In4073
Embedded Real-Time Systems

Introduction to Digital Filtering
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Why Signal Processing?

- Improve/restore media content
 - Compression/Decompression
 - Audio filtering (bass, treble, equalization)
 - Video filtering (enhancement, contours, ..)
 - Noise suppression (accel, gyro data)
 - Data fusion (mixing accel + gyro data)

- By digital means: DSP
Example: QR Sensor Signals ϕ, p
After some low-pass filtering
DSP is Everywhere

- Cell Phone
- TV
- Plant Control
- Climate Control
- Automotive
- Copiers, Wafer Scanners
- Model Quad Rotors ...
Objectives of this Crash Course

- Appreciate the benefits of Digital Filtering
- Understand *some* of the basic principles
- Communicate with DSP engineers
- Implement your own filters for the QR
Signals and Frequency Synthesis

Usually signals (such as s) are composed of signals with many frequencies. For instance, s contains
- 0 Hz component (green dashed line)
- lowest freq component (purple dashed line)
- higher freq component (yellow dashed line)
- and others

Fourier: Any periodic signal with base frequency f_b
can be constructed from sine waves with frequency $f_b, 2f_b, 3f_b, \ldots$
Frequency Spectrum

The frequency spectrum of s is:

possible freq components in s
Filter: Frequency Response

Often filters are designed to filter frequency components in a signal.

Filter’s Frequency Response
Sampling A Signal

A signal s sampled at \textit{discrete} time intervals (sample frequency f_s): $x[n]$
Sampling: Avoid Aliasing

- \(f_s > 2 \times \text{highest freq in s}: \text{OK} \)
- \(f_s < \text{highest freq in s}: \text{you see non-existing low-freq signal(s)!} \)
Example Filter: Moving Average

\[y[n] = \frac{1}{3} x[n] + \frac{1}{3} x[n-1] + \frac{1}{3} x[n-2] \]

\[x[0] = \text{get_sample}(); \]
\[y[0] = (x[0] + x[1] + x[2]) / 3; \]
\[\text{put_sample}(y[0]); \]
\[x[2] = x[1]; \]
\[x[1] = x[0]; \]

MA filter filters (removes) signals of certain frequency:

\[x, \text{ freq } f, \text{ amplitude } 1 \rightarrow \text{MA Filter} \rightarrow y, \text{ freq } f, \text{ amplitude } ??? \]
Frequency Behavior MA

lower frequency x: amplitude $y = 0.77$
$x = 0.00, 0.33, 0.66, 1.00, 0.66, 0.33, 0.00, -0.33, -0.66, -1.00, -0.66, -0.33, 0.00$
y = $0.00, 0.11, 0.33, 0.66, 0.77, 0.66, 0.33, 0.00, -0.33, -0.66, -0.77, -0.66, -0.33$

higher frequency x: amplitude $y = 0.33$
$x = 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00, 1.00, 0.00, -1.00, 0.00$
y = $0.00, 0.33, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33, 0.00, 0.33, 0.00, -0.33$

transient steady-state

$|y|$

$x = 0.00, 0.87, -0.87, 0.0, 0.87, -0.87, 0.00$
y = $0.00, 0.29, 0.00, 0.00, 0.00, 0.00, 0.00$
Outline

- Introduction
- **Z Transform**
- **FIR Filters**
- **IIR Filters**
- **Fixed-point Implementation**
- **Kalman Filter**
Analysis: Z Transform

- We can numerically evaluate frequency behavior (see C programs)
- Rather analyze frequency behavior through analytic means
- For this we introduce Z transformation

- Let $x[n]$ be a signal in the time domain (n)
- The Z transform of $x[n]$ is given by

$$X(z) = \sum_n x[n] z^{-n}$$

where z is a complex variable.

