Decision Making under Uncertainty

Matthijs Spaan[§] Frans Oliehoek*

[§]Delft University of Technology *Maastricht University The Netherlands

15th European Agent Systems Summer School (EASSS '13) London, UK

http://www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

July 2, 2013

Outline

This lecture:

- 1. Introduction to decision making under uncertainty
- 2. Planning under action uncertainty (MDPs)
- 3. Planning under sensing uncertainty (POMDPs)

After the break:

- 1. Multiagent planning
- 2. Selected further topics

Introduction

Introduction

- Goal in Artificial Intelligence: to build intelligent agents.
- Our definition of "intelligent": perform an assigned task as well as possible.
- Problem: how to act?
- We will explicitly model uncertainty.

Applications

- Resource planning
- Maintenance
- Queue management
- Medical decision making

Agents

- An agent is a (rational) decision maker who is able to perceive its external (physical) environment and act autonomously upon it (Russell and Norvig, 2003).
- Rationality means reaching the optimum of a performance measure.
- Examples: humans, robots, some software programs.

Agents

- It is useful to think of agents as being involved in a perception-action loop with their environment.
- But how do we make the right decisions?

Planning

Planning:

- A plan tells an agent how to act.
- For instance
 - A sequence of actions to reach a goal.
 - What to do in a particular situation.
- We need to model:
 - the agent's actions
 - its environment
 - its task

We will model planning as a sequence of decisions.

Classic planning

- Classic planning: sequence of actions from start to goal.
- Task: robot should get to gold as quickly as possible.
- Actions: $\rightarrow \downarrow \leftarrow \uparrow$
- Limitations:
 - New plan for each start state.
 - Environment is deterministic.

Classic planning

- Classic planning: sequence of actions from start to goal.
- Task: robot should get to gold as quickly as possible.
- Actions: $\rightarrow \downarrow \leftarrow \uparrow$
- Limitations:
 - New plan for each start state.
 - Environment is deterministic.
- Three optimal plans: $\rightarrow \rightarrow \downarrow$, $\rightarrow \downarrow \rightarrow$, $\downarrow \rightarrow \rightarrow$.

Conditional planning

- Assume our robot has noisy actions (wheel slip, overshoot).
- We need conditional plans.
- Map situations to actions.

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

- Positive reward when reaching goal, small penalty for all other actions.
- Agent's plan maximizes value: the sum of future rewards.
- Decision-theoretic planning successfully handles noise in acting and sensing.

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

valuee et the platti					
?	?	?			
		10			

Values of this plan:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

9.7	9.8	9.9			
		10			

Values of this plan:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

?	?	?	?	?
		10	?	?

Values of this plan:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

values of this plan.					
9.3	9.4	9.5	9.6	9.7	
		10	9.9	9.8	

Values of this plan:

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

		•		• •
9.7	9.8	9.9	9.8	9.7
9.8	9.9	10	9.9	9.8

Optimal values (encode optimal plan):

-0.1	-0.1	-0.1	-0.1	-0.1
-0.1	-0.1	10	-0.1	-0.1

Markov Decision Processes

Sequential decision making under uncertainty

- Uncertainty is abundant in real-world planning domains.
- **Bayesian** approach \Rightarrow probabilistic models.

Main assumptions:

Sequential decisions: problems are formulated as a sequence of "independent" decisions;

Markovian environment: the state at time *t* depends only on the events at time t - 1;

Evaluative feedback: use of a reinforcement signal as performance measure (reinforcement learning);

Transition model

- For instance, robot motion is inaccurate.
- Transitions between states are stochastic.
- p(s'|s, a) is the probability to jump from state s to state s' after taking action a.

MDP Agent

MDP Agent

MDP Agent

Optimality criterion

For instance, agent should maximize the value

$$E\Big[\sum_{t=0}^{h} \gamma^t R_t\Big],\tag{1}$$

where

- *h* is the planning horizon, can be finite or ∞
- γ is a discount rate, $0 \le \gamma < 1$

Reward hypothesis (Sutton and Barto, 1998):

All goals and purposes can be formulated as the maximization of the cumulative sum of a received scalar signal (reward).

Discrete MDP model

Discrete Markov Decision Process model (Puterman, 1994; Bertsekas, 2000):

- Time t is discrete.
- State space S.
- Set of actions A.
- Reward function $R : S \times A \mapsto \mathbb{R}$.
- ► Transition model $p(s'|s, a), T_a : S \times A \mapsto \Delta(S).$
- Initial state s_0 is drawn from $\Delta(S)$.

The Markov property entails that the next state s_{t+1} only depends on the previous state s_t and action a_t :

$$p(s_{t+1}|s_t, s_{t-1}, \dots, s_0, a_t, a_{t-1}, \dots, a_0) = p(s_{t+1}|s_t, a_t).$$
 (2)

A simple problem

Problem:

An autonomous robot must learn how to transport material from a deposit to a building facility.

(thanks to F. Melo)

Load/Unload as an MDP

- States: $S = \{1_U, 2_U, 3_U, 1_L, 2_L, 3_L\};$
 - 1_U Robot in position 1 (unloaded);
 - 2_U Robot in position 2 (unloaded);
 - 3_U Robot in position 3 (unloaded);
 - 1_L Robot in position 1 (loaded);
 - 2_L Robot in position 2 (loaded);
 - 3_L Robot in position 3 (loaded)
- Actions: A = {Left, Right, Load, Unload};

Load/Unload as an MDP (1)

Transition probabilities: "Left"/"Right" move the robot in the corresponding direction; "Load" loads material (only in position 1); "Unload" unloads material (only in position 3). Ex:

 $\begin{array}{ll} (2_L, \text{Right}) & \rightarrow 3_L; \\ (3_L, \text{Unload}) & \rightarrow 3_U; \\ (1_L, \text{Unload}) & \rightarrow 1_L. \end{array}$

Reward: We assign a reward of +10 for every unloaded package (payment for the service).

Load/Unload as an MDP (2)

For each action $a \in A$, T_a is a matrix. Ex:

$$T_{\text{Right}} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• Recall: $S = \{1_U, 2_U, 3_U, 1_L, 2_L, 3_L\}.$

Load/Unload as an MDP (3)

The reward R(s, a) can also be represented as a matrix Ex:

$$S = \{1_U, 2_U, 3_U, 1_L, 2_L, 3_L\}, A = \{\text{Left, Right, Load, Unload}\}$$

Policies and value

- Policy π : tells the agent how to act.
- A deterministic policy *π* : *S* → *A* is a mapping from states to actions.
- Value: how much reward E[∑^h_{t=0} γ^tR_t] does the agent expect to gather.
- ► Value denoted as Q^π(s, a): start in s, do a and follow π afterwards.

Policies and value (1)

• Extracting a policy π from a value function Q is easy:

$$\pi(s) = \operatorname*{arg\,max}_{a \in A} Q(s, a). \tag{3}$$

- ► Optimal policy π*: one that maximizes E[∑^h_{t=0} γ^tR_t] (for every state).
- In an infinite-horizon MDP there is always an optimal deterministic stationary (time-independent) policy π*.
- There can be many optimal policies π*, but they all share the same optimal value function Q*.

