
A. van Deursen

Domain-Specific Languages
versus Object-Oriented Frameworks:
A Financial Engineering Case Study

Abstract The use of adomain-specific languagecan help to develop readable and maintainable ap-
plications in that domain with little effort. Alternatively, the same aims can be achieved by setting up
an object-oriented framework. For the domain offinancial engineering, independently both an object-
oriented framework and a domain-specific language have been developed. We use this opportunity to
contrast these two, to highlight the differences and to discuss opportunities for mutual benefits.

1 Introduction

“If a particular kind of problem occurs often enough, then it might be worthwhile to express
instances of the problem as sentences in a simple language” [GHJV94, p. 243]. This idea
of introducing adomain-specific language(DSL) has been used by many software developers,
resulting in languages such as Lex, Yacc, PostScript,AWK, SQL, etc. The benefits of using a DSL
include improved readability, maintainability, flexibility, and portability of software [KMB+96,
NJ97].

Alternatively, anobject-oriented frameworkcan be developed to support the construction of
families of related programs [JF88, Joh97]. A framework is a set of cooperating (abstract) classes
for a given domain a software engineer can use to develop an application in that domain.

Frameworks and DSLs have much in common. In fact, some frameworks are shipped together
with a DSL to access the functionality available in the DSL [Joh97]. In this paper, we will try to
highlight the differences between the two approaches, in order to arrive at criteria for deciding
whether to develop a DSL or a framework and at ways in which DSL and framework development
can benefit from each other.

To achieve this, we study a single application domain —financial engineering— for which
both an object-oriented framework (the ET++ SwapsManager [EG92, BE93]) and a domain-
specific language (Risla [AD92, ADR95, BDK+96, DK97]) have been developed.

Related Work Network protocol software is another area where both a DSL (theMorpheus
language [AP93]) and a framework (Conduits+ [HJE95]) have been developed. [HJE95] in-
cludes a short comparison, in which it is concluded that “although the framework is unlikely
to achieve the same execution efficiency as a special-purpose programming language, it offers
similar, but more easily extensible, composition facilities.”



2 The Financial Engineering Domain

Financial engineering deals with financialinstruments, also calledinterest rate products. The
aim of these products is to facilitate financial transactions as taking place, e.g., in inter-bank
trade or company take-overs. The products can be used to provide protection against interest rate
or currency exchange rate fluctuations.

The simplest interest rate product is the loan: a fixed amount in a certain currency is borrowed
for a fixed period at a given interest rate. More complicated products, such as thefinancial future,
the forward rate agreement, or thecapped floater[Cog95, Chapter 12], all aim atrisk realloca-
tion. Banks can invent new ways to do this, giving rise to more and more interest rate products.
Not surprisingly, different interest rate products have much in common, making financial en-
gineering an area suitable for incorporating domain-specific knowledge in tools, languages, or
libraries.

The flexibility of the interest rate product market complicates the task of the software engi-
neer. Software systems dealing with interest rate products include the bank’s financial adminis-
tration (who is buying what), and — more importantly — the management information system
allowing decision makers to assess risks involved in the products currently processed. Typical
problems found in such systems are that it is too difficult (1) to introduce a new type of product
quickly, even if it is very similar to existing ones, and (2) to ensure that the instructions given
by the financial engineer are correctly implemented by the software engineer. The first prob-
lem leads to a long time-to-market for new products; the second leads to potentially incorrect
behavior.

3 The Risla Language

Dutch bank MeesPierson, together with software house CAP Gemini saw the use of a specific
language for describing interest rate products as the solution to the problems of long time-to-
market and potentially inaccurate implementations. The language was to be readable for financial
engineers, and descriptions in this language were to be compiled into COBOL. In this section
we summarize earlier (and more detailed) accounts given by [ADR95, BDK+96, DK97] of the
development and use of this language.

3.1 Language Development

The development of this language, called RISLA (for Rente Informatie Systeem Language —
Interest rate information system language), started in 1992, and can be summarized as follows:

� MeesPierson had a very good library of COBOL routines for operating on cash flows,
intervals, interest payment schemes, date manipulations, etc.;

� Using this library directly in COBOL did not provide the right level of abstraction, and
cumbersome encoding tricks were needed to use, e.g., lists without a fixed length;



� An interest rate product can be considered as a “class”: it contains instance variables to
be assigned at creation time (the principal amount, the interest rate, the currency, etc.),
information methods for inspecting actual products (when is interest to be paid), and reg-
istration methods for recording state changes (pay one redemption).

