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Abstract— We present an approximate POMDP solution
method for robot planning in partially observable environments.
Our algorithm belongs to the family of point-based value iteration
solution techniques for POMDPs, in which planning is performed
only on a sampled set of reachable belief points. We describe a
simple, randomized procedure that performs value update steps
that strictly improve the value of all belief points in each step. We
demonstrate our algorithm on a robotic delivery task in an office
environment and on several benchmark problems, for which we
compute solutions that are very competitive to those of state-of-
the-art methods in terms of speed and solution quality.

I. INTRODUCTION

As autonomous robots are being applied in more and
more complex domains the need grows for tractable ways
of planning under uncertainty. Classical motion planning [1]
typically assumes that planning can be carried out without
taking into account the uncertainty in the robot motion and the
sensor observations. However, in order for a robot to execute
its task well in a real-world scenario it has to deal properly
with different types of uncertainty: a robot is unsure about
the exact consequence of executing a certain action and its
sensor observations are noisy. Robotic planning becomes even
harder when different parts of the environment appear similar
to the sensor system of the robot. Such “perceptual aliasing”
is common in office environments where robots are often
employed. In these partially observable domains a robot needs
to explicitly reason with uncertainty in order to successfully
carry out a given task, e.g., navigating through an office to
deliver mail.

Partially observable Markov decision processes (POMDPs)
provide a rich mathematical framework for solving such
planning problems, with several applications in operations
research [2], artificial intelligence [3], and robotics [4], [5],
[6]. In a robotic context, a standard POMDP model assumes a
discrete state, observation, and action space for the robot, and
a reward that the robot gets in each time step, depending on the
current task. The POMDP defines a sensor model specifying
the probability of observing a particular sensor reading in a
specific state, and a stochastic transition model which captures
the uncertain outcome of executing an action.

In many situations a single sensor reading does not provide
enough evidence to determine the complete and true state of
the system. For instance, a robot in an office environment
might detect that it is located in a corridor, but cannot tell
in which one. If however the robot remembered from which
room it entered the corridor, it would know which of the
possible corridors it was observing. The POMDP framework

allows for successfully handling such situations by defining
and operating on the belief state of a robot. A belief is a
probability distribution over all states and summarizes all
information regarding the past. Solving a POMDP now means
computing a policy—i.e., a mapping from belief states to
actions—that maximizes the average collected reward of the
robot in the task at hand. Such a policy prescribes for every
belief state the action that maximizes the expected reward a
robot can obtain in the future, and is optimal for a certain
planning horizon.

Unfortunately, solving a POMDP in an exact fashion is
an intractable problem [7], [8]. Intuitively speaking, looking
one time step deeper into the future requires considering
each possible action and each possible observation. As such,
the cost of computing the solution for a POMDP grows
exponentially with the desired planning horizon. To circum-
vent these intractability issues several approximate POMDP
algorithms have been proposed in the literature [9], [10]. More
specifically, in robotics a number of simple heuristic control
strategies have been applied, most of which build on a solution
of the underlying fully observable Markov decision process
(MDP) [4], [5], [6].

An alternative line of research on approximate POMDP
algorithms involves the use of a sampled set of belief points
on which planning is performed [10], [11], [12], [13], [14].
The idea is that instead of planning over the complete belief
space of the robot (which is intractable for large state spaces),
planning is carried out only on a limited set of prototype
beliefs that have been sampled by letting the robot interact
with the environment. This gives rise to efficient algorithms
that can handle state spaces in the order of hundreds of states,
and that produce results better than the above MDP-based
approximate POMDP algorithms.

In this paper we apply the randomized approximate value
iteration algorithm of [14] to planning in a robotic context,
which features large state spaces and high dimensional obser-
vations. Experimental results indicate that the algorithm can
successfully handle large POMDPs, and is very competitive
to other algorithms both in terms of solution quality as well
as speed; in several benchmark problems it is at least one
order of magnitude faster than state-of-the-art algorithms. We
show results from an office delivery task involving a mobile
robot with omnidirectional vision in a highly perceptually
aliased office environment, where the number of possible robot
locations is in the order of hundreds.



