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

















◮ Recall: S = {1U , 2U , 3U , 1L, 2L, 3L}.



Load/Unload as an MDP (3)

◮ The reward R(s, a) can also be represented as a matrix

Ex:

R =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 +10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Policies and value

◮ Policy π: tells the agent how to act.

◮ A deterministic policy π : S 7→ A is a mapping from states

to actions.

◮ Value: how much reward E [
∑h

t=0 γ
tRt ] does the agent

expect to gather.

◮ Value denoted as Qπ(s, a): start in s, do a and follow π

afterwards.



Policies and value (1)

◮ Extracting a policy π from a value function Q is easy:

π(s) = arg max
a∈A

Q(s, a). (3)

◮ Optimal policy π∗: one that maximizes E [
∑h

t=0 γ
tRt ] (for

every state).

◮ In an infinite-horizon MDP there is always an optimal

deterministic stationary (time-independent) policy π∗.

◮ There can be many optimal policies π∗, but they all share

the same optimal value function Q∗.



Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}
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Dynamic programming
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =


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


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
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Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =
















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


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
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


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




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S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q0 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

















Q1 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

















Q2 =

















? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

















Q2 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 ? 0 0

0 ? ? 10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of dynamic programming (γ = 0.95):

Q1 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10

















Q2 =

















0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 9.5 0 0

0 9.5 9.5 10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Iterations of dynamic programming (γ = 0.95):

Q5 =

















0 0 8.57 0

0 0 0 0

0 0 0 0

8.57 9.03 8.57 8.57

8.57 9.5 9.03 9.03

9.03 9.5 9.5 10

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Iterations of DP:

Q20 =

















18.53 17.61 19.51 18.54

18.53 16.73 17.61 17.61

17.61 16.73 16.73 16.73

19.51 20.54 19.51 19.51

19.51 21.62 20.54 20.54

20.54 21.62 21.62 26.73

















S = {1U , 2U , 3U , 1L, 2L, 3L}, A = {Left, Right, Load, Unload}



Dynamic programming

Final Q∗ and policy:

Q∗ =

















30.75 29.21 32.37 30.75

30.75 27.75 29.21 29.21

29.21 27.75 27.75 27.75

32.37 34.07 32.37 32.37

32.37 35.86 34.07 34.07

34.07 35.86 35.86 37.75

















π∗ =

















Load

Left

Left

Right

Right

Unload



















Value iteration

◮ Value iteration: successive approximation technique.

◮ Start with all values set to 0.

◮ In order to consider one step deeper into the future, i.e., to

compute V ∗
n+1 from V ∗

n :

Q∗
n+1(s, a) := R(s, a) + γ

∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗
n(s

′, a′), (4)

which is known as the dynamic programming update or

Bellman backup.

◮ Bellman (1957) equation:

Q∗(s, a) = R(s, a) + γ
∑

s′∈S

p(s′|s, a)max
a′∈A

Q∗(s′, a′). (5)



Value iteration (1)

Initialize Q arbitrarily, e.g., Q(s, a) = 0, ∀s ∈ S, a ∈ A

repeat

δ ← 0

for all s ∈ S, a ∈ A do

v ← Q(s, a)
Q(s, a)← R(s, a) + γ

∑

s′∈S p(s′|s, a)maxa′∈A Q(s′, a′)
δ ← max(δ, |v −Q(s, a)|)

end for

until δ < ǫ

Return Q



Value iteration (2)

Value iteration discussion:

◮ As n→∞, value iteration converges.

◮ Value iteration has converged when the largest update δ in

an iteration is below a certain threshold ǫ.

◮ Exhaustive sweeps are not required for convergence,

provided that in the limit all states are visited infinitely often.

◮ This can be exploited by backing up the most promising

states first, known as prioritized sweeping.



Solution methods: MDPs

Model based

◮ Basic: dynamic programming (Bellman, 1957), value

iteration, policy iteration.

◮ Advanced: prioritized sweeping, function approximators.

Model free, reinforcement learning (Sutton and Barto, 1998)

◮ Basic: Q-learning, TD(λ), SARSA, actor-critic.

◮ Advanced: generalization in infinite state spaces,

exploration/exploitation issues.



POMDPs



Beyond MDPs

◮ Real agents cannot directly observe the state.