The language RISLA was designed to describe interest rate products along these lines. An
instantiated product is called acontract, fixing the actual amount, rate, etc. of a particular product
sold. The language is based on a number of built-in data types for representing cash flows, dates,
rates, intervals, balances, ..., and has a large number of built-in operations manipulating these
data types (the operations correspond to the subroutines in the COBOL library). A product
definition specifies the contract parameters, information methods, and registration methods.

RISLA is translated into COBOL. Other systems in the bank can invoke the generated COBOL
to create new contracts, to ask information about existing contracts, or to update contract infor-
mation. The initial version of RISLA was used to define about 30 interest rate products.

After a few years of working with RISLA, the users experienced the modularization features
of RISLA as inadequate. A RISLA description defines a complete product; but different products
are constructed from similarcomponents. To remedy this situation, a projectModular RISLA

was started. RISLA was extended with a small modular layer, featuring parameterization and
renaming. Moreover, acomponent librarywas developed, and the most important products were
described using this library.

In addition to that, the RISLA development team made an effort to make the language more
accessible to the financial experts. To that end, an inter-activequestionnaireinterface to the com-
ponent library was developed. End-users can combine existing components into a new product
by filling in the answers of a questionnaire. The answers are used to select the relevant RISLA

components. This definition may contain some holes that are specific to this product, which can
be filled by writing the appropriate RISLA code. The modular definition is then expanded to a
flat (non-modular) definition, which in turn is compiled into COBOL.

As a last point of interest, the actual questionnaire used is defined using a second domain-
specific language: RISQUEST. This is a language for defining questions together with permitted
answers (choice from a fixed set, free text). Moreover, RISQUEST has constructs for indicating
in which order questions are to be asked, and how this sequencing may depend on the actual
answers given. Last but not least, RISQUEST can be used to associate library components with
the possible answers. A RISQUESTdefinition is entered in textual form, and it is generated into a
Tcl/Tk program. This program can be invoked by a financial engineer to fill in the questionnaire
and to generate the corresponding modular RISLA.

3.2 Assessment

The RISLA project has met its targets: the time it costs to introduce a new product is down from
an estimated three months to two or three weeks. Moreover, financial engineers themselves can
use the questionnaire to compose new products. Furthermore, it has become much easier to
validate the correctness of the software realization of the interest rate products. In addition to



that, the component library appears to be useful for other product families, such as insurances or
options.

After more than five years after its introduction, the RISLA language is still used actively.
RISLA has survived several mergers during its lifetime (at which moment there was a choice
between the interest rate systems running at the two merged banks). RISLA could be easily
connected to the systems of the new partner by extending the product descriptions with some
methods providing the new reports required required by the new systems.

At the negative side, it is not so easy to extend the language. When a new data type or a new
built-in function is required, the compiler, as well as the COBOL library, needs to be adapted.
This requires skills in compiler construction technology, which is not the typical background of
people working mainly in a COBOL environment. Also, the RISLA product definitions have
become longer and longer. Whenever there was a new software system requiring information
about products that was not provided in the existing methods, new methods had to be added,
sometimes requiring new data types or extensions to the RISLA language.

4 The ET++ SwapsManager

The ET++ SwapsManager is a tool for the valuation of Swaps developed at the Union Bank of
Switzerland [EG92, BE93]. The challenges addressed are very similar to those of the RISLA

project, and include (1) short life cycles (low time-to-market); (2) providing management with
accurate “what-if” analyses; (3) taking advantages of similarities between different applications;
(4) use of intuitive human/computer interfaces [EG92].

ET++ SwapsManager was a pilot study aimed at showing how various advanced technologies
could be useful for building banking applications. Technology to be evaluated included modern
user interfaces, object orientation, domain-specific frameworks, and design patterns. This is
unlike the RISLA project, the primary purpose of which was to develop a production environment
for dealing with interest rate products.

The key abstractions of the ET++ SwapsManager are the financial instrument (the interest
rate product), and thediscount function, which is a way of computing instrument’s current value
at the financial markets. The instrument is characterized by its cash flows, as in RISLA. The
“discount function manager” is used to position a contract in a mix of well-known products with
similar cash flows.

The SwapsManager takes advantage of the so-calledstrategy pattern[GHJV94] to abstract
from different ways to compute, for instance, the number of days in a year or the current market
rate. In RISLA, these strategies are encoded as enumeration types, with values such as “LIBOR”
(London Interbank Offered Rate) or “LIBID” (—Bid Rate).

5 Evaluation

Expressiveness A DSL provides a natural way to express the non-technical essence of a par-
ticular domain, increasing readability and portability. On the other hand, using a full general-



purpose language as in a framework provides more flexibility in adapting it to specific needs.

