Mechanism Design (for Multiagent Planning)

Mathijs de Weerdt

Ch.9 on Introduction to Mechanism Design

Algorithmic Game Theory

Contents

- MAP problem definition
- mechanism design without money
 - social welfare functions
 - social choice functions
- mechanism design with money
- discussion: applying theory to your applications
Social multiagent planning (1)

Def. Given a set of n agents, a simple social multiagent planning problem is defined by a set \(\{(O_i,<_i) \mid 1 \leq i \leq n\} \), where
- \(s_0 \in S \) is a description of the initial state,
- \(O_i \) is the set of operations of agent \(i \),
- a **multiagent plan** \(a \in A \) is a DAG of operations of all agents, and
- \(<_i \in L \) is a linear transitive order over \(A \) (preference of agent \(i \)).

Goal. Find a multiagent plan that is “good” for every agent (social choice).

Example.

\[O_1 = \{ \text{color_red} \} \quad \begin{array}{ccc} & >_1 & >_1 \\ & \text{block} & \text{red} \end{array} \in L \]

\[O_2 = \{ \text{create_block} \} \quad \begin{array}{ccc} & >_2 & >_2 \\ \text{block} & \text{red} & \text{white} \end{array} \in L \]

Q. What is “good” for every agent in this example?
Social welfare functions (1)

Q. What is “good” for every agent in this example?
A. Use majority voting:

| 2 | 0 |
| 1 | 1 |

> 2 > 1 ∈ L

> 1 > 2 ∈ L

Def. Social choice function: given transitive orders, select winner: $L^n \rightarrow A$
For example:

Def. Social welfare function: given transitive orders, social order: $L^n \rightarrow L$
For example:

[TU Delft]
Mechanism design

input:
- private information agent 1
- private information agent 2
- ... private information agent n

output:
1. social welfare (preferences)
2. social choice (winner)

private information:
- preferences
- (assume possible actions known to everyone)

mechanism:
- social welfare function $F: \mathbb{L}^n \rightarrow \mathbb{L}$
- social choice function $f: \mathbb{L}^n \rightarrow \mathbb{A}$
Social welfare functions (2)

Q. What is “good” for every agent in this example?
A. Use majority voting:

Marquis de Condorcet (1785): majority vote does not work if $|A| > 2$.

TU Delft
Q. What if every agent has the same order $<$ (with a most preferred)?
A. Social choice should be this order $<$. Choose a (unanimity).

Q. What if some irrelevant option a is removed from A? For example:
$e > d > c > b > a$
d > c > b > e > a
b > d > c > e > a
A. Choice for $A \setminus \{a\}$ should be the same as for A (monotonicity)
Def. Independence of irrelevant alternatives (IIA): relative social order of a and b is determined only by relative order of a and b in input

Q. A possible solution is “one agent determines every choice”. Like it?
A. No, no dictatorship, please.

Arrow’s theorem (‘51/’63): every transitive social welfare function $F: L^n \rightarrow L$ over $|A| > 2$ that satisfies unanimity and independence of irrelevant alternatives is a dictatorship.
Arrow’s theorem (‘51/’63): every transitive social welfare function $F : L^n \rightarrow L$ over $|A| > 2$ that satisfies unanimity and independence of irrelevant alternatives (IIA) is a dictatorship.

Pf. Given

- number of agents n,
- set of alternatives A, and
- social welfare function F that satisfies unanimity and IIA.
- pairwise neutrality (each pair of alternatives is treated similarly)

Idea:
1. find “pivotal” dictator i^* for F, n, A (construction where i^*th player flips the result)
2. for any alternatives $c \neq d$, given all $>_i$, show that if $c >_{i^*} d$ then $c >_F d$

so i^* is a dictator for F and F is a dictatorship.
Arrow’s theorem (‘51/’63): every transitive social welfare function $F : L^n \to L$ over $|A| > 2$ that satisfies unanimity and independence of irrelevant alternatives (IIA) is a dictatorship.

Pf. 1. Find “pivotal” dictator i^* for F, n, A: For any $a \neq b \in A$, for any other relative order of other preferences.