◮ Sensors provide partial and noisy information about the

world.



Beyond MDPs

◮ MDPs have been very successful, but requires to have an

observable Markovian state.

◮ Many domains this is impossible (or expensive) to obtain:

◮ Diagnosis (medical, maintenance)

◮ Robot navigation

◮ Tutoring

◮ Dialog systems

◮ Vision-based robotics

◮ Fault recovery
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Observation model

◮ Imperfect sensors.

◮ Partially observable environment:
◮ Sensors are noisy.
◮ Sensors have a limited view.

◮ p(o|s′, a) is the probability the agent receives observation

o in state s′ after taking action a.
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POMDPs

Partially observable Markov decision processes (POMDPs)

(Kaelbling et al., 1998):

◮ Framework for agent planning under uncertainty.

◮ Typically assumes discrete sets of states S, actions A and

observations O.

◮ Transition model p(s′|s, a): models the effect of actions.

◮ Observation model p(o|s′, a): relates observations to

states.

◮ Task is defined by a reward model R(s, a).

◮ A planning horizon h (finite or∞).

◮ A discount rate 0 ≤ γ < 1.

◮ Goal is to compute plan, or policy π, that maximizes

long-term reward.
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Memory

◮ In POMDPs memory is required for optimal decision

making.

◮ In this non-observable example (Singh et al., 1994):
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goA goB
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goA, +r

goB, +r

Policy Value

MDP: optimal policy V =
∑∞

t=0 γ
t r = r

1−γ

POMDP: memoryless deterministic Vmax = r − γr
1−γ

POMDP: memoryless stochastic V = 0

POMDP: memory-based (optimal) Vmin = γr
1−γ
− r



Beliefs

Beliefs:

◮ The agent maintains a belief b(s) of being at state s.

◮ After action a ∈ A and observation o ∈ O the belief b(s)
can be updated using Bayes’ rule:

b′(s′) ∝ p(o|s′)
∑

s

p(s′|s, a)b(s)

◮ The belief vector is a Markov signal for the planning task.
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0

0.25
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◮ Observations: door or corridor, 10% noise.

◮ Action: moves 3 (20%), 4 (60%), or 5 (20%) states.
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MDP-based algorithms

◮ Exploit belief state, and use the MDP solution as a

heuristic.

◮ Most likely state (Cassandra et al., 1996):

πMLS(b) = π∗(arg maxs b(s)).

◮ QMDP (Littman et al., 1995):

πQMDP
(b) = arg maxa

∑

s b(s)Q∗(s, a).

C

I

A

A

D

+1
c

ba

a

0.5

0.5
b

c

a

ab

b

−1

(Parr and Russell, 1995)



POMDPs as continuous-state MDPs

A belief-state POMDP can be treated as a continuous-state

MDP:

◮ Continuous state space ∆: a simplex in [0, 1]|S|−1.

◮ Stochastic Markovian transition model

p(bo
a |b, a) = p(o|b, a). This is the normalizer of Bayes’ rule.

◮ Reward function R(b, a) =
∑

s R(s, a)b(s). This is the

average reward with respect to b(s).

◮ The robot fully ‘observes’ the new belief-state bo
a after

executing a and observing o.
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Solving POMDPs

◮ A solution to a POMDP is a policy, i.e., a mapping

π : ∆ 7→ A from beliefs to actions.

◮ The optimal value V ∗ of a POMDP satisfies the Bellman

optimality equation V ∗ = HV ∗:

V ∗(b) = max
a

[

R(b, a) + γ
∑

o

p(o|b, a)V ∗(bo
a)
]

◮ Value iteration repeatedly applies Vn+1 = HVn starting

from an initial V0.

◮ Computing the optimal value function is a hard problem

(PSPACE-complete for finite horizon, undecidable for

infinite horizon).
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Example V0

(1,0) (0,1)

b7

R

1

0.5

0

α1

α2

α3

b
R(s, a) a1 a2 a3

s1 1.00 0.50 −0.25

s2 0.25 0.75 1.25



PWLC shape of Vn

◮ Like V0, Vn is as well piecewise linear and convex.

◮ Rewards R(b, a) = b · R(s, a) are linear functions of b.