Dynamic programming

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

 $S = \{1_U, 2_U, 3_U, 1_L, 2_L, 3_L\}, A = \{\text{Left, Right, Load, Unload}\}$

Dynamic programming

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

 $S = \{1_U, 2_U, 3_U, 1_L, 2_L, 3_L\}, A = \{\text{Left, Right, Load, Unload}\}$
Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Since *S* and *A* are finite, $Q^*(s, a)$ is a matrix. Iterations of dynamic programming ($\gamma = 0.95$):

Iterations of dynamic programming ($\gamma = 0.95$):

$$Q_5 = \begin{bmatrix} 0 & 0 & 8.57 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 8.57 & 9.03 & 8.57 & 8.57 \\ 8.57 & 9.5 & 9.03 & 9.03 \\ 9.03 & 9.5 & 9.5 & 10 \end{bmatrix}$$

$$S = \{1_U, 2_U, 3_U, 1_L, 2_L, 3_L\}, A = \{\text{Left, Right, Load, Unload}\}$$

Iterations of DP:

$$Q_{20} = \begin{bmatrix} 18.53 & 17.61 & 19.51 & 18.54 \\ 18.53 & 16.73 & 17.61 & 17.61 \\ 17.61 & 16.73 & 16.73 & 16.73 \\ 19.51 & 20.54 & 19.51 & 19.51 \\ 19.51 & 21.62 & 20.54 & 20.54 \\ 20.54 & 21.62 & 21.62 & 26.73 \end{bmatrix}$$

$$S = \{1_U, 2_U, 3_U, 1_L, 2_L, 3_L\}, A = \{\text{Left, Right, Load, Unload}\}$$

Final Q^* and policy:

Q* =	30.75	29.21	32.37	30.75	$\pi^* =$	Load]
	30.75	27.75	29.21	29.21		Left
	29.21	27.75	27.75	27.75		Left
	32.37	34.07	32.37	32.37		Right
	32.37	35.86	34.07	34.07		Right
	34.07	35.86	35.86	37.75		Unload

Value iteration

- ► Value iteration: successive approximation technique.
- Start with all values set to 0.
- In order to consider one step deeper into the future, i.e., to compute V^{*}_{n+1} from V^{*}_n:

$$Q_{n+1}^{*}(s,a) := R(s,a) + \gamma \sum_{s' \in S} p(s'|s,a) \max_{a' \in A} Q_{n}^{*}(s',a'), \quad (4)$$

which is known as the dynamic programming update or Bellman backup.

Bellman (1957) equation:

$$Q^*(s, a) = R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \max_{a' \in A} Q^*(s', a').$$
(5)

Value iteration (1)

Initialize Q arbitrarily, e.g., $Q(s, a) = 0, \forall s \in S, a \in A$ repeat $\delta \leftarrow 0$ for all $s \in S, a \in A$ do $v \leftarrow Q(s, a)$ $Q(s, a) \leftarrow R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) \max_{a' \in A} Q(s', a')$ $\delta \leftarrow \max(\delta, |v - Q(s, a)|)$ end for until $\delta < \epsilon$ Return Q

Value iteration (2)

Value iteration discussion:

- As $n \to \infty$, value iteration converges.
- Value iteration has converged when the largest update δ in an iteration is below a certain threshold ε.
- Exhaustive sweeps are not required for convergence, provided that in the limit all states are visited infinitely often.
- This can be exploited by backing up the most promising states first, known as prioritized sweeping.

Solution methods: MDPs

Model based

- Basic: dynamic programming (Bellman, 1957), value iteration, policy iteration.
- Advanced: prioritized sweeping, function approximators.

Model free, reinforcement learning (Sutton and Barto, 1998)

- ▶ Basic: Q-learning, $TD(\lambda)$, SARSA, actor-critic.
- Advanced: generalization in infinite state spaces, exploration/exploitation issues.

- Real agents cannot directly observe the state.
- Sensors provide partial and noisy information about the world.

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

- MDPs have been very successful, but requires to have an observable Markovian state.
- Many domains this is impossible (or expensive) to obtain:
- Diagnosis (medical, maintenance)
- Robot navigation
- Tutoring
- Dialog systems
- Vision-based robotics
- Fault recovery

Observation model

- Imperfect sensors.
- Partially observable environment:
 - Sensors are **noisy**.
 - Sensors have a limited view.
- p(o|s', a) is the probability the agent receives observation o in state s' after taking action a.

- Framework for agent planning under uncertainty.
- ► Typically assumes discrete sets of states *S*, actions *A* and observations *O*.
- For Transition model p(s'|s, a): models the effect of **actions**.
- Observation model p(o|s', a): relates observations to states.
- Task is defined by a **reward** model R(s, a).
- A planning horizon h (finite or ∞).
- A discount rate $0 \le \gamma < 1$.
- Goal is to compute plan, or **policy** π, that maximizes long-term reward.

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- Fransition model p(s'|s, a): models the effect of **actions**.
- Observation model p(o|s', a): relates observations to states.
- Task is defined by a **reward** model R(s, a).
- A planning horizon h (finite or ∞).
- A discount rate $0 \le \gamma < 1$.
- Goal is to compute plan, or **policy** π, that maximizes long-term reward.

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- ► Transition model p(s'|s, a): models the effect of **actions**.
- Observation model p(o|s', a): relates observations to states.
- Task is defined by a **reward** model R(s, a).
- A planning horizon h (finite or ∞).
- A discount rate $0 \le \gamma < 1$.
- Goal is to compute plan, or **policy** π, that maximizes long-term reward.

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- ► Transition model p(s'|s, a): models the effect of **actions**.
- Observation model p(o|s', a): relates observations to states.
- Task is defined by a **reward** model R(s, a).
- A planning horizon h (finite or ∞).
- A discount rate $0 \le \gamma < 1$.
- Goal is to compute plan, or **policy** π, that maximizes long-term reward.

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- ► Transition model p(s'|s, a): models the effect of **actions**.
- Observation model p(o|s', a): relates observations to states.
- Task is defined by a **reward** model R(s, a).
- A planning horizon h (finite or ∞).
- A discount rate $0 \le \gamma < 1$.
- Goal is to compute plan, or **policy** π, that maximizes long-term reward.

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- ► Transition model p(s'|s, a): models the effect of **actions**.
- Observation model p(o|s', a): relates observations to states.
- Task is defined by a **reward** model R(s, a).
- A planning horizon h (finite or ∞).
- A discount rate $0 \le \gamma < 1$.
- Goal is to compute plan, or **policy** π, that maximizes long-term reward.
POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- ► Transition model p(s'|s, a): models the effect of **actions**.
- Observation model p(o|s', a): relates observations to states.
- Task is defined by a **reward** model R(s, a).
- A planning horizon h (finite or ∞).
- A discount rate $0 \le \gamma < 1$.
- Goal is to compute plan, or **policy** π, that maximizes long-term reward.

POMDPs

Partially observable Markov decision processes (POMDPs) (Kaelbling et al., 1998):

- Framework for agent planning under uncertainty.
- Typically assumes discrete sets of states S, actions A and observations O.
- ► Transition model p(s'|s, a): models the effect of **actions**.
- Observation model p(o|s', a): relates observations to states.
- Task is defined by a **reward** model R(s, a).
- A planning horizon h (finite or ∞).
- A discount rate $0 \le \gamma < 1$.
- Goal is to compute plan, or **policy** π, that maximizes long-term reward.

