In4073
Embedded Real-Time Systems

Introduction to Digital Filtering
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Why Signal Processing?

- Improve/restore media content
 - Compression/Decompression
 - Audio filtering (bass, treble, equalization)
 - Video filtering (enhancement, contours, ..)
 - Noise suppression (accel, gyro data)
 - Data fusion (mixing accel + gyro data)

- By digital means: DSP
Example: QR Sensor Signals phi, p
After some low-pass filtering
DSP is Everywhere

- Cell Phone
- TV
- Plant Control
- Climate Control
- Automotive
- Copiers, Wafer Scanners
- Model Quad Rotors ...
Objectives of this Crash Course

- Appreciate the benefits of Digital Filtering
- Understand *some* of the basic principles
- Communicate with DSP engineers
- Implement your own filters for the QR
Signals and Frequency Synthesis

Usually signals (such as s) are composed of signals with many frequencies. For instance, s contains
- 0 Hz component (green dashed line)
- lowest freq component (purple dashed line)
- higher freq component (yellow dashed line)
- and others

Fourier: Any periodic signal with base frequency f_b
can be constructed from sine waves with frequency f_b, $2f_b$, $3f_b$, ...
The frequency spectrum of s is:

possible freq components in s
Often filters are designed to filter frequency components in a signal.
Sampling A Signal

s sampled at *discrete* time intervals (sample frequency f_s): $x[n]$
Sampling: Avoid Aliasing

\[f_s > 2 \times \text{highest freq in } s: \text{ OK} \]

\[f_s < \text{highest freq in } s: \text{ you see non-existing low-freq signal(s)!} \]
Example Filter: Moving Average

\[y[n] = \frac{1}{3} x[n] + \frac{1}{3} x[n-1] + \frac{1}{3} x[n-2] \]

\text{MA Filter}

\text{x[n]} \rightarrow \text{MA Filter} \rightarrow \text{y[n]}

\begin{align*}
 x[0] &= \text{get_sample}() \\
 y[0] &= \frac{(x[0]+x[1]+x[2])}{3} \\
 \text{put_sample}(y[0]) \\
 x[2] &= x[1]; x[1] = x[0]
\end{align*}

MA filter filters (removes) signals of certain frequency:

\text{x, freq f, amplitude 1} \rightarrow \text{MA Filter} \rightarrow \text{y, freq f, amplitude ???}
Frequency Behavior MA

lower frequency \(x \): amplitude \(y = 0.77 \)
\(x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33, 0.00 \)
\(y = 0.00, 0.11, 0.33, 0.66, 0.77, 0.66, 0.33, 0.00, -0.33, -0.66, -0.77, -0.66, -0.33 \)

higher frequency \(x \): amplitude \(y = 0.33 \)
\(x = 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00 \)
\(y = 0.00, 0.33, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33 \)

transient \hspace{1cm} \text{steady-state}

<table>
<thead>
<tr>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>1/3</td>
</tr>
<tr>
<td>1/4</td>
</tr>
<tr>
<td>1/6</td>
</tr>
</tbody>
</table>

\(x = 0.00, 0.87, -0.87, 0.0, 0.87, -0.87, 0.00 \)
\(y = 0.00, 0.29, 0.00, 0.00, 0.00, 0.00, 0.00 \)
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Analysis: Z Transform

- We can numerically evaluate frequency behavior (see C programs)
- Rather analyze frequency behavior through *analytic* means
- For this we introduce Z transformation

- Let $x[n]$ be a signal in the time domain (n)
- The Z transform of $x[n]$ is given by

$$X(z) = \sum_{n} x[n] z^{-n}$$

where z is a complex variable.

