
SURCH: Distributed Aggregation over Wireless Sensor Networks

Xingbo Yu, Sharad Mehrotra, Nalini Venkatasubramanian
School of Information and Computer Science

University of California, Irvine, CA 92697, USA
{xyu, sharad, nalini}@ics.uci.edu

Abstract

In this paper, we present SURCH, a novel decentral-
ized algorithm for efficient processing of queries generated
in sensor networks. Unlike existing techniques, SURCH
is fully distributed and does not require the existence or
construction of a communication infrastructure. It exploits
the broadcast nature of wireless communication to opti-
mize query propagation and evaluation. In SURCH, par-
tial results are aggregated en route while the query spreads
through the network. The key features of SURCH include its
ability to avoid unnecessary communication, balanced node
workload, and resilience to node failures. Performance re-
sults illustrate that SURCH outperforms alternative tech-
niques for a variety of aggregation and selection queries.

Key words: wireless sensor networks, data aggregation,
response prioritization, query propagation, partial results.

1 Introduction

Emerging sensor devices are capable of sensing, comput-
ing and communicating. They are better recognized as peers
in a network that serve as points of data generation, pro-
cessing, delivery, and consumption, rather than passive data
sources. Sensor networks have attracted attentions from
scientists in various scientific applications such as habitat
monitoring [23] and biomedical studies [24]. While some
types of applications can only be accommodated on power-
ful servers with enough processing and storage capacity and
a broad and long view of the observed phenomena, there are
also numerous applications which do not require such cen-
tralized solutions. This paper proposes a framework for im-
plementing data management functionality for queries that
arise within a sensor network.

Several types of queries have already been studied by
sensor database projects such as Cougar [3], TinyDB [20],
and Quasar [16]. We can categorize them broadly as snap-
shot queries, continuous queries, and lifetime queries based
on the duration for which they are expected to run. Snap-

shot queries are asked occasionally by observers monitoring
processes of interest. Continuous queries are evaluated pe-
riodically. Lifetime queries resemble continuous queries,
but with the periodicity of the query evaluation adapted to
achieve a lifetime goal. While research for the evaluation of
such queries is on-going, most approaches share the same
basic architecture of a tree being established via e.g., net-
work clustering, in the sensor network through which in-
formation flows to the server(e.g. [22, 20]). This type of
framework is characterized by the fact that query dissem-
ination and data collection occur in two completely sepa-
rated phases. Such a process is popular for long-term moni-
toring queries with applications such as habitat monitoring,
biomedical monitoring, intrusion detection, and agricultural
irrigation [23, 24, 13, 25].

An important class of queries which has not received as
much attention is what we refer to as a triggered query;
dealing with such queries is the objective of this paper. Trig-
gered queries are generated and consumed locally within a
sensor network, possibly as a result of an external trigger or
localized regional event detection. Consider for example,
the detection of an anomalous temperature value by an indi-
vidual temperature sensor. In such a case, a localized group
of sensors may cooperate with each other to determine the
occurrence or non-occurrence of the anomalous phenom-
ena. A distinguishing feature of triggered queries is the role
of locality. Here, query results are consumed locally; the
evaluation of such a query does not require contacting or
forwarding data to a central server.

Although tree-based query processing has been shown
to work well for monitoring queries in general, utilizing
fixed infrastructures for triggered queries is not obvious.
In this paper, we propose SURCH (SURfing and searCH-
ing), a fully decentralized peer-based algorithm for process-
ing triggered queries in wireless sensor networks. SURCH
combines query dissemination and processing so that a
query can be partially processed on the fly in a sensor net-
work. Partial results are delivered to the query initiator or
a designated proxy for final processing. SURCH avoids the
overheads of infrastructure construction or interaction with

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

a server by exploiting local communication. The novelty of
SURCH is four-fold. First, it is capable of processing ad hoc
in-network generated queries more efficiently than existing
tree-based techniques in addition to continuous monitoring
queries. Second, by implementing prioritization, when only
a small number of sensor nodes contribute to the query re-
sult, SURCH demands very little communication. Third,
sensor workloads can be balanced to maximize the over-
all life-times of sensor networks through carefully designed
propagation policies. Finally, SURCH has an inherent re-
silience to sensor failures, as it does not depend on any par-
ticular node, but works “around” failed nodes, discovering
the ones that are still operational.