- Example:
 - $x = 0.00, 0.33, 0.66, 1.00, 0.66, ..$
 - $X = 0 + 0.33z^{-1} + 0.66z^{-2} + z^{-3} + 0.66z^{-4} + ...$
Z Transform

- Z transforms make life easy
- Properties of the Z transform:

 - Let \(y[n] = x[n-1] \) (i.e., signal delayed by 1 sample)
 \[
 Y(z) = z^{-1} X(z)
 \]

- Example:

 \[
 x = 0.00, 0.33, 0.66, 1.00, 0.66, ..
 \]

 \[
 X = 0 + 0.33z^{-1} + 0.66z^{-2} + z^{-3} + 0.66z^{-4} + ...
 \]

 \[
 y = 0.00, 0.00, 0.33, 0.66, 1.00, ..
 \]

 \[
 Y = 0 + 0z^{-1} + 0.33z^{-2} + 0.66z^{-3} + z^{-4} + ...
 \]

 \[
 = z^{-1} X
 \]
Z Transform

- Other properties of the Z transform:
 - Z transform of $K a[n] = K A(z)$
 - Z transform of $a[n] + b[n] = A(z) + B(z)$

- Example:

 \[
 x = 0.00, 0.33, 0.66, 1.00, 0.66, .. \]
 \[
 X = 0 + 0.33z^{-1} + 0.66z^{-2} + z^{-3} + 0.66z^{-4} + ... \]
 \[
 y = 0.00, 0.66, 1.32, 2.00, 1.32, .. \]
 \[
 Y = 0 + 0.66z^{-1} + 1.32z^{-2} + 2.00z^{-3} + 1.32z^{-4} + ... \]
 \[
 = 2 \times X \]
Apply Z transform to MA Filter

\[y[n] = \frac{1}{3} x[n] + \frac{1}{3} x[n-1] + \frac{1}{3} x[n-2] \]

In terms of the Z transform we have:

\[Y(z) = \frac{1}{3} X(z) + \frac{1}{3} z^{-1} X(z) + \frac{1}{3} z^{-2} X(z) \]
\[= (\frac{1}{3} + \frac{1}{3} z^{-1} + \frac{1}{3} z^{-2}) X(z) \]
\[= H(z) X(z) \]

- It holds \(Y(z) = H(z) X(z) \), where \(H(z) \) is filter transfer function
- Frequency response of filter can be read from \(H(z) \)
Frequency Response \(H(z) \)

\(H(z) \) reveals frequency response (\(H(f) = |H(z)| \ z = e^{j2\pi f} \)):

As \(Y(z) = H(z) X(z) \), \(|H(z)| \) determines *amplification* of \(X(z) \)

The variable \(z \) is a complex variable and encodes frequency \(f \) according to

\[
z = e^{j2\pi f} = \cos(2\pi f) + j \sin(2\pi f)
\]

This corresponds to traversing the unit circle in the complex \(z \) plane:

- \(f/f_s = 1/8 \)
- \(z = 0.7 + 0.7j \)
- \(f/f_s = 1/2 \)
- \(f/f_s = 0 \)
Fourier Interpretation $H(z)$

Why let z take values $z = e^{j2\pi f}$ where f is frequency?

Recall Z transform of $x[n]$ equals $X(z) = \sum_n x[n] z^{-n}$

The Fourier transform of $x[n]$ equals $X(f) = \sum_n x[n] e^{-j2\pi nf}$

For a filter with transfer function $H(f)$ its frequency response for a signal with frequency f is $|H(f)|$

By substituting $z = e^{j2\pi f}$ in $H(z)$ we essentially obtain the Fourier transform $H(f)$ of which we know $|H(f)|$ is the frequency response. So let $z = e^{j2\pi f}$ and evaluate $|H(z)|$!
The transfer function of the MA filter is given by:

$$H(z) = (1/3 + 1/3 z^{-1} + 1/3 z^{-2})$$
$$= (1/3 z^2 + 1/3 z + 1/3) / z^2 \quad \text{(normalized)}$$

Determine poles and zeros of $H(z)$:

zero (= root of numerator):
$$z_1 = -\frac{1}{2} + \frac{1}{2} \sqrt{3}j, \quad z_2 = -\frac{1}{2} - \frac{1}{2} \sqrt{3}j$$
($H(z_{1,2}) = 0$)

pole (= root of denominator):
$$z_3, z_4 = 0$$
($H(z_{3,4}) = \infty$)

Simply inspect distance z to poles/zeros.

