Software Technologies for Embedded Systems: An Industry Inventory

Marco Lormans, Bas Graaf, Hans Toetenel
11-12-2002
M.Lormans@its.tudelft.nl
Introduction

> TU Delft
 - Master 1996-2002
 - Ph.D 2002-...

> MOOSE (ITEA project 2002-2004)
 - Requirements Engineering
 - Architecture
 - Software Process Improvement
Goal

- Find opportunities for future research in embedded software development
 - Impression of current state in industry
 - Criteria for using or not using technology
Cooperating Companies

Nokia
Connecting People

CMG
when it really matters

solid.

TEAM ARTECHE

VIT

Philips

OCÉ

ASML
Approach

- Interview Outline
 - BOOTSTRAP/ PROFES process model
 - Focused on development of embedded systems

- Interviews
 - Different company
 - Different roles
 - Different products
General Results (Requirements)

- Requirements Elicitation
 - Interviews, Meetings, Prototyping

- Requirements Specification
 - (Structural) Natural Language, Use Cases
 - MS Word, Templates, Pre-/Post Conditions (e.g. interface specifications)

- Requirements Analysis
 - Meetings, Reviews, Checklists

- Requirements Management
 - Manually, MS Excel Sheets, Rational RequisitePro, Telelogic DOORS
General Results (Architecture)

- Architecture Specification
 - Natural language, UML, free form sketches
 - MS Visio, Rational Rose

- Architecture Analysis
 - Meetings, Reviews
 - Sometimes more structured MTT
General Results (SPI)

- Tailored SPI method, CMM(I), ISO, SPICE
- Process (quality) manuals written in natural language
 - Process
 - Procedure
 - Guidelines
 - Templates
 - Checklists
- Process toolkits in HTML on intranet
General Results (rest)

- Reuse mostly done ad-hoc
- Basic metrics used
 - Project Management (lead time, effort)
 - Implementation (lines of code)
- Configuration Management
- Testing and Integration
- C, C and more C
- Sometimes Assembler, C++ or Java
- Editors and Compilers
Industry is conservative

- No fancy tools used
- Proven technology
- Mostly general tools used
- Pragmatic approaches
Available

- OO-languages: C++, Java, ADA, etc...
- UML, UML-RT, HOOD
- Code Generation
- Model Based Simulation
- RUP, XP
- Specification Languages (Z, OCL, VDM)
- Integrated Development Environments (IBM VisualAge, Telelogic Tau, Rational Rose)
- Advanced Requirement Management Tools
Paradox?

> Industry develops high-tech products with 'low-tech' development technologies!
> The high-tech embedded systems produced are getting more and more complex
> Many 'high-tech' development technologies available
> Why not use them?
Reasons of not using (1)

- No need
- Legacy
- Maturity
- Availability of supporting tools
- Skills
- Complexity
Reasons for not using (2)

- Time-pressure
- Benefits not clear
- Risk
- Deployment to costly
- Sentiment
Conclusions

> Large variation of MTT
> Common SW engineering MTT
> Large gap between what’s available and used
> Only small changes possible in practice
http://www.mooseproject.org/

M.Lorman@its.tudelft.nl
http://sepc.twi.tudelft.nl/~lormans/