- In POMDPs memory is required for optimal decision making.
- ► In this non-observable example (Singh et al., 1994):

- In POMDPs memory is required for optimal decision making.
- ▶ In this non-observable example (Singh et al., 1994):

PolicyValueMDP: optimal policyPOMDP: memoryless deterministicPOMDP: memoryless stochasticPOMDP: memoryless stochasticPOMDP: memory-based (optimal)

- In POMDPs memory is required for optimal decision making.
- ▶ In this non-observable example (Singh et al., 1994):

PolicyValueMDP: optimal policy $V = \sum_{t=0}^{\infty} \gamma^t r = \frac{r}{1-\gamma}$ POMDP: memoryless deterministicPOMDP: memoryless stochasticPOMDP: memory-based (optimal)

- In POMDPs memory is required for optimal decision making.
- ▶ In this non-observable example (Singh et al., 1994):

Policy	Value
MDP: optimal policy	$V = \sum_{t=0}^{\infty} \gamma^t r = \frac{r}{1-\gamma}$
POMDP: memoryless deterministic	$V_{\rm max} = r - \frac{\gamma r}{1 - \gamma}$
POMDP: memoryless stochastic	- 1
POMDP: memory-based (optimal)	

- In POMDPs memory is required for optimal decision making.
- ▶ In this non-observable example (Singh et al., 1994):

Policy	Value
MDP: optimal policy	$V = \sum_{t=0}^{\infty} \gamma^t r = \frac{r}{1-\gamma}$
POMDP: memoryless deterministic	$V_{\rm max} = r - \frac{\gamma r}{1 - \gamma}$
POMDP: memoryless stochastic	V = 0
POMDP: memory-based (optimal)	

- In POMDPs memory is required for optimal decision making.
- ▶ In this non-observable example (Singh et al., 1994):

PolicyValueMDP: optimal policy $V = \sum_{t=0}^{\infty} \gamma^t r = \frac{r}{1-\gamma}$ POMDP: memoryless deterministic $V_{max} = r - \frac{\gamma r}{1-\gamma}$ POMDP: memoryless stochasticV = 0POMDP: memory-based (optimal) $V_{min} = \frac{\gamma r}{1-\gamma} - r$

Beliefs

Beliefs:

- The agent maintains a **belief** b(s) of being at state s.
- After action a ∈ A and observation o ∈ O the belief b(s) can be updated using Bayes' rule:

$$b'(s') \propto p(o|s') \sum_{s} p(s'|s,a) b(s)$$

► The belief vector is a **Markov** signal for the planning task.

- Observations: door or corridor, 10% noise.
- Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

- Observations: door or corridor, 10% noise.
- Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

- Observations: door or corridor, 10% noise.
- Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

- Observations: door or corridor, 10% noise.
- Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

- Observations: door or corridor, 10% noise.
- Action: moves 3 (20%), 4 (60%), or 5 (20%) states.

MDP-based algorithms

- Exploit belief state, and use the MDP solution as a heuristic.
- ► Most likely state (Cassandra et al., 1996): $\pi_{MLS}(b) = \pi^*(\arg \max_s b(s)).$
- ► Q_{MDP} (Littman et al., 1995): $\pi_{Q_{\text{MDP}}}(b) = \arg \max_{a} \sum_{s} b(s) Q^{*}(s, a).$

(Parr and Russell, 1995)

- Continuous state space Δ : a simplex in $[0, 1]^{|S|-1}$.
- Stochastic Markovian transition model $p(b_a^o|b, a) = p(o|b, a)$. This is the normalizer of Bayes' rule.
- ► Reward function R(b, a) = ∑_s R(s, a)b(s). This is the average reward with respect to b(s).
- ► The robot fully 'observes' the new belief-state b_a^o after executing *a* and observing *o*.

- Continuous state space Δ : a simplex in $[0, 1]^{|S|-1}$.
- Stochastic Markovian transition model $p(b_a^o|b, a) = p(o|b, a)$. This is the normalizer of Bayes' rule.
- ► Reward function R(b, a) = ∑_s R(s, a)b(s). This is the average reward with respect to b(s).
- The robot fully 'observes' the new belief-state b^o_a after executing a and observing o.

- Continuous state space Δ : a simplex in $[0, 1]^{|S|-1}$.
- Stochastic Markovian transition model $p(b_a^o|b, a) = p(o|b, a)$. This is the normalizer of Bayes' rule.
- ► Reward function R(b, a) = ∑_s R(s, a)b(s). This is the average reward with respect to b(s).
- ► The robot fully 'observes' the new belief-state b_a^o after executing *a* and observing *o*.

- Continuous state space Δ : a simplex in $[0, 1]^{|S|-1}$.
- Stochastic Markovian transition model $p(b_a^o|b, a) = p(o|b, a)$. This is the normalizer of Bayes' rule.
- ► Reward function R(b, a) = ∑_s R(s, a)b(s). This is the average reward with respect to b(s).
- The robot fully 'observes' the new belief-state b^o_a after executing a and observing o.

A solution to a POMDP is a **policy**, i.e., a mapping π : Δ → A from beliefs to actions.

The optimal value V* of a POMDP satisfies the Bellman optimality equation V* = HV*:

$$V^*(b) = \max_{a} \left[R(b,a) + \gamma \sum_{o} p(o|b,a) V^*(b_a^o) \right]$$

- ► Value iteration repeatedly applies V_{n+1} = HV_n starting from an initial V₀.
- Computing the optimal value function is a hard problem (PSPACE-complete for finite horizon, undecidable for infinite horizon).

- A solution to a POMDP is a **policy**, i.e., a mapping π : Δ → A from beliefs to actions.
- The optimal value V* of a POMDP satisfies the Bellman optimality equation V* = HV*:

$$V^*(b) = \max_{a} \left[R(b, a) + \gamma \sum_{o} p(o|b, a) V^*(b_a^o) \right]$$

- ► Value iteration repeatedly applies V_{n+1} = HV_n starting from an initial V₀.
- Computing the optimal value function is a hard problem (PSPACE-complete for finite horizon, undecidable for infinite horizon).

- A solution to a POMDP is a **policy**, i.e., a mapping π : Δ → A from beliefs to actions.
- The optimal value V* of a POMDP satisfies the Bellman optimality equation V* = HV*:

$$V^*(b) = \max_{a} \left[R(b, a) + \gamma \sum_{o} p(o|b, a) V^*(b_a^o) \right]$$

- ► Value iteration repeatedly applies V_{n+1} = HV_n starting from an initial V₀.
- Computing the optimal value function is a hard problem (PSPACE-complete for finite horizon, undecidable for infinite horizon).

- A solution to a POMDP is a **policy**, i.e., a mapping π : Δ → A from beliefs to actions.
- The optimal value V* of a POMDP satisfies the Bellman optimality equation V* = HV*:

$$V^*(b) = \max_{a} \left[R(b, a) + \gamma \sum_{o} p(o|b, a) V^*(b_a^o) \right]$$

- ► Value iteration repeatedly applies V_{n+1} = HV_n starting from an initial V₀.
- Computing the optimal value function is a hard problem (PSPACE-complete for finite horizon, undecidable for infinite horizon).

Example V_0

PWLC shape of V_n

- Like V_0 , V_n is as well piecewise linear and convex.
- Rewards R(b, a) = b · R(s, a) are linear functions of b. Note that the value of a point b satisfies:

$$V_{n+1}(b) = \max_{a} \left[b \cdot R(s, a) + \gamma \sum_{o} p(o|b, a) V_n(b_a^o) \right]$$

which involves a maximization over (at least) the vectors R(s, a).

Intuitively: less uncertainty about the state (low-entropy beliefs) means better decisions (thus higher value).

Exact value iteration

Value iteration computes a sequence of value function estimates $V_1, V_2, ..., V_n$, using the POMDP backup operator H, $V_{n+1} = HV_n$.

Optimal value functions

The optimal value function of a (finite-horizon) POMDP is piecewise linear and convex: $V(b) = \max_{\alpha} b \cdot \alpha$.

Vector pruning

Linear program for pruning:

```
variables: \forall s \in S, b(s); x
maximize: x
subject to:
b \cdot (\alpha - \alpha') \ge x, \forall \alpha' \in V, \alpha' \neq \alpha
```

$$b \cdot (\alpha - \alpha') \ge x, \forall \alpha' \in V, \alpha' \ne b \in \Delta(S)$$

Optimal POMDP methods

Enumerate and prune:

- ► Most straightforward: Monahan (1982)'s enumeration algorithm. Generates a maximum of |A||V_n|^{|O|} vectors at each iteration, hence requires pruning.
- ► Incremental pruning (Zhang and Liu, 1996; Cassandra et al., 1997).