- Construct preference profiles $\pi^i \in L^n$ where first $j \leq i$ players: $a > j b$

```
\begin{array}{ll}
\pi^0 & \pi^{i^*} & \pi^n \\
\ldots > 1 b > 1 \ldots > 1 a > 1 \ldots & \ldots > 1 a > 1 \ldots > 1 b > 1 \ldots & \ldots > 1 a > 1 \ldots > 1 b > 1 \ldots \\
\ldots > 2 b > 2 \ldots > 2 a > 2 \ldots & \ldots > 2 a > 2 \ldots > 2 b > 2 \ldots & \ldots > 2 a > 2 \ldots > 2 b > 2 \ldots \\
\ldots > n b > n \ldots > n a > n \ldots & \ldots > n a > n \ldots > n b > n \ldots & \ldots > n a > n \ldots > n b > n \ldots \\
\end{array}
```

\[\forall F, \exists \text{situation } \exists i^* \text{ that determines result of } b > a.\]
Arrow’s theorem (‘51/’63): every transitive social welfare function $F:L^n \rightarrow L$ over $|A|>2$ that satisfies
unanimity and independence of irrelevant alternatives (IIA) is a dictatorship.

Pf. 2. For any alternatives $c \neq d$, given $>_i$, show that if $c >_{i^*} d$ then $c >_F d$:

- introduce “irrelevant alternative” e (to create situation in profile π^{i^*})
 - for $i < i^*$: $e >'_i \ldots$ on the top
 - for $i > i^*$: $\ldots >'_i e$ on the bottom
 - for i^*: $c >'_i e >'_i d$ (so $c >'_i d$)
- using pairwise neutrality (each pair of alternatives is treated similarly):
 - $c >'_F e$ follows from construction, replacing a by c, and b by e
 - $e >'_F d$ follows from construction, replacing a by e, and b by d
 - therefore $c >'_F d$ (in this specific situation)
- because e should be irrelevant for c and d, also $c >_F d$ (IIA).
Arrow’s theorem (3a)

Pf. 2. For any alternatives c ≠ d, given >_i, show that if c > i* d then c >_F d:
- introduce “irrelevant alternative” e (to create situation in profile π i*)
 - for i < i*: e >’i ... on the top
 - for i > i*: ... >’i e on the bottom
 - for i*: c >’i* e >’i* d (so c >’i* d)
Work around Arrow’s theorem

Arrow’s theorem (‘51/’63): every transitive social welfare function $F : L^n \rightarrow L$ over $|A| > 2$ that satisfies unanimity and independence of irrelevant alternatives is a dictatorship.

Q. How to work around this theorem?
A.
- only make choices between two alternatives (majority rule)
- relax “independence of irrelevant alternatives” requirement
 - used in most current voting systems (if candidate drops out...)
- restrict preference profiles
 - single-peaked preferences (Ch.10)
- relax social preference ordering (Amartya Sen)
 - no transitivity (only acyclicity)
- focus on social choice functions?
Social choice functions (1)

Def. A social choice function f is **monotonic** iff outcome (say a) does not change if relative order of alternatives ($\neq a$) is changed in input. (similar to IIA)

Muller-Satterthwaite (’77): *every* social choice function $f: L^n \rightarrow A$ over $|A| > 2$ that satisfies *unanimity* and **monotonicity** is a **dictatorship**.

Pf. Similar to Arrow’s.
Social choice functions (2)

Def. A social choice function \(f \) can be **strategically manipulated** if an agent \(i \) with \(a <_i a' \) can ensure that \(a' \) gets chosen instead of \(a \) by lying.

Def. If \(f \) cannot be strategically manipulated it is **incentive compatible** (truthful).

Q. Want mechanisms that can be strategically manipulated? Why (not)?

A. No.

- Social choice will be sub-optimal
- Manipulation is difficult for agents. Waste of time and resources.

Gibbard-Satterthwaite (’73): *every* transitive social choice function \(f:L^n \rightarrow A \) over \(|A|>2\) that satisfies **incentive compatibility** is a dictatorship.

Pf. (Sketch, by contradiction) Suppose such an \(f \) is not a dictatorship.
Construct social welfare function \(F \) by using choice by \(f \) repeatedly. \(F \) is then not a dictatorship. Contradiction with Arrow’s theorem.
Def. Given a set of n agents, a social multiagent planning problem is defined by a set \(\{(O_i, <_i) \mid 1 \leq i \leq n\} \), where
- $s_0 \in S$ is a description of the initial state,
- O_i is the set of operations of agent i,
- a multiagent plan $a \in A$ is a DAG of operations of all agents, and
- $<_i \in L$ is a linear transitive order over A (preference of agent i).

Goal. Find a multiagent plan that is “good” for every agent (social choice).