Road Map: The rest of the paper is organized as fol-
lows. In section 2, we present the proposed SURCH algo-
rithm for distributed in-network query processing. In sec-
tion 3, we discuss various optimization policies for several
types of aggregate queries. In section 4, we evaluate the
performance of SURCH and its optimization policies and
compare it with alternative techniques. Section 5 presents
related research efforts. We conclude the paper in section 6
together with potential future research directions.

2 SURCH

A sensor node we consider in this work is composed of
a processor, an embedded sensor, an A/D converter, and a
radio, as with a Mica Mote [14]. Each of these components
is controlled by a micro operating system [11] with an ex-
ternal clock enabling synchronization of neighboring nodes
[7]. Built-in radio transceivers 1 provide wireless communi-
cation based on fundamentally broadcast. While messages
may be addressed to specific nodes, all neighbors of a trans-
mitting node can receive the transmitted message at no extra
cost [19].

In designing SURCH, we distinguish two types of
queries. Exemplary aggregate queries(EAQ), such as Min,
Max, and top-k, can be processed without necessarily re-
sponses from all sensor nodes. On the other hand, Sum,
Avg and selection queries require readings from all rele-
vant sensor nodes. We describe SURCH for Max and Sum
queries as representatives of the two categories.

2.1 Overview

Instead of gathering data to a specific node, SURCH dis-
seminates a query to a network, processing it during propa-
gation before collecting partial results for final processing.

1We assume single channel communication in designing SURCH, al-
though multi-channel communication is available for new generation of
MICA2 motes [1]. Optimal channel allocation to improve communication
efficiency is beyond the scope of this paper.

Figure 3. Discover a neighborhood

SURCH starts from a query initiator - the node that trig-
gers a query. The node performs a local processing before
proceeds by propagating the query level by level, carrying a
current intermediate result. A node that hears the query may
decide to serve as a broadcasting/aggregation node. We de-
note a node to be a broadcasting node when it decides to
propagate the query and use it interchangeably with an ag-
gregation node when the node also takes the responsibility
of aggregating. Local processing is repeated at the broad-
casting node. Query results are aggregated on the path of
query propagation. When propagation stops after the entire
query region has been searched, partial results are identified
and sent to a destination node which computes a final result
that can be used for an upper-level response.

Each node stores information about current queries in a
table with tuples containing five attributes {queryID,
queryType, tempAns, level, parentID}. The
queryType is used by a node to determine how to
respond to the query. TempAns is a local partial query
result known to the node. Level number represents the
depth of query propagation, with query initiator at level
0. ParentID helps identify a parent node from which the
query comes for the first time. A tuple can be deleted
after the corresponding query is processed. Focusing on
Max queries first, the following sections describe major
components of SURCH: local query processing, query
propagation, and partial result capturing.

Our discussion has been so far based mostly on perfect
network conditions. However, there are practical issues
that have to be resolved before the algorithm can be imple-
mented. Due to space limitations, we refer readers to our
technical report [27] for detailed discussions.

2.2 Local Processing

The purpose of local processing is to query neighboring
nodes to produce a temporary query result. In the following
discussion, we use temporary results to denote the results
produced by local query processing. And partial result is
used to denote the temporary results that are to be captured
after the entire query region is explored.

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

PROCEDURE: receive max(message m)
1. if(m.isQuery())
2. if(first time receiving the query)
3. myLevel = m.level + 1;
4. undiscovered neighbors.update();
5. set propagation timer for optimization;
6. else
7. undiscovered neighbors.update();
8. if(undiscovered neighbors == 0)
9. propagation timer.cancel();

10. if(m.max < myMax);
11. set reply timer based on myData;
12. else
13. myMax = m.max;
14. if(m.Max ≥ myMax)
15. is propagated = true;
16. if(m.isRebroadcast())
17. myMax = m.max;
18. reply timer.cancel();
19. if(m.isReply())
20. myMax = m.max;
21. re broadcast(myMax);
END PROCEDURE