Search for witness points:

- One Pass (Sondik, 1971; Smallwood and Sondik, 1973).
- Relaxed Region, Linear Support (Cheng, 1988).
- Witness (Cassandra et al., 1994).

Sub-optimal techniques

Grid-based approximations

(Drake, 1962; Lovejoy, 1991; Brafman, 1997; Zhou and Hansen, 2001; Bonet, 2002).

Optimizing finite-state controllers

(Platzman, 1981; Hansen, 1998b; Poupart and Boutilier, 2004).

Heuristic search in the belief tree

(Satia and Lave, 1973; Hansen, 1998a).

Compression or clustering

(Roy et al., 2005; Poupart and Boutilier, 2003; Virin et al., 2007).

Point-based techniques

(Pineau et al., 2003; Smith and Simmons, 2004; Spaan and Vlassis, 2005; Shani et al., 2007; Kurniawati et al., 2008).

Monte Carlo tree search

(Silver and Veness, 2010).

Point-based backup

- For finite horizon V* is piecewise linear and convex, and for infinite horizons V* can be approximated arbitrary well by a PWLC value function (Smallwood and Sondik, 1973).
- Given value function V_n and a particular belief point *b* we can easily compute the vector α_{n+1}^b of HV_n such that

$$\alpha_{n+1}^{b} = \underset{\{\alpha_{n+1}^{k}\}_{k}}{\arg\max b \cdot \alpha_{n+1}^{k}},$$

where $\{\alpha_{n+1}^k\}_{k=1}^{|HV_n|}$ is the (unknown) set of vectors for HV_n . We will denote this operation $\alpha_{n+1}^b = \text{backup}(b)$.

Point-based backup

- For finite horizon V* is piecewise linear and convex, and for infinite horizons V* can be approximated arbitrary well by a PWLC value function (Smallwood and Sondik, 1973).
- ► Given value function V_n and a particular belief point *b* we can easily compute the vector α_{n+1}^b of HV_n such that

$$\alpha_{n+1}^{b} = \operatorname*{arg\,max}_{\{\alpha_{n+1}^{k}\}_{k}} b \cdot \alpha_{n+1}^{k},$$

where $\{\alpha_{n+1}^k\}_{k=1}^{|HV_n|}$ is the (unknown) set of vectors for HV_n . We will denote this operation $\alpha_{n+1}^b = \text{backup}(b)$.

Point-based (approximate) methods

Point-based (approximate) value iteration plans only on a limited set of **reachable** belief points:

- 1. Let the robot explore the environment.
- 2. Collect a set *B* of belief points.
- 3. Run approximate value iteration on *B*.

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all $b \in B$.

(Spaan and Vlassis, 2005)

PERSEUS: randomized point-based VI

Idea: at every backup stage improve the value of all $b \in B$.

(Spaan and Vlassis, 2005)
Idea: at every backup stage improve the value of all $b \in B$.

Idea: at every backup stage improve the value of all $b \in B$.

(Spaan and Vlassis, 2005)

Idea: at every backup stage improve the value of all $b \in B$.

Idea: at every backup stage improve the value of all $b \in B$.

Idea: at every backup stage improve the value of all $b \in B$.

Idea: at every backup stage improve the value of all $b \in B$.

(Spaan and Vlassis, 2005)

Idea: at every backup stage improve the value of all $b \in B$.

Idea: at every backup stage improve the value of all $b \in B$.

Idea: at every backup stage improve the value of all $b \in B$.

(Spaan and Vlassis, 2005)

Idea: at every backup stage improve the value of all $b \in B$.

Further reading

- Textbook on reinforcement learning
 - R. S. Sutton and A. G. Barto. "Reinforcement Learning: An Introduction". MIT Press, 1998.
- Recent book containing chapters on many aspects of decision-theoretic planning (MDPs, POMDPs, Dec-POMDPs):
 - Marco Wiering and Martijn van Otterlo, editors,
 "Reinforcement Learning: State of the Art", Springer, 2012.

References I

- R. Bellman. Dynamic programming. Princeton University Press, 1957.
- D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont, MA, 2nd edition, 2000.
- B. Bonet. An epsilon-optimal grid-based algorithm for partially observable Markov decision processes. In International Conference on Machine Learning, 2002.
- R. I. Brafman. A heuristic variable grid solution method for POMDPs. In Proceedings of the Fourteenth National Conference on Artificial Intelligence, 1997.
- A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable stochastic domains. In Proceedings of the Twelfth National Conference on Artificial Intelligence, 1994.
- A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile robot navigation. In *Proc. of International Conference on Intelligent Robots and Systems*, 1996.
- A. R. Cassandra, M. L. Littman, and N. L. Zhang. Incremental pruning: A simple, fast, exact method for partially observable Markov decision processes. In *Proc. of Uncertainty in Artificial Intelligence*, 1997.
- H. T. Cheng. Algorithms for partially observable Markov decision processes. PhD thesis, University of British Columbia, 1988.
- A. W. Drake. Observation of a Markov process through a noisy channel. Sc.D. thesis, Massachusetts Institute of Technology, 1962.
- E. A. Hansen. Finite-memory control of partially observable systems. PhD thesis, University of Massachusetts, Amherst, 1998a.
- E. A. Hansen. Solving POMDPs by searching in policy space. In Proc. of Uncertainty in Artificial Intelligence, 1998b.
- L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains. *Artificial Intelligence*, 101:99–134, 1998.
- H. Kurniawati, D. Hsu, and W. Lee. SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces. In *Robotics: Science and Systems*, 2008.
- M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable environments: Scaling up. In International Conference on Machine Learning, 1995.
- W. S. Lovejoy. Computationally feasible bounds for partially observed Markov decision processes. Operations Research, 39(1):162–175, 1991.

References II

- G. E. Monahan. A survey of partially observable Markov decision processes: theory, models and algorithms. Management Science, 28(1), Jan. 1982.
- R. Parr and S. Russell. Approximating optimal policies for partially observable stochastic domains. In Proc. Int. Joint Conf. on Artificial Intelligence, 1995.
- J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2003.
- L. K. Platzman. A feasible computational approach to infinite-horizon partially-observed Markov decision problems. Technical Report J-81-2, School of Industrial and Systems Engineering, Georgia Institute of Technology, 1981. Reprinted in working notes AAAI 1998 Fall Symposium on Planning with POMDPs.
- P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In Advances in Neural Information Processing Systems 15. MIT Press, 2003.
- P. Poupart and C. Boutilier. Bounded finite state controllers. In Advances in Neural Information Processing Systems 16. MIT Press, 2004.
- M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York, NY, 1994.
- N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief compression. *Journal of Artificial Intelligence Research*, 23:1–40, 2005.
- S. J. Russell and P. Norvig. Artificial Intelligence: a modern approach. Prentice Hall, 2nd edition, 2003.
- J. K. Satia and R. E. Lave. Markovian decision processes with probabilistic observation of states. *Management Science*, 20(1):1–13, 1973.
- G. Shani, R. I. Brafman, and S. E. Shimony. Forward search value iteration for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2007.
- D. Silver and J. Veness. Monte-Carlo planning in large POMDPs. In Advances in Neural Information Processing Systems 23, 2010.
- S. Singh, T. Jaakkola, and M. Jordan. Learning without state-estimation in partially observable Markovian decision processes. In *International Conference on Machine Learning*, 1994.
- R. D. Smallwood and E. J. Sondik. The optimal control of partially observable Markov decision processes over a finite horizon. Operations Research, 21:1071–1088, 1973.