II. PLANNING IN A POMDP FRAMEWORK

We first review more formally briefly the POMDP frame-
work in the robotic planning context that we are discussing.
A POMDP model describes the interaction of a robot with its
environment as the iteration of the following two steps:

1) At any time step the environment is in a state s ∈ S.
A robot that is embedded in the environment takes an
action a ∈ A and receives a reward r(s, a) from the
environment as a result of this action. The environment
switches to a new state s′ according to a known stochas-
tic transition model p(s′|s, a). The Markov property
entails that s′ only depends on s (and a). The transi-
tion model is typically assumed Gaussian when a is a
movement action, reflecting errors in the robot motion.

2) The robot perceives an observation o ∈ O that depends
on its action. This observation provides the robot with
information about the state s through a known stochastic
observation model p(o|s, a). In one of our experiments,
for instance, the observations of the robot are features
extracted from omnidirectional camera images.

All sets S, O, and A are assumed discrete and finite here (see
[15] for the case when S and A are continuous). In order for
a robot to choose its actions successfully in such a partially
observable environment some form of memory is needed. In
a belief state POMDP we maintain a discrete distribution b(s)
over states s that summarizes all information about the past.
This distribution, or belief, is a Markovian state signal and
can be updated using Bayes’ rule each time the robot takes an
action a and receives an observation o, as follows:

bo
a(s′) ∝ p(o|s′, a)

∑

s

p(s′|s, a)b(s) (1)

with
∑

s bo
a(s) = 1. This belief update scheme is the

workhorse of many robot localization techniques [16].
Mapping the original problem to a belief space—a simplex

of dimension |S|—allows the use of dynamic programming
techniques for fully observable Markov decision processes
(MDPs). The planning task then becomes one of computing
an optimal policy, a mapping from beliefs to actions that
maximizes the expected discounted future reward of the robot
E[

∑∞
t γtr(st, at)], where γ is a discount rate, 0 ≤ γ < 1.

The discount rate is used to ensure a finite sum and to prefer
short trajectories to long ones: if there are two paths for a
robot to reach a goal location we want it to prefer the fastest
one. The discount rate is usually chosen close to 1.

A policy can be defined by a value function, which estimates
the expected amount of future discounted reward for each
belief state. The value function of an optimal policy is called
the optimal value function and is denoted by V ∗. It is a fixed
point of the equation V = HV , with H the Bellman backup
operator:

V (b) = max
a

[

∑

s

r(s, a)b(s)+

γ
∑

o,s,s′

p(o|s′, a)p(s′|s, a)b(s)V (bo
a)

] (2)

where bo
a is given by (1). We refer to [3], [10] for more

technical details.

A. Value iteration in POMDPs

A classical method for solving POMDPs is value iteration.
This method iteratively builds better estimates of V ∗ by
applying the operator H to an initially piecewise linear and
convex value function V0 [2]. The intermediate estimates
V1, V2, . . . will then also be piecewise linear and convex.
We will throughout assume that a value function Vn at step
n is represented by a finite set of vectors {α1

n, α2
n, . . .}.

Additionally, with each vector an action is associated, which is
the optimal one to take in the current step, assuming optimal
actions are executed in following steps. The value of a belief
point b is then

Vn(b) = max
αi

n

b · αi
n, (3)

where (·) denotes inner product.
The main idea behind many value iteration algorithms for

POMDP is that for a given value function Vn and a particular
belief point b we can easily compute the vector αb

n+1 of HVn

such that
αb

n+1 = arg max
α∈{αi

n+1
}

b · α (4)

where {αi
n+1,∀i} is the (unknown) set of vectors for HVn.

We will denote this operation αb
n+1 = backup(b, Vn). The

difficult task, however, is to ensure that all vectors of HVn

are generated. Traditional algorithms [17], [3] search in the
belief simplex for a minimal set of belief points {bm} that
generate the necessary set of vectors for the new horizon value
function:

⋃

bm

backup(bm, Vn) = HVn. (5)

Unfortunately, such an approach can be very costly when the
dimensionality of S is high, as it requires solving a number
of linear programs.