Figure 1. SURCH for Max queries

PROCEDURE: receive sum(message m)
1. if(m.isQuery())
2. if(first time receiving the query)
3. myLevel = m.level + 1;
4. undisc neighbors.update();
5. set propagation timer for optimization;
6. reply with undisc neighbors;
7. else
8. undisc neighbors.update();
9. if(undiscd neighbors == 0)

10. propagation timer.cancel();
11. if(hold partial result == true)
12. reply with undisc neighbors = 0;
13. hold partial result = false;
14. is propagated = true;
15. if(m.isReunicast())
16. mySum = m.sum;
17. hold partial result = true;
18. if(m.isReply())
19. mySum = mySum + m.sum;
20. if(m.undisc neighbors > max undisc neighbors)
21. max undisc neighbors = m.undis neighbors;
22. unicast destination = m.sender;
23. if(no re unicast timer);
24. set re unicast timer;
END PROCEDURE

Figure 2. SURCH algorithm for Sum queries

For Max queries (see figure 1), a node first broadcasts
a query together with a current query result known to it-
self. Upon receiving such a query, all neighbors who have
not received the query will store it and mark itself at level
l + 1 (see lines 2∼3 of figure 1), where l is the level of
the broadcasting node which is also marked as the parent
node. Neighbors with data inquired by the query may re-
spond using unicasting (lines 10∼11). Responses are prior-
itized with priority given to nodes with greater values. Once
response messages are received, the broadcasting node will
immediately re-broadcast an updated result to prevent other
neighbors (that have a value lesser than the one discovered
so far) from having to respond to the query (lines 19∼21).
Upon receiving the re-broadcasted temporary result, neigh-
boring nodes update their local copies(lines 16∼18). This
makes sure the Max value discovered so far gets propa-
gated further along with the query, which helps reduce po-
tential responses in later local processing operations in outer
regions. On the other hand, the re-broadcasting message
can be avoided if there is no response from any neighbor
which indicates that the initially broadcasted message is in-
deed the best answer. In this case, neighbors become aware
of the omission of the re-broadcasting message if they do
not receive such a message after waiting for certain amount
of time. Figure 3 shows the messages in a local processing
initiated by a node ns. Dotted lines represent messages that
may be omitted.

Note that it is likely for a node to receive a query multiple
times. Whenever it receives a query message, it updates its
undiscovered neighbors (see lines 4 and 7) by removing the
nodes that can be covered by this message with its knowl-
edge about radio transmission range and their neighbors’
locations. This operation only gives a rough and conserva-
tive (over-estimated) estimation of the number of undiscov-
ered neighbors. But it is good enough to help implement
optimization policies as discussed in section 3. Most of the
pseudo-codes in figure 1 are self-explanatory except lines 5,
11, 14 and 15, which will be discussed next.

2.2.1 Response Prioritization

To implement response prioritization (line 11), a time pe-
riod has to be identified so that each neighbor can find a
responding time in it. We denote this time period {tb, tc}
where tb is the time instance when the query is received and
the interval is considered as a system parameter which is
decided based on the network density. This is also the time
period that a broadcasting node should wait even if no one
responds. Also, each neighbor node should be able to com-
pute its fitness value θ, with respect to the query predicate.
A fitness value is defined as a measurement on how close a
sensor data is to the exemplary value an exemplary query at-
tempts to find. With these information, a node can compute
a TTR (time to response) value as following:

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

TTR = f(tb, tc, θ) =

{ ∞ if θ = 0;
(1 − θ) · (tc − tb) o.w..

(1)

The formulae following are devised so that the responses
are in the order of decreasing fitness values, and the re-
sponses are dispersed as evenly as possible.
Max/Min Queries: In a typical Max query, a broad-
casting node asks its neighbors for values larger than its
current maximum value, vc. Assume each neighbor node
also knows, besides its own value v, that the upper bound
(which can be a loose bound) of the inquired attribute is vM .

θ =
v − vc

vM − vc
. (2)

TTR =

{
∞ if v ≤ vc;
vM−v
vM−vc

· (tc − tb) o.w.. (3)

Nearest Neighbor Queries: A typical NN query provides
a target value v0, and the current nearest neighbor value vc

known by the querying node ns. Neighbors with closer val-
ues (|v − v0| < |vc − v0|) may respond.