Note that the value of a point b satisfies:

Vn+1(b) = max
a

[

b · R(s, a) + γ
∑

o

p(o|b, a)Vn(b
o
a)
]

which involves a maximization over (at least) the vectors

R(s, a).

◮ Intuitively: less uncertainty about the state (low-entropy

beliefs) means better decisions (thus higher value).



Exact value iteration

Value iteration computes a sequence of value function

estimates V1,V2, . . . ,Vn, using the POMDP backup operator H,

Vn+1 = HVn.

(1,0) (0,1)

V

−1

V1

V2

V3



Optimal value functions

The optimal value function of a (finite-horizon) POMDP is

piecewise linear and convex: V (b) = maxα b · α.
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Vector pruning

(1,0) (0,1)

V

b1 b2

α1

α2

α3

α4

α5

Linear program for pruning:

variables: ∀s ∈ S, b(s); x
maximize: x

subject to:

b · (α− α′) ≥ x , ∀α′ ∈ V , α′ 6= α

b ∈ ∆(S)



Optimal POMDP methods

Enumerate and prune:

◮ Most straightforward: Monahan (1982)’s enumeration

algorithm. Generates a maximum of |A||Vn|
|O| vectors at

each iteration, hence requires pruning.

◮ Incremental pruning (Zhang and Liu, 1996; Cassandra et al., 1997).

Search for witness points:

◮ One Pass (Sondik, 1971; Smallwood and Sondik, 1973).

◮ Relaxed Region, Linear Support (Cheng, 1988).

◮ Witness (Cassandra et al., 1994).



Sub-optimal techniques

◮ Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).

◮ Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).

◮ Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).

◮ Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

◮ Point-based techniques

(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati

et al., 2008).

◮ Monte Carlo tree search

(Silver and Veness, 2010).



Point-based backup

◮ For finite horizon V ∗ is piecewise linear and convex, and

for infinite horizons V ∗ can be approximated arbitrary well

by a PWLC value function (Smallwood and Sondik, 1973).

◮ Given value function Vn and a particular belief point b we

can easily compute the vector αb
n+1 of HVn such that

αb
n+1 = arg max

{αk
n+1

}k

b · αk
n+1,

where {αk
n+1}

|HVn|
k=1 is the (unknown) set of vectors for HVn.

We will denote this operation αb
n+1 = backup(b).
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Point-based (approximate) methods

Point-based (approximate) value iteration plans only on a

limited set of reachable belief points:

1. Let the robot explore the environment.

2. Collect a set B of belief points.

3. Run approximate value iteration on B.



PERSEUS: randomized point-based VI
Idea: at every backup stage improve the value of all b ∈ B.
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Further reading

◮ Textbook on reinforcement learning
◮ R. S. Sutton and A. G. Barto. “Reinforcement Learning: An

Introduction”. MIT Press, 1998.

◮ Recent book containing chapters on many aspects of

decision-theoretic planning (MDPs, POMDPs,

Dec-POMDPs):

◮ Marco Wiering and Martijn van Otterlo, editors,

“Reinforcement Learning: State of the Art”, Springer, 2012.
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Multiagent Systems (MASs)

Why MASs?
 If we can make intelligent agents, soon there will be 

many...
 Physically distributed systems: centralized solutions 

expensive and brittle.
 can potentially provide [Vlassis, 2007,Sycara, 1998]

 Speedup and efficiency
 Robustness and reliability (‘graceful degradation’)
 Scalability and flexibility (adding additional agents)
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Example: Predator-Prey Domain

 Predator-Prey domain – still single agent!
 1 agent: the predator (blue)
 prey (red) is part of the 

environment
 on a torus ('wrap around world')

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing

??
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Markov decision process (MDP)

● Markovian state s...
● ...which is observed
● policy π maps states → actions
● Value function Q(s,a)
● Value iteration: way to compute it.
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Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=' nothing '
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Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations 
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions 

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions π(b)=a

Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iterations: 
● make use of α-vectors

(correspond to complete policies)
● perform pruning: eliminate dominated α's

Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iterations: 
● make use of α-vectors

(correspond to complete policies)
● perform pruning: eliminate dominated α's
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Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing jointly

??
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● Differences with MDP
● n agents
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Catch: …?
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 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
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Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉

π(s)=a

Catch: number of joint actions is exponential!
(but other than that, conceptually simple.)
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Multiple Agents &
Partial Observability

 Now: Both
 partial observability
 multiple agents
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Multiple Agents &
Partial Observability

 Now: Both
 partial observability
 multiple agents

 Decentralized POMDPs
(Dec-POMDPs) [Bernstein et al. 2002]

 both 
 joint actions and 
 joint observations



2013-07-02  EASSS – Spaan & Oliehoek 19/96

Multiple Agents &
Partial Observability

 Again we can make a reduction...

any idea?
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Multiple Agents &
Partial Observability

 Again we can make a reduction...

