Extending Network Lifetime for Precision- Constrained Data Aggregation in Wireless Sensor Networks

Xueyan Tang, Jianliang Xu

18-3-2009

1 of (about) 15

Introduction

- Wireless Sensor Network
- Base Station
- Application
- ... energy consumption!

18-3-2009 2 of 15

Problem Statement

- Network lifetime is important.
- How to optimize network lifetime?

- Lifetime of sensor nodes depends on:
 - the changing pattern of sensor readings
 - the residual energy of sensor nodes
 - the communication cost between sensor and base

18-3-2009 3 of 15

Related Work

- Routing and media access is researched a lot
- Exact query processing over sensed data too (but with little attention to energy efficiency!)
- The trade-off between energy and precision has been researched (but only on individual sensor nodes)
- Algorithmic design is often not general enough

18-3-2009 4 of 15

The model

- Three commonly used types of aggregations:
 - SUM
 - COUNT
 - AVERAGE
- *Error bound (EB)* per node is the preciseness
- The total error bound *E* is the sum of the error bounds
- Nodes only send updates if the value changed enough

18-3-2009 5 of 15

Precision Allocation in Single-Hop Networks

- Precision Allocation is the allocation of EB per node
- Sensors communicate with the base station directly
- The chain is as strong as the weakest link
- An EB of 0 for sensors is possible
 - (high energy nodes, slow change)
- Sensors with faster changing data, have an EB > 0

18-3-2009 6 of 15

Precision Allocation in Single-Hop Networks – Adaptive Approach

- Sensor nodes report to the base station
 - sample error bounds
 - with associated normalized energy consumption
- Base station optimizes the precision allocation
 - only using the sample error bounds!
- Sample precision allocations
 - optimal: optimal sample precision allocation

18-3-2009 7 of 15

Precision Allocation in Multi-Hop Networks

- Base station out of range? → Multi-hop network!
- Sensor nodes in tree formation, root at base station
- local and gross EB
 - local: local readings per sensor node
 - gross: total error bound of the sub-tree at node
- Still only send data at updates!

18-3-2009 8 of 15

Precision Allocation in Multi-Hop Networks – Adaptive Approach

- Same as Single-Hop networks, but then layered
- Leaf nodes act exactly the same, local EB = gross EB
- Intermediate sensor nodes act like the base station
 - Gain sample precision allocations from the leafs
 - Calculate optimal sample allocation for the gross EB
- Continue this method till the base station is reached!

18-3-2009 9 of 15

Performance Evaluation – Setup

- Small amount of nodes (10 and 20)
- A new simulator based on:
 - ns-2 (version 2.26)
 - NRL's sensor network extension
- Used real data (Air Temperature and Wind speed)
- Base station computes AVERAGE

18-3-2009 10 of 15

Adaptive PA, the proposed algorithm

18-3-2009 11 of 15

Performance Evaluation – Results 70000 Network Lifetime (Time Units) Network Lifetime (Time Units) 60000 Uniform-PA Burden-PA 15000 50000 PGain-PA Adaptive-PA 40000 10000 30000 20000 5000 Burden-PA PGain-PA 10000 Adaptive-PA 0 200 400 600 800 1000 200 400 600 800 1000 0 Adjustment Period (Time Units) Adjustment Period (Time Units) (a) AT Trace (b) WIND Trace

Fig. 6. Network Lifetime vs. Adjustment Period (Single-Hop Network, E = 0.4)

Adaptive-PA needs some adjustment time, but then it has the best projected network lifetime

18-3-2009 12 of 15

Fig. 9. Network Lifetime vs. Designated Error Bound (Multi-Hop Network)

If the designated error bound is increased, the difference in performance is even greater

18-3-2009 13 of 15

Conclusion

Exploiting the tradeoff between data quality and energy consumption pays off!

- Uniform precision allocation does not perform well
- Extending network lifetime needs balancing of energy
- The adaptive precision scheme outperforms the rest!

18-3-2009 14 of 15

Extending Network Lifetime for Precision- Constrained Data Aggregation in Wireless Sensor Networks

15 of 15, done!

Critical notes

- Implementing other aggregations (such as MIN and MAX) are noted as "future work"
 - MIN and MAX might be doable, but what about median?
- How does this algorithm scale?
 - Only tested for low number of nodes
- In a tree, the topmost nodes will be using more energy... no notion of this or if the effect is noticable

18-3-2009 16 of 15 – Extra!

(a) AT Trace (b) WIND Trace

Fig. 8. Energy Consumed at Different Sensor Nodes (Single-Hop Network, E = 0.4)

18-3-2009 17 of 15 – Extra!

Fig. 7. Network Lifetime vs. Designated Error Bound (Single-Hop Network)

18-3-2009 18 of 15 – Extra!