θ =
|vc − v|
|vc − v0|

. (4)

TTR =

{ ∞ if |v − v0| ≥ |vc − v0|;(
1 − |vc−v|

|vc−v0|
)
· (tc − tb) o.w..

(5)

topK Queries: A general topK query asks for the nodes
whose values are the top K closest ones to a given tar-
get value v0

2. The broadcast message contains v0 and vc,
the lowest value among the top K values discovered so far.
The computation of θ and TTR is identical to NN queries.
However, the broadcasting node may need to wait for sev-
eral responses before it can decide that the top K answers
have been discovered and start re-broadcasting the answers.
When to stop receiving responses can be determined by
combining the current top K values with the newly re-
ceived values, together with the observation that the values
received from responding nodes arrive in decreasing order
in fitness. As an example, suppose a query asks for the top
three values that are closest to a target value, and the cur-
rent top 3 values have fitness of 0.8, 0.5, and 0.3. If the first
response returns a value with fitness 0.4, then node ns can
stop listening and start re-broadcasting since the top three
values have been discovered with fitness of 0.8, 0.5, and
0.4. In another case, if the first response is a value with fit-
ness 0.6, ns has to wait for one more response to decide the
third element in the top3 list.

2.3 Query Propagation and Partial Result
Capturing

A major challenge in devising SURCH is to decide
which nodes (a set denoted by Ns) should serve as broad-
casting nodes to propagate a query. We observe that the

2Maximum TopK query is a specific case with v0 = ∞.

Figure 4. (a) A partial result is captured at
node nr (b) Boundary propagation helps re-
duce partial results

set of Ns needs to satisfy two fundamental requirements:
The query region has to be searched exhaustively; The over-
all number of messages generated should be small. From
graph theory point of view, we are looking for a small size
connected dominating set (CDS) of the network to take the
responsibility of propagating queries. We explore various
solutions to this issue in section 3.

Partial results are the results on sensor nodes that have
to be identified and reported to a destination node for fi-
nal query processing. Unlike with tree-based algorithms in
which the root node of an aggregation tree has query result,
the nodes holding partial results produced by SURCH is not
known a priori. In fact, every node holds a result aggregated
along the path from the query initiator to itself. However,
not all the nodes need to report their results.

When all communication links are reliable, we observe
that partial results must be held by a propagating node as
a result of local query processing. In this case, every node
which, after performing its local query processing, does not
hear any of its neighbors propagating the query holds a par-
tial result that has to be reported. However, when link fail-
ures are present (see [27]), a general and practical criteria
is needed. – Any node whose aggregate result is not propa-
gated has to report the result. This criteria is implemented
by lines 14∼15 in figure 1.

Following this criteria, partial results will end up being
cornered at some irregular sections at the boundaries or in-
side a query region. For example, node nr in figure 4(a)
may hold a partial result. Dense and uniform sensor node
deployment leads to partial results being captured at query
region boundaries. The number of partial results generated
depends on node density and the regularity/smoothness of
boundaries. Figure 4(b) shows how results are propagated
near a regular boundary, which explains a nice feature that
normally few partial results need to be captured. On the
other hand, sparse or non-uniform sensor implementation
may result in larger number of partial results. We further
examine this issue in the experiment section.

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

2.4 Sum Queries

Since all the nodes have to respond, in the local process-
ing step, there is no need to prioritize the response messages
(line 6) in processing Sum queries. It is also not necessary
for all neighboring nodes to store the temporary result dis-
covered by the broadcasting node. Only one node, denoted
as a relay node, should store and carry the result into further
query propagation. In other words, re-broadcasting is re-
placed by re-unicasting with a destined neighbor node spec-
ified (lines 23 and 24). Re-unicasting is not performed until
the time window that allows neighbors to respond expires.
Any node that has already responded to a query, except the
relay node, will not respond to the same query any more.
The relay node will only respond once more to deliver the
temporary result it holds so as to avoid double counting of
the same data items (see lines 11∼13). The goal of sending
the temporary result to a relay node is for the result to be
aggregated with other results during future local query pro-
cessing, which helps reduce the total number of final partial
results that have to be captured at the end of query propa-
gation. For the best chance to be merged, results are sent to
neighbor nodes with the most un-explored neighbors (lines
20∼22). Any nodes that hold partial summation data and
have not delivered it to another node must report the partial
result (lines 12 and 14).