Dec-POMDPs → MPOMDP

(multiagent POMDP)

 'puppeteer' agent that 
 receives joint observations

 takes joint actions

 requires broadcasting observations!
 instantaneous, cost-free, noise-free communication → optimal

[Pynadath and Tambe 2002]

 Without such communication: no easy reduction.
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The Dec-POMDP Model



2013-07-02  EASSS – Spaan & Oliehoek 22/96

Acting Based On Local 
Observations

 MPOMDP: Act on global information 
 Can be impractical:

 communication not possible
 significant cost (e.g battery power)

 not instantaneous or noise free
 scales poorly with number of agents!

 Alternative: act based only on local observations
 Other side of the spectrum: no communication at all
 (Also other intermediate approaches: delayed communication, 

stochastic delays)
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Formal Model                      

 A Dec-POMDP 


 n  agents
 S  – set of states
 A  – set of joint actions

 P
T
 – transition function

 O  – set of joint observations

 P
O
 – observation function

 R  – reward function
 h   – horizon (finite)

〈S , A , PT ,O , PO , R ,h〉

a=〈a1,a2, ... ,an〉

o=〈o1,o2, ... , on〉

P(s '∣s , a)

P(o∣a , s ')

R (s , a)
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Running Example

 2 generals problem

 small army large army
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Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Transitions
● Both Observe: no state change
● At least 1 Attack: reset with 50% probability 

Observations
● Probability of correct observation: 0.85
● E.g., P(<L, L> | s

L
 ) = 0.85 * 0.85 = 0.7225
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Rewards
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● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5



2013-07-02  EASSS – Spaan & Oliehoek 27/96

Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
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● R(s
R
,<A,A>) = +5

S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

suppose h=3,
what do you think is optimal in 

this problem?
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Off-line / On-line phases

 off-line planning, on-line execution is decentralized

Planning Phase Execution Phase

π=〈π1,π2〉



2013-07-02  EASSS – Spaan & Oliehoek 29/96

Policy Domain

 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
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Policy Domain

 What do policies look like?
 In general histories → actions
 before: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

(ai
0,oi

1,ai
1 , ... , ai

t−1 , oi
t)

o⃗i=(oi
1, ... ,oi

t )
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No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s)  (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: ??
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No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s)  (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: agents do not know those during execution

 Multiagent belief, b
i 
(s,q

-i 
) [Hansen et al. 2004]

 belief over (future) policies of other agents
 Need to be able to predict the other agents!

 for belief update P(s'|s,a
i
,a

-i
), P(o|a

i
,a

-i
,s'), and prediction of R(s,a

i
,a

-i
)

 form of those other policies? most general: 

 if they use beliefs? → infinite recursion of beliefs!

π j : o⃗ j→ a j
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Goal of Planning

 Find the optimal joint policy 
 where individual policies map OHs to actions

 What is the optimal one? 
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]
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Goal of Planning

 Find the optimal joint policy 
 where individual policies map OHs to actions

 What is the optimal one? 
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe
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Goal of Planning

 Find the optimal joint policy 
 where individual policies map OHs to actions

 What is the optimal one? 
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

conceptually: 

what should policy optimize to 
allow for good coordination (thus 

high value)

?
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Coordination vs. Exploitation of 
Local Information

 Inherent trade-off

coordination vs. exploitation of local information

 Ignore own observations → 'open loop plan'
 E.g., “ATTACK on 2nd time step”

+ maximally predictable
-  low quality

 Ignore coordination
 E.g., compute an individual belief b

i 
(s)

and execute the MPOMDP policy
+ uses local information
-  likely to result in mis-coordination

 Optimal policy      should balance between these.

bi(s)=∑q−i

b(s , q−i)

π∗
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Planning Methods
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Brute Force Search 

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012] 

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153
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Brute Force Search 

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012]  

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4
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3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76
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No easy way out...