Q. Is it possible to find a mechanism to solve this problem for self-interested agents (where $<_i$ is the private information)? How/why not?

A. No. Gibbard-Satterthwaite (’73) say:
- Agents will have incentive to lie about preferences (or operations), or
- social choice will be a dictatorship.

Maybe introduce money or tax to incentivize agents...
Mechanisms with money

Assumption. Every agent \(i\) has value \(v_i(a)\) for each alternative \(a\): \(v_i : A \rightarrow \mathbb{N}\)
so \(v_i \in V\) instead of preference order \(<_i \in L\)

Simple multiagent planning setting: agent \(i\) has one unique favorite plan \(a_i\)
for all \(i\), for all \(a\): \(v_i(a) = 0\) if \(a \neq a_i\)
choose plan \(f(v_1, \ldots, v_n) = \arg\max_i v_i(a_i)\)

Knowing this, agents bid as high as possible (strategic manipulation).

Q. How to make this protocol incentive compatible?

A. Use a Vickrey auction.

Def. Vickrey’s second-price auction:

- winner = player \(i\) with highest declared value \(v_i\), and
- price = second-highest declared bid.

Vickrey’s theorem (’61): this auction cannot be strategically manipulated.
William Vickrey (1914-1996)

- Nobel prize in economic sciences at October 8th 1996
- heart attack three days later

- studied road transportation in Washington, D.C. in 1959
 - no tollbooths, but small radio transmitters
 - built rudimentary computer in his home with radio receiver
 - small radio transmitter (for under $3) under the hood of his car
 - printout times his own car went up or down his driveway

- printouts showed Vickrey rarely used his car:
 - took train into Manhattan
 - “commuted” the blocks from the station and across Columbia’s campus to his office on roller skates
VCG mechanisms (1)

Introduce payments p_i

Def. mechanism = social choice $f: V^n \rightarrow A$ and $\forall i$ payment $p_i: V^n \rightarrow N$

Def. A mechanism (f, p) is incentive compatible iff no player can win by lying if all others tell the truth. Formally: $\forall i \forall (v_i, v_{-i}) \in V^n \forall v_i' \in V_i$

- let $a = f(v_i, v_{-i})$ and $a' = f(v_i', v_{-i})$
- $v_i(a) - p_i(v_i, v_{-i}) \geq v_i(a') - p_i(v_i', v_{-i})$

Q. How to realize incentive compatibility?

Def. Vickrey-Clarke(’71)-Groves(’73) VCG mechanism: assign payments p_1, \ldots, p_n to each agent such that

- f maximizes social welfare: $a = f(v_1, \ldots, v_n) \in \arg \max_{a' \in A} \sum_i v_i(a')$
- payment p_i does not depend on v_i but on values for all other players:
 $p_i(v_1, \ldots, v_n) = -\sum_{j \neq i} v_j(a) + h_i(v_{-i})$

VCG theorem: every VCG mechanism is incentive compatible.
VCG theorem

VCG theorem: every VCG mechanism is incentive compatible.

Pf. Idea: follows from definitions of VCG and incentive compatible.

Let i, v_{-i}, v_i and v_i' be given. Let $a = f(v_i, v_{-i})$ and $a' = f(v_i', v_{-i})$.

We show that $v_i(a) - p_i(v_i, v_{-i}) \geq v_i(a') - p_i(v_i', v_{-i})$. (incentive compatible)

f maximizes social welfare:

\[
f(v_1,\ldots,v_n) \in \arg \max_{a \in A} \sum_i v_i(a)
\]

- so $\sum_j v_j(a) \geq \sum_j v_j(a')$
- so $v_i(a) + \sum_{j \neq i} v_j(a) \geq v_i(a') + \sum_{j \neq i} v_j(a')$
- so $v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) \geq v_i(a') + \sum_{j \neq i} v_j(a') - h_i(v_{-i})$

and since (VCG mechanism)

\[
p_i(v_i, v_{-i}) = p_i(v_1,\ldots,v_n) = -\sum_{j \neq i} v_j(a) + h_i(v_{-i}) = p_i(v_i', v_{-i})
\]

it holds that

\[
v_i(a) - p_i(v_i, v_{-i}) \geq v_i(a') - p_i(v_i', v_{-i})
\]
VCG mechanisms (2)

Q. When do agents want to take part in such a (VCG) mechanism?
A. If they get positive utility, i.e. if
\[v_i(a) - p_i(v_i, v_{-i}) = v_i(a) + \sum_{j \neq i} v_j(a) - h_i(v_{-i}) \geq 0 \]
Def. This is called individual rationality.