3 Optimization Policies

As mentioned in the previous section, a small size con-
nected dominating set is desired for efficient query prop-
agation. This CDS has to be discovered on the fly along
with query propagation. In this section, we show that with
limited knowledge about surrounding network, SURCH
can discover small size connected dominating sets for
low cost query propagation. The assumption we make is
neighborhood-awareness. Specifically, a sensor node only
has knowledge about its one-hop neighbors’ locations. The
information comes from local message exchange which
only takes place when there is a topology change.

With neighborhood-awareness, a CDS can be discovered
by allowing each node to compute a TTX (time to transmit,
a timer implemented with line 5 in figures 1 and 2) value
within a time frame designated for nodes at a certain level.
TTX is computed as a function of priority, p (0 ≤ p ≤
1), which covers various optimization metrics as discussed
below. Let {ts, te} denote the time period in which a node
will perform broadcasting. We want to compute TTX as:

TTX = f(ts, te, p) =

{ ∞ if p = 0;
(1 − p) · (te − ts) o.w..

(6)

The above heuristic is based on the observation that the
order in which nodes broadcast a query is very important.

Figure 5. CDS selection

The broadcasting of one node may make it unnecessary for
another node to participate in query propagation. For exam-
ple, in figure 5(a), n1 has two neighbors (n7, n8) which have
not been queried and n2 has one (n8). After n1 performs
a broadcast as shown in figure 5(b), n2 will have no un-
queried neighbors since n8 has been covered by n1. Note in
the figures, white nodes denote the ones that have not been
queried, gray nodes have been queried, and black nodes are
the ones that performed broadcasting (self-selected into a
CDS). We would like to point out that prioritization here
may not be achieved precisely when priority values are
close. The consequence goes no further than the fact that
the selection of CDS nodes deviates from what would have
been chosen in the ideal case. With the introduction of pri-
ority p, SURCH has the flexibility of targeting at various
optimization goals as presented next.

3.1 Minimize Overall Power Consumption

In order to reduce the overall cost, we want to obtain
a small size connected dominating set, discovered level by
level stemming from a query initiating node. We develop
below a greedy heuristic which always picks a node with
the maximum number of un-queried neighbors first. Let
d denote the estimated number of un-queried neighboring
nodes of a node under consideration. Suppose we have an
estimation of the maximum degree (d0) of any node in the
network (or even better, in the neighborhood), then p = d

d0
.

To estimate d, a node has to fully exploit its
neighborhood-awareness. Note that d and TTX have to
be updated as query messages are received because d val-
ues change. Since d can only decrease monotonically with
time, TTX will be increased and the transmission will be
postponed. This is especially important when d is decreased
to zero and it becomes unnecessary for a node to broadcast.

3.2 Achieve Uniform Power Consumption

Despite its ability to achieve minimal overall cost, the
above technique may cause some sensor nodes (e.g. the
ones with more neighbors) to drain out their energy much

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

faster than others, which leads to a short network lifetime.
Pursuing uniform power consumption across a sensor net-
work is another important objective in real-world applica-
tions. To achieve this, a node has to be aware of its own
power level e and compute p accordingly.

p =

{
0 if d = 0;

e
eM

o.w., (7)

where eM is a system parameter for maximum node
power. Note that only approximate uniformity of power
consumption can be accomplished. Network topology still
plays the dominant role as shown by our simulations.