B. Approximate techniques

One can also abandon the idea of doing exact value backups
and settle for useful approximations. One simple heuristic
technique commonly used is QMDP [9]. It treats the POMDP as
if it were fully observable and solves the underlying MDP,
e.g., using value iteration [18]. Then it uses the resulting
Q(s, a) values to define a control policy π as π(b) =
arg maxa

∑

s b(s)Q(s, a). The QMDP algorithm can be very
effective in some domains, but the policies it computes will
not take informative actions, as the QMDP solution assumes that
any uncertainty regarding the state will disappear after taking
one action.

In the recently introduced point-based techniques, a set
of belief points are first sampled from the belief simplex
by letting the robot interact with the environment, and then
value updates are performed on these points only [10], [11],
[13], [14]. In particular, the PBVI [13] algorithm samples a
set B of belief points from the belief simplex (by stochastic



simulation), it repeatedly applies the backup operator on each
b ∈ B for a number of steps, then expands the set B, and
so forth. Point-based solution techniques are justified by the
fact that in most robotic problem settings the belief simplex
is sparse, in the sense that only a limited number of belief
points are ever reached when the robot directly interacts with
the environment. In these cases, one would like to plan only for
those reachable beliefs instead of planning over the complete
belief simplex.

III. A RANDOMIZED POINT-BASED ALGORITHM

In [14] we proposed a simple approximate algorithm for
solving POMDPs. We first let the robot randomly explore the
environment and collect a set B of reachable belief points.
We then initialize the value function V0 as a single vector
with all its components equal to 1

1−γ
mins,a r(s, a). Starting

with V0, it performs a number of value function update steps
until convergence. Given Vn, a value function update step is
as follows:

Value function update

1) Set Vn+1 = ∅. Set B̃ = B.
2) Sample a belief point b from B̃ uniformly at random.
3) Compute αb

n+1 = backup(b, Vn). If b · αb
n+1 ≥

Vn(b) then add αb
n+1 to Vn+1, otherwise add αb

n =
arg maxα∈{αi

n
} b · α to Vn+1.

4) Compute B̃ = {b ∈ B : Vn+1(b) < Vn(b)}. If B̃ = ∅
then stop, otherwise go to 2.

The hope is that by randomly sampling belief points from
(increasingly smaller) subsets of B we quickly build a function
Vn+1 that is an upper bound to Vn over B. In the first iterations
where Vn and Vn+1 differ substantially the random backup of
points will allow for a quick build-up of an upper bound to Vn.
As a result, the number of vectors generated in each backup
step will be small compared to the size of B. Moreover, as
the cost of backup depends linearly on the number of vectors
of Vn, the first update steps can be very fast. This allows the
method to quickly reach a good approximate solution with few
vectors (see the experiments below).

The main difference with other point-based value update
schemes is that we do not back up each b ∈ B, but instead
back up (random) points until the value of every b ∈ B

has improved or remained the same. The intuition is that in
this way we limit the growth of the number of vectors in
the successive value function estimates. Moreover, we can
afford to use a large set B of belief points sampled in
advance, as opposed to other algorithms that propose growing
B incrementally [11], [13].

IV. EXPERIMENTS

We will demonstrate how the presented algorithm can be ap-
plied to robotic planning problems which typically have to deal
with many states, high dimensional sensor readings, perceptual
aliasing, and uncertain actions. We will also briefly report
on results comparing our algorithm on several benchmark
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Fig. 1. The environment of the TRC domain. The markers {·, +,×} denote
the grid positions of the problem. The positions × (close to P ) are the pickup
locations, the ones marked by + (below D) are the delivery (goal) positions.

problems from the POMDP literature, which are commonly
used to test scalable POMDP solution techniques.

A. The TRC domain

We applied our algorithm on a problem which is based
on data obtained in a realistic setting. The TRC domain is
a delivery task in an office environment with 1000 states. The
task is to pick up mail at the entrance of the office (P, see
Fig. 1) and deliver it to a certain room (D). At the start of
the task the robot is uncertain about its location, and whether
it has picked up the mail. The observation model is based
on panoramic images taken by an omnidirectional camera
mounted on the robot. We used the MEMORABLE1 robot
database that contains a set of approximately 8000 images
collected manually by driving the robot around in a 17 ×
17 meters office environment with constant orientation, with a
sampling resolution of 0.1 meters. Fig. 2 shows some example
images from this database.