$$f/f_s = 1/3 \quad \text{(H(z) = 0)}$$
Frequency Response MA Filter

Interpret $H(z)$ while traversing the unit circle (upper half only):
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Impulse Response

Impulse signal $\delta[n] = 1, 0, 0, 0, \ldots$ (a spike, Dirac pulse)

Impulse response (IR) of a filter:

$\delta[n] \rightarrow H \rightarrow y[n]$, characteristic for H

MA filter: $y[n] = \frac{1}{3} x[n] + \frac{1}{3} x[n-1] + \frac{1}{3} x[n-2]$
Let $x[n] = \delta[n]$, then $y[n] = \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0, \ldots$

Z Transform: $X(z) = 1, Y(z) = H(z) \cdot 1 = H(z) = \frac{1}{3} + \frac{1}{3}z^{-1} + \frac{1}{3}z^{-2}$
Impulse signal δ reveals $H(z)$ in terms of $h[n]$
Impulse Response

MA filter: \(h[n] = \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, 0, 0, \ldots \)

The IR is finite.

Filters defined by

\[y[n] = a_0 x[n] + a_1 x[n-1] + a_2 x[n-2] + \ldots \]

always have a finite IR and are therefore called **FIR filters** (the equation is non-recursive in \(y \))

Although any filter can be designed, FIR filters are costly in terms of computation (often many terms needed)
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Averaging Filter

Suppose we want to extend MA filter to N terms:

\[y[n] = \frac{1}{N} x[n] + \frac{1}{N} x[n-1] + \ldots + \frac{1}{N} x[n-N-1] \]

Suppose we don’t want to implement an N-cell FIFO + 2N ops and experiment with the following “short cut”:

\[y[n] = \frac{(N-1)}{N} y[n-1] + \frac{1}{N} x[n] \]

(1st term approximates contents of FIFO after \(x[n-N-1] \) has been shifted out, 2nd term is newest sample shifted in)

Let’s analyze the frequency response of this filter
Frequency Response Filter

$$y[n] = \frac{(N-1)}{N} y[n-1] + \frac{1}{N} x[n]$$

$$Y(z) = \frac{(N-1)}{N} z^{-1} Y(z) + \frac{1}{N} X(z)$$

$$H(z) = \frac{(1/N)}{1 - \frac{(N-1)}{N} z^{-1}}$$

$$= \frac{(z/N)}{(z - \frac{(N-1)}{N})}$$

cf. MA filter:
Frequency Response Comparison
Comparison of both Filters

New filter is much more different than perhaps assumed

Pole-zero plot is quite different:
now poles not zero: play an active role

Frequency response is (therefore) more low-pass than MA filter

The closer the pole is to unit circle (larger N),
the sooner is the cut-off (in terms of frequency f),
this generally corresponds to MA filter but this would take large FIFO!
Impulse Response

Filter equation: $y[n] = \frac{(N-1)}{N} y[n-1] + \frac{1}{N} x[n]$

IR $(N = 3)$: $h[n] = \frac{1}{3}, (\frac{2}{3})^{1/3}, (\frac{2}{3})^{2/3}, \ldots, (\frac{2}{3})^{n/3}, \ldots$

The IR is infinite.

Filters defined by

$b_0 y[n] + b_1 y[n-1] + \ldots = a_0 x[n] + a_1 x[n-1] + \ldots$

always have an infinite IR and are therefore called IIR filters (the equation is recursive in y)

Filter order determined by # coefficients. Our case: 1st order.
Designing Filters

Looking at the pole-zero plot, the IIR filter can be improved by moving zero to left: now $|H(z)|$ even becomes zero for $f = f_s/2$ so sharper cut-off.