3.3 Compound Policy

As expected, uniform power consumption criteria results
in larger overall cost than the overall cost criteria. A com-
pound policy that balances the two goals may also be useful.
A parameter balance factor, α (0 ≤ α ≤ 1), is required to
decide the weight of each criteria.

p =

{
0 if e = 0 or d = 0;

α · d
d0

+ (1 − α) · e
eM

o.w., (8)

4 Empirical Evaluation

We evaluate the performance of SURCH using ns2 [2].
We simulate networks in a 240m×240m query region where
nodes communicate using a CSMA-CD based MAC proto-
col with TwoRayGround signal propagation model (similar
to IEEE 802.11). The radio coverage distance is set at 40m.
To test the performance of the proposed algorithm over dif-
ferent densities of sensor node placement, we vary the num-
ber of nodes. Density is defined as the number of nodes per
cell, which in turn is defined as the area covered by a cir-
cle with radius 40. For other specific evaluations, we use
a network with 100 nodes over the 240m×240m space, a
commonly used density setup. The nodes are placed ran-
domly on the chosen space. We simulate one query initi-
ated at a randomly chosen node in the entire query region.
All our results are averages over multiple runs. Since net-
work topology is the dominant factor in our algorithm per-
formance evaluation, we only work with synthetic data with
generated sensor values.

4.1 Experimentation strategies

We compare SURCH with a wide variety of strategies
that broadly fall under two alternative approaches men-
tioned earlier in which data is gathered using a tree structure
and aggregated on the way to the collection node. In one ap-
proach, query initiator contacts the AP (root of the existing
abstract tree) for query processing. The other one constructs

Table 1. Strategies compared in experiments
method description

surch Surch, minimizing overall cost
n-tree-oh construct a new tree, with overhearing
n-tree-nv construct a new tree, without overhearing
e-tree-oh use an existing tree, with overhearing
e-tree-nv use an existing tree, without overhearing
n-tree construct a new tree, non-exemplary queries
e-tree use an existing tree, non-exemplary queries

a new tree and collects data through it. In addition to naive
data collection in which every node processes and reports
data to its parent node, we also implemented and compared
with optimized versions that use overhearing. Overhearing,
when an exemplary query is being processed, allows a node
to suppress a message when it overhears that another node
has reported a better answer to the query. Table 1 lists the
various comparison strategies.

We specifically evaluate algorithms in terms of the com-
munication cost, i.e. number of transmissions generated in
a network. We use the average number of transmissions
per node as a normalized measurement of the communica-
tion overhead in the network. We account for a transmission
being a single communication operation that transfers one
packet of data from a sensor node to adjacent sensor nodes
in one hop. We assume all messages have similar packet
sizes. Although this may not be true for topK and Sum, it
still allows fair comparison across different approaches.

4.2 Results

Exemplary queries: Figure 6 shows that with increas-
ing node density, the average costs per node decrease. For
Max queries at a density comparable to what is considered
typical, which is around 10 nodes/cell, about 0.4 per node
transmission is achieved, which is about 50% improvement
over the best alternative approach n-tree-oh. Note that the
cluster structure we use in the simulation for tree-based data
collection is constructed the same way as a CDS is discov-
ered in the SURCH propagation phase.

Figure 7 illustrates overheads for Top5 queries. Al-
though the relative costs are similar to Max queries, the ab-
solute cost is slightly higher since there is a smaller chance
of suppressing a message in this case. About 0.45 per node
transmission is achieved for normal network density setup,
which again shows the superiority of SURCH.

Non-exemplary queries: We also implemented Select
and Sum queries as an example of non-exemplary (Avg,
Sum, Select) queries. Figure 8 shows that when a small
portion (10%) of nodes need to participate in summa-
tion, SURCH achieves a performance as good as in exem-
plary queries. Note that in non-exemplary queries, there

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 N
od

e
T

ra
ns

m
is

si
on

s

Density(nodes/cell)

surch
n-tree-oh
n-tree-nv
e-tree-oh
e-tree-nv

Figure 6. Communication
cost for Max queries

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 N
od

e
T

ra
ns

m
is

si
on

s

Density(nodes/cell)

surch
n-tree-oh
n-tree-nv
e-tree-oh
e-tree-nv

Figure 7. Communication
cost for Top5 queries

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 N
od

e
T

ra
ns

m
is

si
on

s

Density(nodes/cell)

surch
n-tree
e-tree

Figure 8. Cost for selective
Sum queries

1

1.2

1.4

1.6

1.8

2

4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 N
od

e
T

ra
ns

m
is

si
on

s

Density(nodes/cell)