The problem is 
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP) 
doubly exponential time required.

No easy way out...

The problem is 
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP) 
doubly exponential time required.
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Brute Force Search 

 We can compute the value of a joint policy V(π)
 using a Bellman-like equation [Oliehoek 2012]  

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153

No easy way out...

The problem is 
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP) 
doubly exponential time required.

No easy way out...

The problem is 
NEXP-complete [Bernstein et al. 2002]

 most likely (assuming EXP != NEXP) 
doubly exponential time required.

● Still, there are better algorithms that work better for 
at least some problems...

● Useful to understand what optimal really means!
(trying to compute it helps understanding)
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

? ?

S L
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

S L
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

a new qτ+1

S L
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

Qτ

a
i

S L

To generate all Qτ+1

● All actions
● All assignments of qτ to observations

To generate all Qτ+1

● All actions
● All assignments of qτ to observations

S L
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Dynamic Programming – 2

 (obviously) this scales very poorly...

A O

Q1
τ=1 Q2

τ=1

A O
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Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=2 Q2

τ=2

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L
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Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=3 Q2

τ=3

h num. indiv. policies

1 2

2 8

3 128

4 32768

5 2.1475e+09

6 9.2234e+18

7 1.7014e+38

8 5.7896e+76

This does not get us anywhere!

but...

This does not get us anywhere!

but...
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Dynamic Programming – 3

 Perhaps not all those       are useful!
 Perform pruning of 'dominated policies'!

 Algorithm [Hansen et al. 2004]

Qi
τ

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Qi
τ=1

=A i
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Dynamic Programming – 3

 Perhaps not all those       are useful!
 Perform pruning of 'dominated policies'!

 Algorithm [Hansen et al. 2004]

Qi
τ

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Qi
τ=1

=A i

Note: cannot prune independently!

● usefulness of a q
1 
depends on Q

2

● and vice versa
→ Iterated elimination of policies
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Dynamic Programming – 4

 Initialization

A O

Q1
τ=1 Q2

τ=1

A O
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Dynamic Programming – 4

 Exhaustive Backups gives

Q1
τ=2 Q2

τ=2

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L
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Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=2 Q2

τ=2

O

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

Hypothetical Pruning
(not the result of actual pruning)
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Dynamic Programming – 4

 Pruning agent 2...

Q1
τ=2 Q2

τ=2

O

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

O

A A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L
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Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=2 Q2

τ=2

O

A A

S L

O

O O

S L

O

A O

S L
O

A A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L



2013-07-02  EASSS – Spaan & Oliehoek 60/96

Dynamic Programming – 4

 Etc...

Q1
τ=2 Q2

τ=2

O

A A

S L

O

O O

S L

O

A O

S L
O

A A

S L

O

O O

S L

O

A O

S L
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Dynamic Programming – 4

 Etc...

Q1
τ=2 Q2

τ=2

O

A A

S L

O

O O

S L

O

A O

S L
O

A A

S L

O

O O

S L

O

A O

S L

In this case: symmetric
→ but need not be in general!

In this case: symmetric
→ but need not be in general!
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Dynamic Programming – 4

 Exhaustive backups:

Q1
τ=3 Q2

τ=3

We avoid generation of many policies!
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Dynamic Programming – 4

 Exhaustive backups:

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Pruning agent 2...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3
At the very end:

● …?
 

At the very end:

● …?
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Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3
At the very end:

● evaluate all the remaining combinations of 
policies (i.e., the 'induced joint policies')

● select the best one

At the very end:

● evaluate all the remaining combinations of 
policies (i.e., the 'induced joint policies')

● select the best one
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Bottom-up vs. Top-down

 DP constructs bottom-up
 Alternatively try and construct top down

→ leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]
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Heuristic Search – Intro

 Core idea is the same as DP: 
 incrementally construct all (joint) policies
 try to avoid work

 Differences
 different starting point and increments
 use heuristics (rather than pruning) to avoid work
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

A O

S L
A

A O

S L

O

A

S L

A A

S L
O

A O

S L

1 joint policy
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

1 partial joint policy

Start with unspecified policyStart with unspecified policy
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

?