- Example:

 $x = 0.00, 0.33, 0.66, 1.00, 0.66, ..$
 $X = 0 + 0.33z^{-1} + 0.66z^{-2} + z^{-3} + 0.66z^{-4} + ...$

Z Transform

- Z transforms make life easy
- Properties of the Z transform:

- Let $y[n] = x[n-1]$ (i.e., signal delayed by 1 sample)

$$Y(z) = z^{-1} X(z)$$

- Example:

 $$x = 0.00, 0.33, 0.66, 1.00, 0.66, \ldots$$
 $$X = 0 + 0.33z^{-1} + 0.66z^{-2} + z^{-3} + 0.66z^{-4} + \ldots$$
 $$y = 0.00, 0.00, 0.33, 0.66, 1.00, \ldots$$
 $$Y = 0 + 0z^{-1} + 0.33z^{-2} + 0.66z^{-3} + z^{-4} + \ldots$$
 $$\quad = z^{-1} X$$
Z Transform

- Other properties of the Z transform:
 - Z transform of $K \ a[n] = K \ A(z)$
 - Z transform of $a[n] + b[n] = A(z) + B(z)$

- Example:

 $x = 0.00, 0.33, 0.66, 1.00, 0.66, ..$
 $X = 0 + 0.33z^{-1} + 0.66z^{-2} + z^{-3} + 0.66z^{-4} + ...$
 $y = 0.00, 0.66, 1.32, 2.00, 1.32, ..$
 $Y = 0 + 0.66z^{-1} + 1.32z^{-2} + 2.00z^{-3} + 1.32z^{-4} + ...$
 $= 2 \ X$
Apply Z transform to MA Filter

\[y[n] = \frac{1}{3} x[n] + \frac{1}{3} x[n-1] + \frac{1}{3} x[n-2] \]

In terms of the Z transform we have:

\[Y(z) = \frac{1}{3} X(z) + \frac{1}{3} z^{-1} X(z) + \frac{1}{3} z^{-2} X(z) \]
\[= (\frac{1}{3} + \frac{1}{3} z^{-1} + \frac{1}{3} z^{-2}) X(z) \]
\[= H(z) X(z) \]

\[\begin{align*}
X(z) & \rightarrow H(z) \rightarrow Y(z) \\
\end{align*} \]

- It holds \(Y(z) = H(z) X(z) \), where \(H(z) \) is filter transfer function
- Frequency response of filter can be read from \(H(z) \)
Frequency Response $H(z)$

$H(z)$ reveals frequency response ($H(f) = H(z) | z = e^{j2\pi f}$):
\[Y(z) = H(z) X(z) \]
|$H(z)$| determines \textit{amplification} of $X(z)$

The variable z is a complex variable and encodes frequency f according to
\[
 z = e^{j2\pi f} \\
 = \cos(2\pi f) + j \sin(2\pi f)
\]

This corresponds to traversing the unit circle in the complex z plane:
Fourier Interpretation $H(z)$

Why let z take values $z = e^{j2\pi f}$ where f is frequency?

Recall Z transform of $x[n]$ equals $X(z) = \sum_n x[n] z^{-n}$

The Fourier transform of $x[n]$ equals $X(f) = \sum_n x[n] e^{-j2\pi nf}$

For a filter with transfer function $H(f)$ its frequency response for a signal with frequency f is $|H(f)|$

By substituting $z = e^{j2\pi f}$ in $H(z)$ we essentially obtain the Fourier transform $H(f)$ of which we know $|H(f)|$ is the frequency response. So let $z = e^{j2\pi f}$ and evaluate $|H(z)|$!
Frequency Response MA Filter

The transfer function of the MA filter is given by:

\[
H(z) = \frac{1/3 + 1/3 \, z^{-1} + 1/3 \, z^{-2}}{1/3 \, z^2 + 1/3 \, z + 1/3} \quad \text{(normalized)}
\]

Determine poles and zeros of \(H(z) \):

zero (= root of numerator):
\[z_1 = -\frac{1}{2} + \frac{1}{2} \sqrt{3} j, \quad z_2 = -\frac{1}{2} - \frac{1}{2} \sqrt{3} j \]
\((H(z_{1,2}) = 0) \)

pole (= root of denominator):
\[z_3, \quad z_4 = 0 \]
\((H(z_{3,4}) = \infty) \)