surch
n-tree
e-tree

Figure 9. Communication
cost for Sum queries

0.2

0.4

0.6

0.8

1

1.2

1.4

0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 N
od

e
T

ra
ns

m
is

si
on

s

Selectivity

surch
n-tree
e-tree

Figure 10. Cost over selec-
tivity for selection queries

0.2

0.3

0.4

0.5

0.6

0.7

4 6 8 10 12 14 16 18 20 22

A
ve

ra
ge

 N
od

e
T

ra
ns

m
is

si
on

s

Density(nodes/cell)

overall cost
uniformity

compound

Figure 11. SURCH opti-
mization policies for Max

is no overhearing optimization available for tree based ap-
proaches. For full summation, figure 9 shows that construct-
ing a new tree and collecting all data to the root is a bet-
ter option. Hence, combining new-tree construction with
SURCH depending on the query tasks and network condi-
tions can be exploited for processing triggered queries. Fig-
ure 10 shows results for other selectivities with fixed net-
work density where costs increase with selectivity.

Impact of optimization: Figure 11 shows costs of pro-
cessing Max queries under different policies with the typ-
ical node density. The results are as predicted, with over-
all cost criteria yielding the lowest cost and uniformity cri-
teria yielding the highest cost. A compound policy (with
α = 0.5) gives an intermediate cost. The communication
cost for each node (not shown due to space limitations)
shows that the minimum overall cost policy does result in
more biased cost distribution across nodes than compound
and uniformity policy. However, uniformity policy does
not produce even cost on all the nodes either, since topol-
ogy plays the dominant role in determining individual node
costs. Tests with Sum queries exhibits similar results.

Summary of other experiments: We extended SURCH
to handle unreliable communication links. Our experiments
show that to cope with faulty links, higher cost is required to
implement the algorithm. We also recorded the numbers of
partial results generated by Max queries under various link
failure rates. The number generally increases with network

density and with failure rates. This is because that failed
links cause more partial results to be trapped at some nodes
and has to be reported. Sum and selection queries produce
similar amount of partial results.

Our experiments on the effect of sensor data distribu-
tion show that when the maximum value can be discovered
in early steps of Max query processing, the overall cost is
very small. Experiments on scalability show that the trans-
mission cost does not change when network size increases.
The number of partial results increases sublinealy. Experi-
ments on latency show that the average numbers of hops to
reach a partial result increase almost linearly.

5 Related Work

Existing work in sensor databases includes the TinyDB
project [19, 21, 10] and the Cougar project [3, 26]. In [19],
Madden et al. investigated problems encountered in devel-
oping TinyDB for a Habitat Monitoring application, from
semantics, query dissemination, data collection, to query
optimization based on sensor energy level and query life-
time requirements. Madden et al. also studied the imple-
mentation of aggregation as part of system services [20, 22].
In [6], they extended data acquisition to map raw sensor
data into physical phenomena through statistical modeling.
[26] explored failure-resilience issue in addition to packet
merging and optimization.

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

Data collection and aggregation in sensor networks have
also been studied in the networking community. Leach [9]
and Pegasis [18] explore cluster-based data gathering proto-
cols that rotate cluster-heads randomly to evenly distribute
workload among sensor nodes. [15] takes a similar ap-
proach and targets uniform energy dissipation to achieve
maximum network lifetime. Directed Diffusion [12] pro-
vides a data dissemination paradigm in which a node re-
quests data by propagating interests to find a group of inter-
esting nodes. Aside from aggregation, power-aware routing
techniques [?] have been studied to minimize the cost of
intermediate routing nodes in ad-hoc networks. Research
work in network clustering [17, 4] includes a theoretical
analysis on graph clustering using dominating sets [8, 5].

6 Conclusions and Future Work

We studied the problem of processing triggered queries
in wireless sensor networks. We presented a decentralized
algorithm to process queries during their propagation in net-
works. Experimental results show that SURCH is very effi-
cient for exemplary aggregate queries and selection queries
with low selectivity. Another advantage of the algorithm is
that it deals with sensor failures elegantly.

As part of our future work, we plan to enhance the al-
gorithm with sensor state management protocols and query
batching techniques. We also plan to explore quality-
awareness in in-network query processing using SURCH.