References III

- T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. In Proc. of Uncertainty in Artificial Intelligence, 2004.
- E. J. Sondik. The optimal control of partially observable Markov processes. PhD thesis, Stanford University, 1971.
- M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs. Journal of Artificial Intelligence Research, 24:195–220, 2005.
- R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.
- Y. Virin, G. Shani, S. E. Shimony, and R. Brafman. Scaling up: Solving POMDPs through value based clustering. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007.
- N. L. Zhang and W. Liu. Planning in stochastic domains: problem characteristics and approximations. Technical Report HKUST-CS96-31, Department of Computer Science, The Hong Kong University of Science and Technology, 1996.
- R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for POMDPs. In Proc. Int. Joint Conf. on Artificial Intelligence, 2001.

Decision making under uncertainty

Matthijs Spaan¹ and Frans Oliehoek²

¹ Delft University of Technology ² Maastricht University

Part 3: Multiagent Frameworks

European Agent Systems Summer School (EASSS '13)

www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/

EASSS – Spaan & Oliehoek

Multiagent Systems (MASs)

Why MASs?

- If we can make intelligent agents, soon there will be many...
- Physically distributed systems: centralized solutions expensive and brittle.
- can potentially provide [Vlassis, 2007, Sycara, 1998]
 - Speedup and efficiency
 - Robustness and reliability ('graceful degradation')
 - Scalability and flexibility (adding additional agents)

Example: Predator-Prey Domain

- Predator-Prey domain still single agent!
 - 1 agent: the predator (blue)
 - prey (red) is part of the environment
 - on a torus ('wrap around world')
- Formalization:
 - states
 - actions
 - transitions
 - rewards

rewards

- Formalization:
- - states

transitions

2013-07-02

environment

Predator-Prey domain

1 agent: the predator (blue)

on a torus ('wrap around world')

prey (red) is part of the

- (-3,4)

- actions N,W,S,E
 - probability of failing to move, prey moves
 - reward for capturing

Example: Predator-Prey Domain

Example: Predator-Prey Domain

Predator-Prey domain

Markov d previonmen environmen	lecision process (MDP)			
		prey n	noves	
rewards	reward for capturing			

Example: Predator-Prey Domain

Predator-Prey domain

Markov decision process (MDP)

- Markovian state s...
- ...which is observed
- policy π maps states \rightarrow actions
- Value function Q(s,a)

rewards

• Value iteration: way to compute it.

transitions probability of failing to move, prey moves

reward for capturing

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = 'nothing '

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = (-1, 1)

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = (-1, 1)

Can not observe the state \rightarrow Need to maintain a belief over states b(s) \rightarrow Policy maps beliefs to actions $\pi(b)=a$

Now: partial observability

o=(-1,1)

Can not observe the state \rightarrow Need to maintain a belief over states b(s) \rightarrow Policy maps beliefs to actions $\pi(b)=a$

Now: partial observability

- reduction \rightarrow continuous state MDP
- I (in which the belief is the state)
 - Value iterations:
 - make use of α-vectors (correspond to complete policies)
 - perform pruning: eliminate dominated α 's

Can not observe the state \rightarrow Need to maintain a belief over states b(s) \rightarrow Policy maps beliefs to actions $\pi(b)=a$ o = (-1, 1)

- Now: multiple agents
 - fully observable

- Formalization:
 - states
 - actions
 - joint actions
 - transitions
 - rewards

- Now: multiple agents
 - fully observable

- Formalization:
 - states
 - actions
 - joint actions
 - transitions
 - rewards

((3,-4), (1,1), (-2,0))

- $\{N,W,S,E\}$
- {(N,N,N), (N,N,W),...,(E,E,E)}

probability of failing to move, prey moves reward for capturing jointly

Now: multiple agents

Multiagent MDP [Boutilier 1996]

- Differences with MDP
 - *n* agents
 - joint actions $a = \langle a_{1,} a_{2,} \dots, a_{n} \rangle$
 - transitions and rewards depend on joint actions

• Solution:

- Treat as normal MDP with 1 'puppeteer agent'
 - Optimal policy $\pi(s) = a$
 - Every agent executes its part

rewards reward for capturing jointly

Fo

es

Now: multiple agents

Now: multiple agents

rewards reward for capturing jointly

- Now: Both
 - partial observability
 - multiple agents

- Now: Both
 - partial observability
 - multiple agents
- Decentralized POMDPs (Dec-POMDPs) [Bernstein et al. 2002]

- both
 - joint actions and
 - joint observations

Again we can make a reduction...

any idea?

- Again we can make a reduction...
 Dec-POMDPs → MPOMDP
 (multiagent POMDP)
- 'puppeteer' agent that
 - receives joint observations
 - takes joint actions
- requires broadcasting observations!
 - instantaneous, cost-free, noise-free communication → optimal [Pynadath and Tambe 2002]
- Without such communication: no easy reduction.

The Dec-POMDP Model

Acting Based On Local Observations

- MPOMDP: Act on global information
- Can be impractical:
 - communication not possible
 - significant cost (e.g battery power)
 - not instantaneous or noise free
 - scales poorly with number of agents!

- Alternative: act based only on local observations
 - Other side of the spectrum: no communication at all
 - (Also other intermediate approaches: delayed communication, stochastic delays)
Formal Model

- A Dec-POMDP
 - $\langle S, A, P_T, O, P_O, R, h \rangle$
 - n agents
 - S set of states
 - A set of joint actions
 - P_{τ} transition function
 - O set of **joint** observations
 - P_o observation function
 - R reward function
 - *h* horizon (finite)

$$a = \langle a_{1,} a_{2,} \dots, a_{n} \rangle$$
$$P(s'|s,a)$$

$$o = \langle o_1, o_2, \dots, o_n \rangle$$
$$P(o|a, s')$$
$$R(s, a)$$

2 generals problem

2 generals problem

 $S - \{ s_L, s_S \}$ $A_i - \{ (O)bserve, (A)ttack \}$ $O_i - \{ (L)arge, (S)mall \}$

Transitions

- Both Observe: no state change
- At least 1 Attack: reset with 50% probability

Observations

- Probability of correct observation: 0.85
- E.g., P(<L, L> | s_L) = 0.85 * 0.85 = 0.7225

2 generals problem

 $S - \{ s_L, s_S \}$ $A_i - \{ (O)bserve, (A)ttack \}$ $O_i - \{ (L)arge, (S)mall \}$

Rewards

- 1 general attacks: he loses the battle
 - R(*, < A, O >) = -10
- Both generals Observe: small cost
 R(*,<0,O>) = -1
- Both Attack: depends on state
 - $R(s_1, <A, A>) = -20$

2 generals problem

 $S - \{ s_L, s_S \}$ $A_i - \{ (O)bserve, (A)ttack \}$ $O_i - \{ (L)arge, (S)mall \}$

suppose h=3, what do you think is optimal in this problem?

Rewards

- 1 general attacks: he loses the battle
 - R(*, < A, O >) = -10
- Both generals Observe: small cost
 R(*,<0,O>) = -1
- Both Attack: depends on state
 - R(s, <A,A>) = -20

Off-line / On-line phases

off-line planning, on-line execution is decentralized

Policy Domain

- What do policies look like?
 - In general histories \rightarrow actions
 - before: more compact representations...
- Now, this is difficult: no such representation known!
 → So we will be stuck with histories

Policy Domain

- What do policies look like?
 - In general histories \rightarrow actions
 - before: more compact representations...
- Now, this is difficult: no such representation known!

 \rightarrow So we will be stuck with histories

Most general, AOHs:
$$(a_i^{0,}o_i^{1,}a_i^{1},...,a_i^{t-1},o_i^{t})$$

But: can restrict to deterministic policies \rightarrow only need OHs:

$$\vec{o}_i = (o_i^{1, \dots, o_i^t})$$

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, b(s) (as in MPOMDP) [Pynadath and Tambe 2002]
 - compute b(s) using joint actions and observations
 - Problem:

?