Simply inspect distance \(z \) to poles/zeros.
Frequency Response MA Filter

Interpret $H(z)$ while traversing the unit circle (upper half only):
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Impulse Response

Impulse signal $\delta[n] = 1, 0, 0, 0, \ldots$ (a spike, Dirac pulse)

Impulse response (IR) of a filter:

MA filter: $y[n] = 1/3 \ x[n] + 1/3 \ x[n-1] + 1/3 \ x[n-2]$
Let $x[n] = \delta[n]$, then $y[n] = 1/3, 1/3, 1/3, 0, 0, 0, \ldots$

Z Transform: $X(z) = 1, Y(z) = H(z) \cdot 1 = H(z) = 1/3 + 1/3z^{-1} + 1/3z^{-2}$
Impulse signal δ reveals $H(z)$ in terms of $h[n]$
Impulse Response

MA filter: $h[n] = 1/3, 1/3, 1/3, 0, 0, 0, \ldots$

The IR is finite.

Filters defined by

$$y[n] = a_0 \cdot x[n] + a_1 \cdot x[n-1] + a_2 \cdot x[n-2] + \ldots$$

always have a finite IR and are therefore called **FIR filters** (the equation is non-recursive in y)

Although any filter can be designed, FIR filters are costly in terms of computation (often many terms needed)
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Averaging Filter

Suppose we want to extend MA filter to N terms:

\[y[n] = \frac{1}{N} x[n] + \frac{1}{N} x[n-1] + \ldots + \frac{1}{N} x[n-N-1] \]

Suppose we don’t want to implement an N-cell FIFO + 2N ops and experiment with the following “short cut”:

\[y[n] = \frac{(N-1)}{N} y[n-1] + \frac{1}{N} x[n] \]

(1st term approximates contents of FIFO after \(x[n-N-1] \) has been shifted out, 2nd term is newest sample shifted in)

Let’s analyze the frequency response of this filter
Frequency Response Filter

\[y[n] = \frac{N-1}{N} y[n-1] + \frac{1}{N} x[n] \]

\[Y(z) = \frac{N-1}{N} z^{-1} Y(z) + \frac{1}{N} X(z) \]

\[H(z) = \frac{1}{N} / \left(1 - \frac{N-1}{N} z^{-1}\right) = \frac{z}{N} / (z - (N-1)/N) \]

cf. MA filter:
Frequency Response Comparison

\[|H(z)| \]

\[\frac{f}{f_s} \]

\[0 \quad \frac{1}{6} \quad \frac{1}{4} \quad \frac{1}{3} \quad \frac{1}{2} \]
Comparison of both Filters

New filter is much more different than perhaps assumed

Pole-zero plot is quite different:
now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N),
the sooner is the cut-off (in terms of frequency f),
this generally corresponds to MA filter but this would take large FIFO!
Impulse Response

Filter equation: \(y[n] = \frac{(N-1)}{N} y[n-1] + \frac{1}{N} x[n] \)

IR (\(N = 3 \)): \(h[n] = \frac{1}{3}, \frac{2}{3^{1/3}}, \frac{2}{3^{2/3}}, \ldots, \frac{2}{3^{n/3}}, \ldots \)

The IR is infinite.

Filters defined by

\[b_0 \ y[n] + b_1 \ y[n-1] + \ldots = a_0 \ x[n] + a_1 \ x[n-1] + \ldots \]

always have an infinite IR and are therefore called IIR filters (the equation is recursive in \(y \))

Filter order determined by \# coefficients. Our case: 1\(^{st}\) order.
Designing Filters

Looking at the pole-zero plot, the IIR filter can be improved by moving zero to left: now $|H(z)|$ even becomes zero for $f = f_s/2$ so sharper cut-off.