References

[1] Berkeley mica2 mote. http://www.xbow.com/Products/.
[2] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.
[3] P. Bonnet, J. Gehrke, and P. Seshadri. Towards sensor

database systems. In 2nd International Conference on Mo-
bile Data Management, 2001.

[4] M. Chatterjee, S. K. Das, and D. Turgut. Wca: A weighted
clustering algorithm for mobile ad hoc networks. Journal of
Cluster Computing, 5:193–204, 2002.

[5] Y. Chen and A. Liestman. Approximating minimum size
weakly-connected dominating sets for clustering mobile ad
hoc networks. In MobiHoc, 2002.

[6] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks.
In VLDB, 2004.

[7] J. Elson and D. Estrin. Time synchronization for wireless
sensor networks. In IPDPS Workshop on Parallel and Dis-
tributed Computing Issues in Wireless Networks and Mobile
Computing, 2001.

[8] S. Guha and S. Khuller. Approximation algorithms for con-
nected dominating sets. Algorithmica, 20(4), 1998.

[9] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan.
Energy-efficient communication protocol for wireless mi-
crosensor networks. In HICSS, 2000.

[10] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek. Be-
yond average: Towards sophisticated sensing with queries.
In IPSN, 2003.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for network sen-
sors. In ASPLOS, 2000.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. In MobiCOM, 2000.

[13] O. Kachirski and R. Guha. Effective intrusion detection us-
ing multiple sensors in wireless ad hoc networks. In HICSS,
2003.

[14] J. Kahn, R. Katz, and K. Pister. Next century challenges:
Mobile networking for ‘smart dust’. In MOBICOM, 1999.

[15] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Maximum life-
time data gathering and aggregation in wireless sensor net-
works. In NETWORKS, 2002.

[16] I. Lazaridis, Q. Han, X. Yu, S. Mehrotra, N. Venkatasubra-
manian, D. V. Kalashnikov, and W. Yang. Quasar: Quality-
aware sensing architecture. In SIGMOD Record, 2004(to
appear).

[17] C. Lin and M. Gerla. Adaptive clustering for mobile wireless
networks. IEEE Journal of Selected Areas in Communica-
tions, 15(7), 1997.

[18] S. Lindsey and C. S. Raghavendra. Pegasis: Power efficient
gathering in sensor information systems. In Proceedings of
IEEE Aerospace Conference, 2002.

[19] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. The
design of an acquisitional query processor for sensor net-
works. In SIGMOD, 2003.

[20] S. Madden, M. F. J. Hellerstein, and W. Hong. Tag: a tiny
aggregation service for ad-hoc sensor networks. In OSDI,
2002.

[21] S. Madden, M. Shah, J. Hellerstein, and V. Raman. Con-
tinuously adaptive continuous queries over streams. In SIG-
MOD, 2002.

[22] S. Madden, R. Szewczyk, M. Franklin, and D. Culler. Sup-
porting aggregate queries over ad-hoc wireless sensor net-
works. In Workshop on Mobile Computing and Systems Ap-
plicationsS, 2002.

[23] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and
J. Anderson. Wireless sensor networks for habitat monitor-
ing. In WSNA, 2002.

[24] L. Schwiebert, S. K. Gupta, and J. Weinmann. Research
challenges in wireless networks of biomedical sensors. In
The seventh annual international conference on Mobile
computing and networking, 2001.

[25] S. Singh and C. S. Raghavendra. Pamas: Power aware multi-
access protocol with signalling for ad hoc networks. ACM
Computer Communications Review, 1999.

[26] S. J. Thomson and B. B. Ross. Using soil moisture sensors
for making irrigation management decisions in virginia. In
http://www.ext.vt.edu/pubs/rowcrop/442-024/442-024.html.

[27] Y. Yao and J. Gehrke. Query processing in sensor networks.
In CIDR, 2003.

[28] X. Yu, S. Mehrotra, and N. Venkatasubramanian. Surch:
Distributed query processing over wireless sensor networks.
In Technical Report TR-DB-05-08, ICS, UC Irvine, 2005.

10th International Database Engineering and Applications Symposium (IDEAS'06)
0-7695-2577-6/06 $20.00 © 2006