As our algorithm assumes finite and discrete sets S and O

we need to discretize the state space and the observation space.
The state space is defined as the cross-product of the robot’s
location x and a single bit, indicating whether the robot has
already successfully picked up the mail which needs delivery.
For discretizing the positions in the map of the environment we
performed a k-means clustering [19] on a subset of all possible
positions, resulting in a grid of 500 positions X = {xi}, which
are depicted in Fig. 1.

For the discretization of the observation space one should
choose the number of prototype observations with concern. A
large number of observations can provide more discriminant
information on the true position of the robot and thus lead to

1The MEMORABLE database has been provided by the Tsukuba Research
Center in Japan, for the Real World Computing project.
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Fig. 2. Panoramic images corresponding to three prototype feature vectors
ok ∈ O, and below each one its induced p(x|ok). The darker the dot, the
higher the probability.

more peaked beliefs. The more peaked the reachable beliefs
are, the more the problem resembles the underlying MDP
and the easier it would be to find a good policy. On the
other hand, a large number of observations will not solve
the problem of perceptual aliasing. Furthermore, the num-
ber of observation prototypes determines the size of the set
{αi

n+1} used in the backup operations in (4). As such, the
number of observation prototypes increases the computational
requirements of the algorithm. As in [20], we applied Principal
Component Analysis (PCA) on the image data in order to
reduce their dimensionality. We computed a three-dimensional
feature vector for each one of a (randomly chosen) set of
1000 images, by projecting them to the first three eigenvectors
(those with the largest eigenvalues) of their covariance matrix.
Finally, to discretize this feature space, we used k-means
clustering resulting in 10 three-dimensional prototype feature
vectors {o1, . . . , o10}.

Then we constructed the discrete observation model p(o|s)
as follows (where we dropped the dependence on a for
simplicity). We projected each image in the database to the
feature space and found its nearest prototype feature vector
among {ok}k=1...10. We also associated each robot position
in the database with its nearest prototype position in X . Then
the probability of observing a prototype feature vector ok from
a prototype robot location xk can be computed by a histogram
operation as follows

p(ok|xk) =
p(ok, xk)

∑

ol
p(ol, xk)

(6)

where p(ok, xk) is simply the fraction of pairs {oi, xi} in the
database such that oi ∈ ok and xi ∈ xk, where ‘∈’ denotes
nearest-cluster membership. Finally, we duplicated this model
for both instances of the bit indicating whether the mail has
been picked up. Fig. 2 displays three panoramic images closest
to three ok ∈ O, and the corresponding p(x|ok).

The robot can execute four basic motion commands {north,
east, south, west} which transports it according to a Gaussian
distribution centered on the expected resulting position (trans-
lated two meters in the corresponding direction). In order to
accomplish its task the robot must first execute the pickup
action in one of the five pickup states near the entrance of the
office (marked by P in Fig. 1). Only in one of these states the
action results in flipping the pickup bit, after which delivering
the mail has become possible. To complete the task and receive
a reward of 10 the robot has to execute the delivery in one
of the ten delivery states (indicated by D in Fig. 1). Trying
to deliver without the mail or delivering to the wrong location
is penalized with a reward of −10. Attempting to pick up the
mail outside the pickup locations is penalized with reward −1.
All motion actions yield no reward.

We sampled a belief set B of 10, 000 points by experiencing
the environment: we let the simulated robot take random
actions, apply Bayes’ rule (1), record its belief at each step,
and reset only when a successful delivery has been made. Only
three deliveries were made during sampling and collecting all
beliefs takes less than 20 seconds. The set B remains fixed
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Fig. 3. Results for the TRC domain.

during execution of the algorithm and during all experimental
trials.

We ran the described algorithm 10 times with different
random seeds. To evaluate the computed value function es-
timates we collected rewards by sampling trajectories from
100 random starting locations with the pickup bit off. Note
that the robot has no knowledge regarding the pickup bit until
it has picked up the mail at the appropriate location. In our
experiments we used a discount factor γ = 0.95 and each
trajectory was stopped after 100 steps (if the robot had not
yet delivered the mail by then).