This plot corresponds to the well-known class of **Butterworth** filters (our case: 1st-order Butterworth):

The zero is created by adding $x[n-1]$: $y[n] - (N-1)/N \ y[n-1] = 1/2N \ x[n] + 1/2N \ x[n-1]$

$H(z) = ((z+1)/2N) / (z-(N-1)/N)$
Enhancing Filters

Frequency response 1st-order Butterworth:

\[
\log_2 |H(z)| = \log_2 \left(\frac{f}{f_s} \right)
\]

- \(\log_2(1)\)
- \(\log_2(\frac{1}{2})\)
- \(\log_2(\frac{1}{4})\)

slope \(-1\) .. would like, e.g., slope \(-2\) (sharper filtering)
Second-order Butterworth

Looking at the pole-zero plot, the IIR filter can be further improved by introducing more poles & zeros. Now $|H(z)|$ has same cut-off freq f_c but sharper slope!

Computing $h[n]$ (the a_i and b_i) is difficult, so use a tool to compute coefficients, given f_s and f_c (Matlab or Web sites)

Just insert found coefficients in IIR equation

$$b_0 \ y[n] + b_1 \ y[n-1] + b_2 \ y[n-2] = a_0 \ x[n] + a_1 \ x[n-1] + a_2 \ x[n-2]$$
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Fixed-point Arithmetic

- Many microcontrollers have no floating-point unit
- Software floating-point often (too) slow
- Need to implement filters in fixed-point arithmetic

2’s-complement bit representation (e.g., 32 bits, 14 bits fraction):

\[
\begin{array}{c|c|c|c}
2^1 & 2^0 & 2^{-1} & 2^{-2} \\
\hline
3.75: & 000000000000000011 & 11000000000000000 \\
0.02: & 000000000000000000 & 00000101001001 \\
-1.5: & 000000000000000001 & 10000000000000000 \wedge -1 + 1 => 11111111111111110 & 10000000000000000
\end{array}
\]
Fixed-point Arithmetic

- Addition, subtraction as usual
- Multiplication: result must be post-processed:
 - make sure intermediate fits in variable! (e.g., 32 bits)
 - shift right by |fraction|

Example multiplication (32 bits, 14 bits fraction):

3.75: \[00000000000000001111000000000000\] times:
-1.5: \[11111111111111110100000000000000\] equals:
\[10100110000000000000000000000000\]
(value just fits in 32 bits!)
(now shift right by 14 bits and sign-extend):
\[11111111111111010011000000000000\] which is:
-5.625 \[111111111111111010 01100000000000\]
Filter Example

- Second-order Butterworth LP Filter $f_c = 10$Hz, $f_s = 1250$Hz
- Coefficients:

 \[
 a_0 = 0.0006098548 \quad a_1 = 2a_0 \quad a_2 = a_0 \\
 b_0 = 1 \quad b_1 = -1.9289423 \quad b_2 = 0.9313817
 \]

Bit representation (e.g., 32 bits, 14 bits fraction):

- $a[0]$: 000000000000000000 0000000001010 (a$_0$ << 14)
- $a[1]$: 000000000000000000 00000000010100
- $a[2]$: 000000000000000000 0000000001010
- $b[1]$: 000000000000000001 11101101110100 $^\land -1 + 1$
- $b[2]$: 000000000000000000 11101110011100
Implementation (high-cost)

```c
int mul(int c, int d) {
    int result = c * d;
    return (result >> 14);
}

void filter() {
    y0 = mul(a0,x0) + mul(a1,x1) + mul(a2,x2) -
        mul(b1,y1) - mul(b2,y2);
    x2 = x1; x1 = x0; y2 = y1; y1 = y0;
}
```
Filter Approximation Example

• Second-order Butterworth LP Filter $f_c = 10\text{Hz}$, $f_s = 1250\text{Hz}$
• Coefficients:
 $$a_0 = 0.0006098548 \times 8/10 \quad a_1 = 2 \quad a_0 \quad a_2 = a_0$$
 $$b_0 = 1 \quad b_1 = -2 \quad b_2 = 1$$