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, *b(s)* (as in MPOMDP) [Pynadath and Tambe 2002]
 - compute b(s) using joint actions and observations
 - Problem: agents do not know those during execution

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, *b(s)* (as in MPOMDP) [Pynadath and Tambe 2002]
 - compute b(s) using joint actions and observations
 - Problem: agents do not know those during execution
- Multiagent belief, $b_i(s,q_{-i})$ [Hansen et al. 2004]
 - belief over (future) policies of other agents
 - Need to be able to predict the other agents!
 - for belief update $P(s'|s,a_i,a_i)$, $P(o|a_i,a_i,s')$, and prediction of $R(s,a_i,a_i)$
 - form of those other policies? most general: $\pi_i: \vec{o}_i \rightarrow a_i$
 - If they use beliefs? → infinite recursion of beliefs!

Goal of Planning

- Find the optimal joint policy $\pi^* = \langle \pi_1, \pi_2 \rangle$
 - where individual policies map OHs to actions $\pi_i: \vec{O}_i \rightarrow A_i$
- What is the optimal one?
 - Define value as the expected sum of rewards:

$$V(\pi) = E\left[\sum_{t=0}^{h-1} R(s,a) \mid \pi, b^0\right]$$

 optimal joint policy is one with maximal value (can be more that achieve this)

Goal of Planning

Goal of Planning

Coordination vs. Exploitation of Local Information

Inherent trade-off

coordination vs. exploitation of local information

- Ignore own observations → 'open loop plan'
 - E.g., "ATTACK on 2nd time step"
 - + maximally predictable
 - low quality
- Ignore coordination
 - E.g., compute an individual belief b_i (s) and execute the MPOMDP policy
 + uses local information
 - likely to result in mis-coordination
- Optimal policy π^* should balance between these.

 $b_i(s) = \sum_{q_{-i}} b(s, q_{-i})$

Planning Methods

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
 - using a Bellman-like equation [Oliehoek 2012]
- So the **stupidest algorithm** is:
 - compute $V(\pi)$, for all π
 - select a π with maximum value
- Number of joint policies is huge! (doubly exponential in horizon h)
- Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	1.0737e+09
5	4.6117e+18
6	8.5071e+37
7	2.8948e+76
8	3.3520e+153

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
 - using a Bellman-like equation [Oliehoek 2012]

No easy way out...

The problem is **NEXP-complete** [Bernstein et al. 2002]

most likely (assuming EXP != NEXP) doubly exponential time required.

(doubly exponential in nonzon n)

Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	1.0737e+09
5	4.6117e+18
6	8.5071e+37
7	2.8948e+76
8	3.3520e+153

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
 - using a Bellman-like equation [Oliehoek 2012]

The problem is **NEXP-complete** [Bernstein et al. 2002]

most likely (assuming EXP != NEXP) doubly exponential time required.

h	num. joint policies
1	4
2	64
3	16384
4	1.0737e+09
5	4.6117e+18
6	8.5071e+37
7	2 8948e+76

(doubly exponential in nonzon n)

- Clearly intracta
- Still, there are better algorithms that work better for at least some problems...
- Useful to understand what optimal really means! (trying to compute it helps understanding)

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}
 - construct all 2-stages-to-go policies Q^{r=2}, etc.

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

Dynamic Programming – 1 Generate all policies in a special way: from 1 stage-to-go policies Q^{r=1} a new $q^{\tau+1}$ **Exhaustive backup operation** a_i S *t* = 2013-07-

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

(obviously) this scales very poorly...

(obviously) this scales very poorly...

(obviously) this scales very poorly...

$Q_1^{\tau=3}$

ፊኤ ፊኤ

$Q_2^{\tau=3}$

(obviously) this scales very poorly...

$Q_1^{ au=3}$	$Q_2^{\tau=3}$		
ፊኤ ፊኤ	ፊኤ ፊኤ		
\$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$	ቆ፝፟፟፟፟፟ & & & & & & & & & & & & & & & & &	num. indiv. policies	
	**************************************	2	
	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8	
I his does not get us anywher		128	
	4	32768	
DUL		2.1475e+09	
ልዬ ቆኔ	6 6 8 8 8 8 8 8 8 8 8 8	9.2234e+18	
ቆቆ ቆ፟፟፟ ቆቆ	ቆ ፝፟ ቆ፝፟፝ ቆ፝፟ ቆ፝፟ ቆ፝፟ ቆ፝ <mark>፟</mark> 7	1.7014e+38	
ቆ፟፟፟፟፟፟፟፟፟፟ አ፟፟፝፝፝፝፝፝፝፝፝፝፝ አ፟፟፝ አ፟፟፝ አ፟ አ፟ አ፟ አ አ አ አ	8 88 88 88 88 88	5.7896e+76	
ቆ፟፟፟፟፟፟፟፟፟፟ አ፟፟፟፟፟፟፟፟፟፟ አ፟፟፝ አ፟፟፝ አ፟ አ፟ አ አ አ አ	ል ቆ፟፟፝፝፟፝፝፝፟፝	ቆ፟፟፟፟፟፟ & ቆ፟፟፟፟፟ & ቆ፟፟	

 $Q_i^{\tau=1} = A_i$

- Perhaps not all those Q_i^{τ} are useful!
 - Perform **pruning** of 'dominated policies'!
- Algorithm [Hansen et al. 2004]

```
Initialize Q1(1), Q2(1)
for tau=2 to h
   Q1(tau) = ExhaustiveBackup(Q1(tau-1))
   Q2(tau) = ExhaustiveBackup(Q2(tau-1))
   Prune(Q1,Q2,tau)
end
```

- Perhaps not all those Q_i^{τ} are useful!
 - Perform **pruning** of 'dominated policies'!
- Algorithm [Hansen et al. 2004]

Initialize Q1(1), Q2(1)
for tau=2 to h
Q1(tau) = ExhaustiveBackup(Q1(tau-1))
Q2(tau) = ExhaustiveBackup(Q2(tau-1))
Prune(Q1,Q2,tau)
end
Note: cannot prune independently!
• usefulness of a
$$q_1$$
 depends on Q_2
• and vice versa
 \rightarrow Iterated elimination of policies

 $=A_i$

Initialization

Exhaustive Backups gives

Pruning agent 1...

Hypothetical Pruning (not the result of actual pruning)

Pruning agent 2...

Pruning agent 1...

Exhaustive backups:

$Q_1^{\tau=3}$

ፈዬ ቆ፟ዄ ፋዄ ፋዄ ፋዄ ፋዄ ፋዄ ፋዄ ፋዄ ፋዄ ፋይ ፋይ ፋይ ፈኤ

We avoid generation of many policies!

*** ፈዬ

Exhaustive backups:

 $Q_1^{\tau=3}$

ፊት ፊት

 $Q_{2}^{\tau=3}$

ፈት ይ

Pruning agent 1...

 $Q_1^{\tau=3}$ $Q_{2}^{\tau=3}$ ቆ፟፟፟፟፟፟ ቆ፟፟፟፟፟፟፟፟ ቆ፟፟፟ ፟፟ ቆ፟፟፟ ፟ ፟ ቆ፟፟ ፟ ቆ፟፟ ፟ ቆ፟፟ ፟ ቆ፟፟ ፟ ቆ፟፟ ፟ £\$\$ £\$\$£\$\$ £\$\$ £\$\$ *** <u>ፈን</u> ዲዮ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ **&**& **&**& && & & & & **ፈි**ኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፚ፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟

Pruning agent 2...