S L

? ?

S L
?

? ?

S L

O

?

S L

S L
?

S L

? ?? ?

1 partial joint policy
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

? ?

S L
A

? ?

S L

O

A

S L

S L
O

S L

? ?? ?

1 partial joint policy



2013-07-02  EASSS – Spaan & Oliehoek 75/96

Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

A O

S L
A

A O

S L

O

A

S L

A A

S L
O

A O

S L

1 complete joint policy
(full-length)
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

Root node:
unspecified joint policy

why?
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

O

?

S L

? ?

S L
?

? ?

S L

O

?

S L

S L
?

S L

? ?? ?

Creating a child node:
 assignment actions at t=0
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

?

?

S L

? ?

S L
?

? ?

S L

?

?

S L

S L
?

S L

? ?? ?

O

?

S L

? ?

S L
?

? ?

S L

O

?

S L

S L
?

S L

? ?? ?

A

?

S L

? ?

S L
?

? ?

S L

A

?

S L

S L
?

S L

? ?? ?

...

Node expansion:
create all children
Node expansion:
create all children
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

             t=0
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...
             t=1

Expand next nodeExpand next node
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...

Many more children!

need to assign action to
4 OHs now: 2^4 = 16

Many more children!

need to assign action to
4 OHs now: 2^4 = 16

             t=1
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...
             t=2

Last stage: even more!

need to assign action to
8 OHs now: 2^8 = 256 children 
(for each node at level 2!)

Last stage: even more!

need to assign action to
8 OHs now: 2^8 = 256 children 
(for each node at level 2!)

...
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]
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 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

5

3.53



2013-07-02  EASSS – Spaan & Oliehoek 86/96

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

5

3.53

Select highest 
valued node
& expand...
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

42.9 3.53
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

42.9 3.53

F-Value of a node n

● F(n) is a optimistic estimate
● I.e., F(n) >= V(n')  for any descendant n' of n

● F(n) = G(n) + H(n)

reward up to n
(for first t stages)

Optimistic estimate of reward 
below n
(reward for stages  t,t+1,...,h-1 )



2013-07-02  EASSS – Spaan & Oliehoek 89/96

Heuristic Search – 4

 Use heuristics F(n) = G(n) + H(n)

 G(n) – actual reward of reaching n
 a node at depth t specifies φt   (i.e., actions for first t stages)

→ can compute V(φt)  over stages 0...t-1

 H(n) – should overestimate!
 E.g., pretend that it is an MDP
 compute 

 H (n)=H (φ
t
)=∑s

P (s∣φ t , b0
)V̂ MDP (s)
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Heuristics – 1

 QPOMDP: Solve 'underlying POMDP'
 corresponds to immediate communication

 QBG corresponds to 1-step delayed communication
 Hierarchy of upper bounds [Oliehoek et al. 2008]

Q∗
≤Q̂ kBG≤Q̂ BG≤Q̂POMDP≤Q̂MDP

H (φ
t
)=∑θ⃗t

P (θ⃗
t
∣φ

t , b0
)V̂ POMDP(b

θ⃗
t

)
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Further Developments
 DP

 Improvements to exhaustive backup [Amato et al. 2009]

 Compression of values (LPC) [Boularias & Chaib-draa 2008]

 (Point-based) Memory bounded DP [Seuken & Zilberstein 2007a]

 Improvements to PB backup [Seuken & Zilberstein 2007b,  Carlin and 
Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

 Heuristic Search
 No backtracking: just most promising path

[Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]

 Clustering of histories: reduce number of child nodes
[Oliehoek et al. 2009]

 Incremental expansion: avoid expanding all child nodes
[Spaan et al. 2011]

 MILP [Aras and Dutech 2010]
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State of the Art
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State of the Art

Cases that compress well
* excluding heuristic

Scalability w.r.t. #agents
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State of The Art

Approximate (no quality guarantees)
 MBDP: linear in horizon [Seuken & zilberstein 2007a]

 Rollout sampling extension: up to 20 agents  [Wu et al. 2010b]

 Transfer planning: use smaller problems to solve large 
(structured) problems (up to 1000) agents [Oliehoek et al. 2013]
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Related Areas

 Partially observable stochastic games [Hansen et al. 2004]