This plot corresponds to the well-known class of **Butterworth** filters (our case: 1st-order Butterworth):

The zero is created by adding $x[n-1]$:

$$y[n] - (N-1)/N \, y[n-1] = 1/2N \, x[n] + 1/2N \, x[n-1]$$

$$H(z) = ((z+1)/2N) / (z-(N-1)/N)$$
Enhancing Filters

Frequency response 1st-order Butterworth:

\[\log_2 \vert H(z) \vert \]

- \(\log_2(1) \)
- \(\log_2(\frac{1}{2}) \)
- \(\log_2(\frac{1}{4}) \)

\(\frac{1}{2} f_c \) \hspace{1cm} f_c \hspace{1cm} 2 f_c \hspace{1cm} 4 f_c \)

\[\log_2 \left(\frac{f}{f_s} \right) \]

slope -1 .. would like, e.g., slope -2 (sharper filtering)
Second-order Butterworth

Looking at the pole-zero plot, the IIR filter can be further improved by introducing more poles & zeros. Now $|H(z)|$ has same cut-off freq f_c but sharper slope!

Computing $h[n]$ (the a_i and b_i) is difficult, so use a tool to compute coefficients, given f_s and f_c (Matlab or Web sites)

Just insert found coefficients in IIR equation

$$b_0 \ y[n] + b_1 \ y[n-1] + b_2 \ y[n-2] = a_0 \ x[n] + a_1 \ x[n-1] + a_2 \ x[n-2]$$
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Fixed-point Arithmetic

- Many microcontrollers have no floating-point unit
- Software floating-point often (too) slow
- Need to implement filters in fixed-point arithmetic

2’s-complement bit representation (e.g., 32 bits, 14 bits fraction):

\[
\begin{align*}
2^1 & \quad 2^0 & \quad 2^{-1} & \quad 2^{-2} \\
3.75: & \quad 000000000000000011 & \quad 1100000000000000 \\
0.02: & \quad 000000000000000000 & \quad 0000101001001 \\
-1.5: & \quad 000000000000000001 & \quad 10000000000000000000 & \quad 1111111111111110 & \quad 100000000000000 \\
\end{align*}
\]
Fixed-point Arithmetic

- Addition, subtraction as usual
- Multiplication: result must be post-processed:
 - make sure intermediate fits in variable! (e.g., 32 bits)
 - shift right by |fraction|

Example multiplication (32 bits, 14 bits fraction):

3.75: 00000000000000001111000000000000 times:
-1.5: 111111111111111101000000000000000 equals:
 101001100000000000000000000000000 (value just fits in 32 bits!)
 (now shift right by 14 bits and sign-extend):
 1111111111111101001100000000000000000000 which is:
-5.625 1111111111111110100110000000000000000000
Filter Example

- Second-order Butterworth LP Filter $f_c = 10$Hz, $f_s = 1250$Hz
- Coefficients:
 \[
 a_0 = 0.0006098548 \quad a_1 = 2 \quad a_0 \quad a_2 = a_0 \\
 b_0 = 1 \quad b_1 = -1.9289423 \quad b_2 = 0.9313817
 \]

Bit representation (e.g., 32 bits, 14 bits fraction):

- $a[0]$: 000000000000000000 00000000001010 ($a_0 << 14$)
- $a[1]$: 000000000000000000 00000000010100
- $a[2]$: 000000000000000000 00000000010100
- $b[1]$: 0000000000000000001 1110110110110100 $^+$
- $b[2]$: 000000000000000000 11101110011100
Implementation (high-cost)

```c
int mul(int c, int d) {
    int result = c * d;
    return (result >> 14);
}

void filter() {
    y0 = mul(a0, x0) + mul(a1, x1) + mul(a2, x2) -
        mul(b1, y1) - mul(b2, y2);
    x2 = x1; x1 = x0; y2 = y1; y1 = y0;
}
```
Filter Approximation Example

- Second-order Butterworth LP Filter $f_c = 10$Hz, $f_s = 1250$Hz
- Coefficients:
 \[
 a_0 = 0.0006098548 \times \frac{8}{10} \quad a_1 = 2 \quad a_0 \quad a_2 = a_0 \\
 b_0 = 1 \quad b_1 = -2 \quad b_2 = 1
 \]

Bit representation (e.g., 32 bits, 14 bits fraction):