Bottom-up vs. Top-down

- DP constructs bottom-up
- Alternatively try and construct top down
 - → leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]

Heuristic Search – Intro

- Core idea is the same as DP:
 - incrementally construct all (joint) policies
 - try to avoid work
- Differences
 - different starting point and increments
 - use heuristics (rather than pruning) to avoid work

- Incrementally construct all (joint) policies
 - 'forward in time'

- Incrementally construct all (joint) policies
 - 'forward in time'

1 partial joint policy

- Incrementally construct all (joint) policies
 - 'forward in time'

1 partial joint policy

- Incrementally construct all (joint) policies
 - 'forward in time'

- Incrementally construct all (joint) policies
 - 'forward in time' 1 complete joint policy (full-length) S S Α S S S S (0)0 Α Α A 0 A A

Creating ALL joint policies → tree structure!

Root node: unspecified joint policy

Creating ALL joint policies → tree structure!

need to assign action to 8 OHs now: 2^8 = 256 children (for each node at level 2!)

t=2

- too big to create completely...
- Idea: use heuristics
 - avoid going down non-promising branches!

• Apply $A^* \rightarrow$ **Multiagent A*** [Szer et al. 2005]

F-Value of a node n

- F(n) is a optimistic estimate
- I.e., F(n) >= V(n') for any descendant n' of n
- F(n) = G(n) + H(n)

reward up to n (for first *t* stages) Optimistic estimate of reward below n (reward for stages t,t+1,...,h-1)

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel&Norvig 2003]

too big to create

Idea:

Apply

avd

nor

Main intuitior

- Use heuristics F(n) = G(n) + H(n)
- G(n) actual reward of reaching n

• a node at depth t specifies ϕ^t (i.e., actions for first t stages)

 \rightarrow can compute V(ϕ^t) over stages 0...t-1

- H(n) should overestimate!
 - E.g., pretend that it is an MDP
 - compute

$$H(n) = H(\phi^{t}) = \sum_{s} P(s|\phi^{t}, b^{0}) \hat{V}_{MDP}(s)$$

Heuristics – 1

- QPOMDP: Solve 'underlying POMDP'
 - corresponds to immediate communication

$$H(\phi^{t}) = \sum_{\vec{\theta}^{t}} P(\vec{\theta}^{t} | \phi^{t}, b^{0}) \hat{V}_{POMDP}(b^{\vec{\theta}^{t}})$$

- QBG corresponds to 1-step delayed communication
- Hierarchy of upper bounds [Oliehoek et al. 2008]

$$Q^* \leq \hat{Q}_{kBG} \leq \hat{Q}_{BG} \leq \hat{Q}_{POMDP} \leq \hat{Q}_{MDP}$$

Further Developments

- DP
 - Improvements to exhaustive backup [Amato et al. 2009]
 - Compression of values (LPC) [Boularias & Chaib-draa 2008]
 - (Point-based) Memory bounded DP [Seuken & Zilberstein 2007a]
 - Improvements to PB backup [Seuken & Zilberstein 2007b, Carlin and Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

- No backtracking: just most promising path [Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]
- Clustering of histories: reduce number of child nodes
 [Oliehoek et al. 2009]
- Incremental expansion: avoid expanding all child nodes [Spaan et al. 2011]
- MILP [Aras and Dutech 2010]

State of the Art

	problem primitives			
	n	$ \mathcal{S} $	$ \mathcal{A}_i $	$ \mathcal{O}_i $
Dec-Tiger	2	2	3	2
BroadcastChannel	2	4	2	2
GRIDSMALL	2	16	5	2
Cooperative Box Pushing	2	100	4	5
Recycling Robots	2	4	3	2
Hotel 1	2	16	3	4
FIREFIGHTING	2	432	3	2

'-' memory limit violation	S
'*' time limit overruns	
'#' heuristic bottleneck	

	h	MILP	DP-LPC	DP-IPG	$\rm GMAA-Q_{BG}$		
					IC	ICE	heur
	Broad	dcastCha	NNEL, ICE	solvable to h	= 900		
	2	0.38	≤ 0.01	0.09	≤ 0.01	≤ 0.01	≤ 0.01
	3	1.83	0.50	56.66	≤ 0.01	≤ 0.01	≤ 0.01
	4	34.06	*	*	≤ 0.01	≤ 0.01	≤ 0.01
	5	48.94			≤ 0.01	≤ 0.01	≤ 0.01
	DEC-7	LIGER, ICH	E solvable to	h = 6			
	2	0.69	0.05	0.32	≤ 0.01	≤ 0.01	≤ 0.01
	3	23.99	60.73	55.46	≤ 0.01	≤ 0.01	≤ 0.01
	4	*	_	2286.38	0.27	≤ 0.01	0.03
	5			_	21.03	0.02	0.09
	FireF	'IGHTING (2 agents, 3	houses, 3 fire	elevels), IC	E solvab	le to $h \gg 1000$
	2	4.45	8.13	10.34	≤ 0.01	≤ 0.01	≤ 0.01
	3	_	_	569.27	0.11	0.10	0.07
	4			_	950.51	1.00	0.65
	GRIDS	SMALL, IC	E solvable t	o $h = 6$			
	2	6.64	11.58	0.18	0.01	≤ 0.01	≤ 0.01
	3	*	_	4.09	0.10	≤ 0.01	0.42
	4			77.44	1.77	≤ 0.01	67.39
	RECY	CLING ROP	зотs, ICE s	solvable to h :	= 70		
	2	1.18	0.05	0.30	≤ 0.01	≤ 0.01	≤ 0.01
	3	*	2.79	1.07	≤ 0.01	≤ 0.01	≤ 0.01
	4		2136.16	42.02	≤ 0.01	≤ 0.01	0.02
	5		_	1812.15	≤ 0.01	≤ 0.01	0.02
	Hote	l 1, ICE s	olvable to <i>h</i>	= 9			
	2	1.92	6.14	0.22	≤ 0.01	≤ 0.01	0.03
	3	315.16	2913.42	0.54	≤ 0.01	≤ 0.01	1.51
	4	_	_	0.73	< 0.01	< 0.01	3.74
	5			1.11	$\stackrel{-}{<} 0.01$	$\stackrel{-}{<} 0.01$	4.54
	9			8.43	0.02	$\stackrel{-}{<} 0.01$	20.26
	10			17.40	#	#	
	15			283.76	11	11	
	COOP	erative E	Box Pushin	IG (Q _{POMDP})	, ICE solv	vable to h	=4
	2	3.56	15.51	1.07	≤ 0.01	< 0.01	≤ 0.01
	3	2534.08	_	6.43	0.91	-0.02	0.15
Sns	4	_		1138.61	*	328.97	0.63

2013-07-02

EASSS – Spa

State of the Art

h	V^*	$T_{GMAA*}(s)$	$T_{IC}(s)$	$T_{ICE}(s)$	
Recycling Robots					
3	10.660125	≤ 0.01	≤ 0.01	≤ 0.01	
4	13.380000	713.41	≤ 0.01	≤ 0.01	
5	16.486000	—	≤ 0.01	≤ 0.01	
6	19.554200		≤ 0.01	≤ 0.01	
10	31.863889		≤ 0.01	≤ 0.01	
15	47.248521		≤ 0.01	≤ 0.01	
20	62.633136		≤ 0.01	≤ 0.01	
30	93.402367		0.08	0.05	
40	124.171598		0.42	0.25	
50	154.940828		2.02	1.27	
70	216.479290		_	28.66	
80			—	—	
	Broad	DCASTCHAN	NEL		
4	3.890000	≤ 0.01	≤ 0.01	≤ 0.01	
5	4.790000	1.27	≤ 0.01	≤ 0.01	
6	5.690000	—	≤ 0.01	≤ 0.01	
7	6.590000		≤ 0.01	≤ 0.01	
10	9.290000		≤ 0.01	≤ 0.01	
25	22.881523		≤ 0.01	≤ 0.01	
50	45.501604		≤ 0.01	≤ 0.01	
100	90.760423		≤ 0.01	≤ 0.01	
250	226.500545		0.06	0.07	
500	452.738119		0.81	0.94	
700	633.724279		0.52	0.63	
800				_	
900	814.709393		9.57	11.11	
1000			_	—	