Def. Take \(h_i(v_{-j}) = \max_{b \in A} \sum_{j \neq i} v_i(b) \), the Clarke pivot payment.

So the utility of agent i is
\[v_i(a) + \sum_{j \neq i} v_j(a) - \max_{b \in A} \sum_{j \neq i} v_i(b) \]
This is its marginal contribution!

Fixing \(b = \text{arg max}_{b \in A} \sum_{j \neq i} v_i(b) \) the utility of i is:
\[= v_i(a) + \sum_{j \neq i} v_j(a) - \sum_{j \neq i} v_i(b) \]
\[= \sum_j v_j(a) - \sum_{j \neq i} v_i(b) \]
\[\geq \sum_j v_j(a) - \sum_j v_i(b) \quad \text{(because } v_i(b) \geq 0) \]
\[\geq 0 \quad \text{(because } a \text{ maximizes } \sum_j v_j(a)) \]
Lem. VCG mechanism with the Clarke pivot payment is individually rational.
VCG for multiagent planning with money

Def. Given a set of \(n \) agents, a **multiagent planning problem with money** is defined by a set \(\{(O_i, <_i) | 1 \leq i \leq n\} \), where
- \(s_0 \in S \) is a description of the initial state,
- \(O_i \) is the set of operations of agent \(i \),
- a multiagent plan \(a \in A \) is a DAG of operations of all agents, and
- function \(v_i : A \rightarrow \mathbb{N} \) describes private value for \(i \) of each alternative

Goal. Find a multiagent plan \(a \in A \) that optimizes \(\Sigma_i v_i(a') \).

Q. Is it possible to find a mechanism to solve this problem for self-interested agents (if \(v_i \) is private information) ? How/why not?

A. Yes, using a VCG-based mechanism, but:
1. we retrieve some “tax”; what to do with that?
2. social choice must be optimal, general planning is PSPACE-complete
Shortcomings of VCG

Def. A mechanism is **budget-balanced** iff $\Sigma_i p_i(a) = 0$.

Lem. VCG is not budget-balanced.

Myerson-Satterthwaite (’83): Efficient budget-balanced mechanisms are impossible in general (even in bilateral trade).

But there are some **redistribution mechanisms**, giving back part of payment.

Lem. VCG requires **exact** optimization (approximation loses IC)

Nisan-Ronen (’07):

- **possible** for some problems where approximation solution is maximal in range, i.e. max & not depending on agent’s types (eg multi-unit auctions)
- **not possible** for others, eg, for any cost-minimization allocation problem any sub-optimal VCG-based mechanism is degenerate (i.e. can have solutions arbitrarily far from optimal).
Summary / future directions

Multiagent planning for self-interested agents

- as a social choice: difficult, look for relaxations / special cases
 - e.g. when preferences are “single-peaked”
- as a VCG mechanism:
 - what to do with the money?
 - bad results if not optimal (“cost minimization problem”)
- other mechanisms with money?
 - indications are, sometimes VCG is only one (Robert’s)
Your applications...

Q. Example of problem including multiple participants?
 ▪ Adriaan: agents coordinate use of edges in s-t path

Q. How can (a simpler version of) this problem be seen as a one-shot truthful mechanism design problem?
 ▪ If it is natural to use payments, can you apply the VCG mechanism?
 ▪ If you are just considering preferences, what are the consequences of Arrow's and Gibbard-Satterthwaite's theorem for your problem?
Prop. Direct revelation principle (§ 9.4.3).
if \(\exists \) arbitrary mechanism implementing \(f \) in dominant strategies
then \(\exists \) incentive compatible direct revelation mechanism implementing \(f \)
with the same payments.
Pf. (Sketch) simulate dominant agent strategies inside mechanism.

So we can focus on direct revelation mechanisms.
Mechanisms with money

Robert’s theorem (’79): When domain of preferences is unrestrictive, the only incentive compatible mechanism is a VCG mechanism. In this case the social choice function is an affine maximizer.

Def: affine maximizer: for some subrange $A' \subseteq A$, agent weights w_i, the social choice function is

$$f(v_1, \ldots, v_n) \in \arg\max_{a \in A'} (c_a + \sum_i w_i v_i(a)).$$