Bit representation (e.g., 32 bits, 14 bits fraction):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bits</td>
<td>000000000000000000 0000000000010000 (was 10)</td>
<td>000000000000000000 0000000000010000 (was 20)</td>
<td>000000000000000000 0000000000010000 (was 10)</td>
<td>000000000000000000 0000000000010000 (was 31604)</td>
<td>000000000000000000 0000000000010000 (was 15260)</td>
</tr>
</tbody>
</table>
Implementation (low-cost)

\[y_0 = (x_0 \ll 3) \gg 14 + (x_1 \ll 4) \gg 14 + \]
\[(x_2 \ll 3) \gg 14 + (y_1 \ll 15) \gg 14 - \]
\[(y_2 \ll 14) \gg 14; \] // assume compiler optimizes ...
\[x_2 = x_1; x_1 = x_0; y_2 = y_1; y_1 = y_0; \]

Approx too coarse
(2^{nd}-order FIR: \(a_i, b_i\) very sensitive!)
Cascade two 1st-order filters

- First-order Butterworth LP Filter $f_c = 10\text{Hz}$, $f_s = 1250\text{Hz}$
- Coefficients:
 \[a_0 = 0.0245221 \quad a_1 = a_0 \]
 \[b_0 = 1 \quad b_1 = -0.95095676 \]

Bit representation (e.g., 32 bits, 14 bits fraction):

<table>
<thead>
<tr>
<th>$a[0]$</th>
<th>$b[1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000000000000000</td>
<td>111100110111100 ^ -1 + 1</td>
</tr>
</tbody>
</table>

Approx: $a[0] = 512$ (was 402), $b[1] = 16384$ (was 15580)
Results

Approx bit better
But still bad for very low frequencies
So add more powers of two until good approx
(see matlab demo)
Scaling: tips and tricks

- One size fits all? NO!
 - number of bits depends on needed precision (sensor vs. joystick)

- special case for proportional controller: $P \times \varepsilon$
- $fp_n \times fp_n = fp_{2n}$ (overflow! requires an additional shift)
- scalar $\times fp_n = fp_n$ (overflow? no shift needed)
- $fp_m \times fp_n = fp_{m+n}$ (when P can’t be represented as a scalar)

- document precision for every data type (part of softw arch)

- fp_n to scalar
 - be patient, shift at last instant (when feeding the engines)
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Recall QR Sensor Signals ϕ, p

\[\int p \, dt \]
After 2nd-order Low-pass (10Hz)
Bias in p: Integration drift in phi

\[\int pdt \]
Problem Analysis

- Noise is still considerable
- Still little correlation between (filtered) phi and p
- More aggressive filtering -> more phase delay
- 10 Hz signals already 90 deg phase lag with 2nd-order
- In our particular case we might apply notch filter
- In general though, too many noise frequencies
- sphi: negligible drift, too high noise
- sp: low noise, drift -> prohibits integration to phi
- Kalman Filter: combine the best of both worlds!
Kalman Filter (near-hover)

Sensor Fusing: gyro and accel share same information

Integrate sp to phi

Adjust integration for sp (drift) bias b by comparing phi to sphi, averaged over long period (phi ~ constant)

Return phi, and p (= sp − bias)
Algorithm

- $p = sp - b$ // estimate real p
- $\phi = \phi + p \times P2PHI$ // predict ϕ
- $e = \phi - sphi$ // compare to measured ϕ
- $\phi = \phi - e / C1$ // correct ϕ to some extent
- $b = b + (e/P2PHI) / C2$ // adjust bias term

- $P2PHI$: depends on loop freq -> compute/measure
- $C1$ small: believe $sphi$; $C1$ large: believe sp
- $C2$ large (typically $> 1,000 C1$): slow drift
Summary

- DSP is everywhere
- This was merely introduction into the field
- Get a feel for it when applying to QR