Scalability w.r.t. #agents

Cases that compress well * excluding heuristic

2013-07-02

State of The Art

Approximate (no quality guarantees)

- MBDP: linear in horizon [Seuken & zilberstein 2007a]
- Rollout sampling extension: up to 20 agents [Wu et al. 2010b]
- Transfer planning: use smaller problems to solve large (structured) problems (up to 1000) agents [Oliehoek et al. 2013]
Related Areas

- Partially observable stochastic games [Hansen et al. 2004]
 - Non-identical payoff
- Interactive POMDPs [Gmytrasiewicz & Doshi 2005, JAIR]
 - Subjective view of MAS
- Imperfect information extensive form games
 - Represented by game tree
 - E.g., poker [Sandholm 2010, AI Magazine]

- References can be found on the tutorial website: www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/
- Further references can be found in

Frans A. Oliehoek. **Decentralized POMDPs**. In Wiering, Marco and van Otterlo, Martijn, editors, *Reinforcement Learning: State of the Art*, Adaptation, Learning, and Optimization, pp. 471–503, Springer Berlin Heidelberg, Berlin, Germany, 2012.

Available from http://people.csail.mit.edu/fao/

Decision making under uncertainty

Matthijs Spaan¹ and Frans Oliehoek²

¹ Delft University of Technology ² Maastricht University

Part 4: Selected Further Topics

European Agent Systems Summer School (EASSS '13)

www.st.ewi.tudelft.nl/~mtjspaan/tutoriaIDMuU/

Some Further Topics

High-level overview:

- Communication
- Factored Models
 - Single Agent
 - Multiple agents

Communication

- Already discussed: instantaneous cost-free and noise-free communication
 - Dec-MDP \rightarrow multiagent MDP (MMDP)
 - Dec-POMDP \rightarrow multiagent POMDP (MPOMDP)
- but in practice:
 - probability of failure
 - delays
 - costs
- Also: implicit communication! (via observations and actions)

Implicit Communication

Encode communications by actions and observations

 Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

Implicit Communication

Encode communications by actions and observations

 Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

Implicit Communication

Encode communications by actions and observations

- Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
- E.g. communication bit
 - doubles the #actions and observations!
 - Clearly, useful... but intractable for general settings (perhaps for analysis of very small communication systems)

Explicit Communication

- perform a particular information update (e.g., sync) as in the MPOMDP:
 - each agent broadcasts its information, and
 - each agent uses that to perform joint belief update
- Other approaches:
 - Communication cost [Becker et al. 2005]
 - Delayed communication [Hsu 1982, Spaan 2008, Oliehoek 2012]
 - communicate every k stages [Goldman & Zilberstein 2008]

Some Further Topics

Overview:

- On-line planning
- Communication
- Factored Models
 - Single Agent
 - Multiple agents

Factored MDPs

- So far: used 'states'
- But in many problems states are factored
 - state is an assignment of variables $s = \langle f_1, f_2, \dots, f_k \rangle$
 - *factored MDP* [Boutilier et al. 99 JAIR]

Examples:

- Predator-prey: x, y coordinate!
- Robotic P.A.

- location of robot (lab, hallway, kitchen, mail room), tidiness of lab, coffee request, robot holds coffee, mail present, robot holds mail, etc.
- Actions: move (2 directions), pickup coffee/mail, deliver coffee/mail

- This allows for a much more compact representation!
- "Two-stage dynamic Bayesian network" (2DBN)

Solving Factored MDPs

CPT also representable as a decision tree

Solving Factored MDPs

CPT also representable as a decision tree

Solving Factored MDPs

CPT also representable as a decision tree

Factored POMDPs

- Of course POMDP models can also be factored
- Similar ideas applied [Hansen & Feng 2000, Poupart 2005, Shani et al. 2008]
 - α-vectors represented by ADDs
 - beliefs too.
- This does not solve all problems:
 - over time state factors get more and more correlated, so representation grows large.

Factored Multiagent Models

- Of course multiagent models can also be factored!
- Work can be categorized in a few directions:
 - Trying to execute the factored (PO)MDP policy [Roth et al. 2007, Messias et al. 2011]
 - Trying to execute independently as much as possible [Spaan & Melo 2008, Melo & Veloso 2011]
 - Exploiting graphical structure between agents (ND-POMDPs, Factored Dec-POMDPs)
 - Influence-based abstraction of policies of other agents (TOI-Dec-MDPs, TD-POMDPs, IBA for POSGs)

- Exploit (conditional) independence between agents
 - E.g., sensor networks [Nair et al '05 AAAI, Varakantham et al. '07 AAMAS]

- Exploit (conditional) These problems have
 - E.g., sensor networ
- State that cannot be influenced • Factored reward function $R(s,a) = \sum R_e(s,a_e)$

 Π_1

 Π_7

 $V(\pi) = \sum V_e(\pi_e)$

- Exploit (conditional) These problems have
 - E.g., sensor networ

• State that cannot be influenced • Factored reward function $R(s,a) = \sum R_e(s,a_e)$

This allows a reformulation as a (D)COP

 Π_2

 Π_6

 Π_3

 Π_{A}

 Π_{r}

- Try to define agents' local state
- Analyze how policies of other agents affect it
 - find compact description for this influence
- Example: Mars Rovers [Becker et al. 2004 JAIR]

Transitions **independent**: Rovers drive independently Rewards are **dependent**:

- 2 same soil samples of same site not so useful (sub additive)
- 2 pictures of (different sides) of same rock is useful (super additive)
- Example: Mars Rovers [Becker et al. 2004 JAIR]

- TI Dec-MDP
- extra reward (or penalty) at the end if 'joint event' happens
- joint event $E = \langle e_1, e_2 \rangle$
- From agent i's perspective:
 if it realizes e_i

 \rightarrow extra reward with probability $P(e_j)$

- TI Dec-MDP
- extra reward (or penalty) at the end if 'joint event' happens
- joint event E=<e₁,e₂>

Much further research, e.g.:

- Event-driven Dec-MDPs [Becker et al.04 AAMAS]
- Transition-decoupled POMDPs [Witwicki 2011 PhD]
- EDI-CR [Mostafa & Lesser 2009 WIIAT]
- IBA for Factored POSGs [Oliehoek et al. 2012 AAAI]

Recap: Decision Making under Uncertainty

Recap: MDPs

- MDPs:
 - 1 agent
 - perfectly observable
 - outcome uncertainty
- Bellman equation

Value iteration

Recap: POMDPs

Recap: Multiagent MDP

- Multiagent MDP (MMDP)
 - multiple agents
 - outcome uncertainty
 - fully observable
- Reduction to single-agent problem
 - 'puppeteer'
 - value iteration, etc.
 - but exponentially many joint actions e.g., [Guestrin et al. 2002 NIPS]

Recap: Partially Observable MAS

- Multiagent POMDP
 - Free communication
 - Reduces to single-agent problem
- Dec-POMDP
 - No (free) communication
 - Harder: NEXP-complete
 - Solution methods:
 - Bottom-up: dynamic programming
 - Top-down: heuristic search

- References can be found on the tutorial website: www.st.ewi.tudelft.nl/~mtjspaan/tutorialDMuU/
- Further references can be found in

Frans A. Oliehoek. Decentralized POMDPs. In Wiering, Marco and van Otterlo, Martijn, editors, *Reinforcement Learning: State of the Art*, Adaptation, Learning, and Optimization, pp. 471–503, Springer Berlin Heidelberg, Berlin, Germany, 2012.

Available from http://people.csail.mit.edu/fao/