 Non-identical payoff

 Interactive POMDPs  [Gmytrasiewicz & Doshi 2005, JAIR]

 Subjective view of MAS

 Imperfect information extensive form games
 Represented by game tree
 E.g., poker [Sandholm 2010, AI Magazine]
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Some Further Topics

High-level overview:
 Communication
 Factored Models

 Single Agent
 Multiple agents
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Communication

 Already discussed: 
instantaneous cost-free and noise-free communication

 Dec-MDP → multiagent MDP (MMDP)
 Dec-POMDP → multiagent POMDP (MPOMDP)

 but in practice:
 probability of failure
 delays
 costs

 Also: implicit communication! 
(via observations and actions)
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Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding 
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
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Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding 
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

 E.g. communication bit

 doubles the #actions and observations!
 Clearly, useful... but intractable for general settings

(perhaps for analysis of very small communication systems)
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Explicit Communication

 perform a particular information update (e.g., sync) as 
in the MPOMDP:

 each agent broadcasts its information, and 
 each agent uses that to perform joint belief update

 Other approaches:
 Communication cost [Becker et al. 2005]

 Delayed communication [Hsu 1982, Spaan 2008, Oliehoek 2012]

 communicate every k stages [Goldman & Zilberstein 2008]
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Some Further Topics

Overview:
 On-line planning
 Communication
 Factored Models

 Single Agent
 Multiple agents
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Factored MDPs  
 So far: used 'states'
 But in many problems states are factored

 state is an assignment of variables s=<f
1
,f

2
,...,f

k
>

 factored MDP [Boutilier et al. 99 JAIR]

Examples:

 Predator-prey: x, y coordinate!

 Robotic P.A.

 location of robot (lab, hallway, kitchen, mail room), tidiness of lab, coffee 
request, robot holds coffee, mail present, robot holds mail, etc.

 Actions: move (2 directions), pickup coffee/mail, deliver coffee/mail
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM
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Factored States & Transitions
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Factored States & Transitions
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tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

“Move to lab”“Move to lab”
L H K M

L 1 .9 0 0

t+1 H 0 .1 .9 0

K 0 0 .1 .9

M 0 0 0 .1

conditional 
probability table 

(CPT)
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conditional 
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(CPT)

● Each next-stage variable has a CPT
● This allows for a much more compact representation!
● “Two-stage dynamic Bayesian network” (2DBN)

● Each next-stage variable has a CPT
● This allows for a much more compact representation!
● “Two-stage dynamic Bayesian network” (2DBN)
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

L H K M

L 1 .9 0 0

t+1 H 0 .1 .9 0

K 0 0 .1 .9

M 0 0 0 .1

conditional 
probability table 

(CPT)

Do we always have so much 
independence?

(what about other actions?)

Do we always have so much 
independence?

(what about other actions?)
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Factored States & Transitions

loc

tidy

CR

RHC

M

RHM

st st+ 1

loc

tidy

CR

RHC

M

RHM

“Deliver coffee”“Deliver coffee”
CPT encodes that IF

● loc=lab
● CR=1

→ high probability of 
CR becoming 0

CPT encodes that IF
● loc=lab
● CR=1

→ high probability of 
CR becoming 0
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Solving Factored MDPs

 CPT also representable as a decision tree

loc

CR

RHC

P(CR'=1) = 0.05
P(CR'=0) = 0.95

0 1
CR

0 1

0 1

Lotherwise

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 1
P(CR'=0) = 0

P(CR'=1) = 0.05
P(CR'=0) = 0.95

P(CR'=1) = 0.05
P(CR'=0) = 0.95
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→ Can also represent value functions, 
policies as decision trees [Boutilier et al 99]
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Factored POMDPs

 Of course POMDP models can also be factored
 Similar ideas applied [Hansen & Feng 2000, Poupart 2005, Shani et al. 

2008]

 α-vectors represented by ADDs
 beliefs too.