- $a[0]$:
 \[
 000000000000000000 \quad 00000000001000 (\text{was } 10)
 \]
- $a[1]$:
 \[
 000000000000000000 \quad 00000000010000 (\text{was } 20)
 \]
- $a[2]$:
 \[
 000000000000000000 \quad 00000000010000 (\text{was } 10)
 \]
- $-b[1]$:
 \[
 000000000000000000 \quad 00000000000000 (\text{was } 31604)
 \]
- $b[2]$:
 \[
 000000000000000001 \quad 00000000000000 (\text{was } 15260)\]
Implementation (low-cost)

\[
y_0 = (x_0 \ll 3) \gg 14 + (x_1 \ll 4) \gg 14 + (x_2 \ll 3) \gg 14 + (y_1 \ll 15) \gg 14 - (y_2 \ll 14) \gg 14; // \text{assume compiler optimizes...}
\]
\[
x_2 = x_1; x_1 = x_0; y_2 = y_1; y_1 = y_0;
\]

Approx too coarse (2nd-order FIR: \(a_i, b_i\) very sensitive!)}
Cascade two 1st-order filters

- First-order Butterworth LP Filter $f_c = 10$Hz, $f_s = 1250$Hz
- Coefficients:
 \[
 a_0 = 0.0245221, \quad a_1 = a_0 \\
 b_0 = 1, \quad b_1 = -0.95095676
 \]

Bit representation (e.g., 32 bits, 14 bits fraction):

\[
\begin{align*}
 a[0] & : \quad 000000000000000000 \quad 00000110010010 \quad (a_0 \ll 14) \\
 a[1] & : \quad 000000000000000000 \quad 00000110010010 \\
 b[1] & : \quad 000000000000000000 \quad 11110011011100 \quad ^{-1} + 1
\end{align*}
\]

Approx: $a[0] = 512$ (was 402), $b[1] = 16384$ (was 15580)
Results

Approx bit better
But still bad for very low frequencies
So add more powers of two until good approx (see matlab demo)
Scaling: tips and tricks

• One size fits all? NO!
 • number of bits depends on needed precision (sensor vs. joystick)

• special case for proportional controller: $P \times \varepsilon$
• $f_{p_n} \times f_{p_n} = f_{p_{2n}}$ (overflow! requires an additional shift)
• scalar $\times f_{p_n} = f_{p_n}$ (overflow? no shift needed)
• $f_{p_m} \times f_{p_n} = f_{p_{m+n}}$ (when P can’t be represented as a scalar)

• document precision for every data type (part of softw arch)

• f_{p_n} to scalar
 • be patient, shift at last instant (when feeding the engines)
Outline

- Introduction
- Z Transform
- FIR Filters
- IIR Filters
- Fixed-point Implementation
- Kalman Filter
Recall QR Sensor Signals \(\phi, p \)
After 2nd-order Low-pass (10Hz)
Bias in p: Integration drift in phi

\[\int p \, dt \]
Problem Analysis

- Noise is still considerable
- Still little correlation between (filtered) phi and p
- More aggressive filtering -> more phase delay
- 10 Hz signals already \(90\) deg phase lag with \(2^{nd}\)-order
- In our particular case we might apply \textit{notch filter}
- In general though, too many noise frequencies
- \texttt{sphi}: negligible drift, too high noise
- \texttt{sp}: low noise, drift -> prohibits integration to phi

- Kalman Filter: combine the best of both worlds!
Kalman Filter (near-hover)

Sensor Fusing: gyro and accel share same information

Integrate sp to phi

Adjust integration for sp (drift) bias b by comparing phi to sphi, averaged over *long* period (phi ~ constant)

Return phi, and $p (= sp - bias)$
Algorithm

\[p = sp - b \] // estimate real \(p \)
\[\phi = \phi + p \times P2PHI \] // predict \(\phi \)
\[e = \phi - sphi \] // compare to measured \(\phi \)
\[\phi = \phi - e / C1 \] // correct \(\phi \) to some extent
\[b = b + e / C2 \] // adjust bias term

- \(P2PHI \): depends on loop freq -> compute/measure
- \(C1 \) small: believe \(sphi \); \(C1 \) large: believe \(sp \)
- \(C2 \) large (typically > 1,000 \(C1 \)): slow drift
Within cascaded P control

\[\text{Rate controller} \]

\[\text{Kalman Filter} \]
Summary

- DSP is everywhere
- This was merely introduction into the field
- Get a feel for it when applying to QR