Fig. 3 shows the good performance of our algorithm, the
error bars indicate standard deviation within the 10 runs of
the algorithm. Fig. 3(a) displays the value as estimated on
B,

∑

b∈B V (b), (b) the expected discounted reward, (c) the
number of vectors in the value function estimate, |{αi

n}| and
(d) the number of policy changes: the number of b ∈ B that
have a different optimal action in Vn compared to Vn−1. We
can see that algorithm converges to approximately the same
solution quality for all runs, both in value and collected reward.
The amount of policy changes drops to below 0.5% of B,
which can also be regarded as an indication of convergence.
The number of vectors in the value function estimates grows
as the planning horizon increases but the size of the value
function remains acceptable. To visualize the policies that our
algorithm computes, we plotted some example trajectories in
Fig. 4. They show the computed policy directs the robot to
first move to the pickup states, pick up the mail, and then
move to the delivery locations in order to deliver the mail.
We also tested QMDP on this problem, but it fails to compute
a successful policy (it receives reward 0) due to the fact that
it cannot represent the uncertainty regarding the pickup bit.

B. Benchmark problems

We will briefly report results on four problems from the
POMDP literature, for more details we refer to [14]. Table I
summarizes these problems in terms of the size of S, O and
A. The Hallway, Hallway2 and Tiger-grid problems are maze
domains previously used to test scalable POMDP solution
techniques [9], [13]. The Tag domain is an order of magnitude
larger than the first three problems, and models a search and
tag game between two robots [13]. A summary of the results
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Fig. 4. Some example trajectories in the TRC environment. Start positions
are marked with × and the last state of each trajectory is denoted by a 4.

TABLE I
POMDP DOMAIN CHARACTERISTICS.

Name |S| |O| |A|

Tiger-grid 33 17 5
Hallway 57 21 5
Hallway2 89 17 5
Tag 870 30 5
TRC 1000 10 6

comparing our algorithm to PBVI, QMDP and BPI can be found
in Table II. The bounded policy iteration (BPI) approach
searches though the space of bounded-size, stochastic finite
state controllers [21].

Our results are computed in Matlab on an Intel Pentium
IV 2.4 GHz computer. PBVI results are taken from [13] and
BPI results are quoted from [21], so time comparisons are
rough. The results show that in the Tag problem our algorithm
displays better control quality than QMDP , PBVI, and BPI,
while it uses fewer vectors than the latter two. Our algorithm
reaches very competitive control quality using a relatively
small number of vectors.

V. CONCLUSIONS AND FUTURE WORK

We described in this paper a randomized approximate point-
based value iteration algorithm for solving POMDPs, and
demonstrated how to apply it to planning in a robotic context.
The proposed algorithm performs value update steps, trying to
upper bound in each iteration the current value function Vn,
as estimated on a sampled set B of belief points. The main
difference with other point-based value iteration algorithms is
that we do not back up the value on each b ∈ B, but back



TABLE II
RESULTS ON BENCHMARK PROBLEMS.

Method Reward Vectors Time (s)
Tiger-grid

our 2.34 134 104
PBVI 2.25 470 3448
QMDP 0.23 n.a. 2.76

Hallway
our 0.51 55 35

PBVI 0.53 86 288
QMDP 0.27 n.a. 1.34

Hallway2
our 0.35 56 10

PBVI 0.34 95 360
QMDP 0.09 n.a. 2.23

Tag
our −6.17 280 1670
BPI −9.18 940 59772

PBVI −9.18 1334 180880
QMDP −16.9 n.a. 16.1

up randomly selected points from B until the value of every
b ∈ B has improved (or at least remained the same). Running
the algorithm on some benchmark problems from the literature
indicated very competitive performance to similar algorithms:
in most cases it is at least one order of magnitude faster than
state-of-the-art algorithms, and equally good or better in terms
of the quality of the computed policy.

We reported how the described algorithm can be applied
to robotic planning problems. Robots typically have to deal
with large state spaces, high dimensional sensor readings,
perceptual aliasing and uncertain actions. We defined a mail
delivery task in which a simulated robot has to deliver mail
in an office environment. We proposed to perform PCA on
the omnidirectional camera images the robot observes and
perform clustering in the projected space to extract observation
prototypes. We have shown our algorithm can successfully
solve the resulting POMDP model.

As future work we would like to extend our algorithm
to efficiently tackle POMDP problems with continuous state
and/or action spaces. Furthermore, we would like to study
multi-robot extensions of the algorithm.
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