 This does not solve all problems: 
 over time state factors get more and more correlated, 

so representation grows large.
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Factored Multiagent Models

 Of course multiagent models can also be factored!
 Work can be categorized in a few directions:

 Trying to execute the factored (PO)MDP policy 
[Roth et al. 2007, Messias et al. 2011]

 Trying to execute independently as much as possible 
[Spaan & Melo 2008, Melo & Veloso 2011]

 Exploiting graphical structure between agents
(ND-POMDPs, Factored Dec-POMDPs) 

 Influence-based abstraction of policies of other agents 
(TOI-Dec-MDPs, TD-POMDPs, IBA for POSGs)
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Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham et al. '07 AAMAS]
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Graphical Structure between Agents

 Exploit (conditional) independence between agents
 E.g., sensor networks [Nair et al '05 AAAI, Varakantham '07 AAMAS]

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

These problems have
● State that cannot be influenced
● Factored reward function

This allows a reformulation as a (D)COP

π
7

π
6

π
4

π
1

π
2

π
3

π
5

V (π)=∑
e

V e(πe)

R (s , a)=∑
e

Re(s ,ae)

This can be solved more 
efficiently than by 

looping through all π !
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]

st st+ 1

FL
1

FL
2

FL
3

FL
4

a
1

a
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a
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R
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Graphical Structure between Agents

 Factored Dec-POMDPs
[Oliehoek et al. 2008 AAMAS]
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Solution Methods
● reduction to a type of COP
● but now: one for each stage!

● δ is a decision rule
(part of policy for 1 stage t)

→ leads to factored form of heuristic search
[Oliehoek 2013 AAMAS]

Solution Methods
● reduction to a type of COP
● but now: one for each stage!

● δ is a decision rule
(part of policy for 1 stage t)

→ leads to factored form of heuristic search
[Oliehoek 2013 AAMAS]
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Influence-Based Abstraction

 Try to define agents' local state
 Analyze how policies of other agents affect it

 find compact description for this influence

 Example: Mars Rovers [Becker et al. 2004 JAIR]

 2 rovers collect data at 4 sites

A

B
C

D
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 find compact description for this influence

 Example: Mars Rovers [Becker et al. 2004 JAIR]

 2 rovers collect data at 4 sites
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Transitions independent: Rovers drive independently
Rewards are dependent:

● 2 same soil samples of same site not so useful (sub additive)
● 2 pictures of (different sides) of same rock is useful (super additive)

Transitions independent: Rovers drive independently
Rewards are dependent:

● 2 same soil samples of same site not so useful (sub additive)
● 2 pictures of (different sides) of same rock is useful (super additive)
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Influence-Based Abstraction

 TI Dec-MDP
 extra reward (or penalty) 

at the end if 'joint event' 
happens

 joint event E=<e
1
,e

2
>

 From agent i's perspective:
if it realizes e

i 

→ extra reward with 
probability P(e

j
)
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But most problems are not transition independent!?

Much further research, e.g.:
● Event-driven Dec-MDPs [Becker et al.04 AAMAS]
● Transition-decoupled POMDPs [Witwicki 2011 PhD]
● EDI-CR [Mostafa & Lesser 2009 WIIAT]
● IBA for Factored POSGs [Oliehoek et al. 2012 AAAI]

But most problems are not transition independent!?

Much further research, e.g.:
● Event-driven Dec-MDPs [Becker et al.04 AAMAS]
● Transition-decoupled POMDPs [Witwicki 2011 PhD]
● EDI-CR [Mostafa & Lesser 2009 WIIAT]
● IBA for Factored POSGs [Oliehoek et al. 2012 AAAI]
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Recap: Decision Making under Uncertainty



2013-07-02  36/40

Recap: MDPs

 MDPs:
 1 agent
 perfectly observable
 outcome uncertainty

 Bellman equation

 Value iteration
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Recap: POMDPs

 POMDP
 1 agent
 state uncertainty

 Reduction: belief-state MDP
 continuous states
 vectors for value iteration

V
(b

)

← belief → s
1

s
2
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Recap: Multiagent MDP

 Multiagent MDP (MMDP)
 multiple agents
 outcome uncertainty
 fully observable

 Reduction to single-agent problem
 'puppeteer' 

 value iteration, etc.

 but exponentially many joint actions – e.g., [Guestrin et al. 2002 NIPS]
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Recap: Partially Observable MAS

 Multiagent POMDP
 Free communication 
 Reduces to single-agent problem

 Dec-POMDP
 No (free) communication
 Harder: NEXP-complete
 Solution methods:

 Bottom-up: dynamic programming 
 Top-down: heuristic search
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