Legacy Libraries RISLA is an example of a DSL that was used to access a given existing
library. This library was functionally entirely adequate, but written in a legacy language. A DSL
can be used to provide access to such legacy libraries. In principle, wrapping could be used
to achieve the same effect using an object-oriented language, thus basing a framework on an
existing legacy library.

The calling framework A framework often is an active entity: It does not get called (as a
library), but it calls functions provided by the application developer. The same situation is easily
obtained in a DSL setting: A RISLA product description defines functions for computing cash
flows, which are called by other systems running at the bank. The fact that COBOL is generated
from RISLA makes it easy for legacy systems to connect to information defined in RISLA.

Overriding Default Behavior So-calledwhite-boxframeworks allow the application devel-
oper to override default behavior using inheritance. Although this could be encoded in a DSL as
well, this does not seem as natural as in a framework setting.

Language Technology Interactive DSL development requires tools supporting the rapid pro-
totyping of scanners, parsers, type checkers, interpreters, compilers, etc. A discussion of tech-
niques supporting this is given in [DHK96].

Mutual Benefits When developing a DSL from scratch (rather than developing it to access
legacy systems), with freedom of choice for the target language, it is most natural to base the DSL
implementation on a domain-specific object-oriented framework. When developing a domain-
specific framework, extending it with a DSL to access its functionality has a number of advan-
tages:

� It is a guide to the design of the framework. If there is no way to express a certain class or
method as a language construct, it is likely that this class or method does not correspond
to a natural concept of the domain.

� It encourages the development ofblack-boxframeworks (based on composition) rather
thanwhite-boxframeworks (based on inheritance).

� It gives more abstract access to the framework, hiding (encapsulating) what language is
used to implement the framework.

References
[AD92] B.R.T. Arnold and A. van Deursen. Algebraic specification of a language defining interest rate products.

CWI, Amsterdam; ORFIS International, Huis ter Heide, 1992.



[ADR95] B. R. T. Arnold, A. van Deursen, and M. Res. An algebraic specification of a language for describ-
ing financial products. In M. Wirsing, editor,ICSE-17 Workshop on Formal Methods Application in
Software Engineering, pages 6–13. IEEE, April 1995.

[AP93] M. B. Abbot and L. L. Peterson. A language-based approach to protocol implementation.IEEE/ACM
Transactions on Networking, 1(1), 1993.

[BDK+96] M. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E. van der Meulen. Industrial applications
of ASF+SDF. In M. Wirsing and M. Nivat, editors,Algebraic Methodology and Software Technology
(AMAST ’96), volume 1101 ofLecture Notes in Computer Science, pages 9–18. Springer-Verlag, 1996.

[BE93] A. Birrer and T. Eggenschwiler. Frameworks in the financial engineering domain: An experience
report. In O. Nierstrasz, editor,Proceedings ECOOP’93, volume 707 ofLNCS, pages 21–35. Springer-
Verlag, 1993.

[Cog95] Ph. Coggan.The Money Machine: How the City Works. Pinguin, 1995. Third edition.

[DHK96] A. van Deursen, J. Heering, and P. Klint, editors.Language Prototyping: An Algebraic Specification
Approach, volume 5 ofAMAST Series in Computing. World Scientific Publishing Co., 1996.

[DK97] A. van Deursen and P. Klint. Little languages: Little maintenance? InProceedings of the first ACM
SIGPLAN Workshop on Domain-Specific Languages[Kam97], pages 109–127.

[EG92] Th. Eggenschwiler and E. Gamma. ET++ SwapsManager: Using object technology in the financial
engineering domain. InOOPSLA’92, pages 166–177. ACM, 1992. SIGPLAN Notices 27(10).

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[HJE95] H. Hüni, R. Johnson, and R. Engel. A framework for network software. InOOPSLA’95, pages 358–
369. ACM, 1995. ACM SIGPLAN Notices 30(10).

[JF88] R. E. Johnson and B. Foote. Designing reusable classes.Journal of Object-Oriented Programming,
1(2):22–35, 1988.

[Joh97] R. E. Johnson. Components, frameworks, patterns. In M. Harandi, editor,Proc. of the Symposium on
Software Reusability SSR97, pages 10–17, 1997. ACM SIGSOFT Software Engineering Notes 22(3).

[Kam97] S. Kamin (editor). Proceedings of the first ACM SIGPLAN workshop on Domain-Specific Languages.
Computer science report, University of Illinois, 1997.

[KMB+96] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis, D. P. Oliva, T. Sheard, I. Smith,
and L. Walton. A software engineering experiment in software component generation. InProceedings
of the 18th International Conference on Software Engineering ICSE-18, pages 542–553. IEEE, 1996.

[NJ97] L. Nakatani and M. Jones. Jargons and infocentrism. InProceedings of the first ACM SIGPLAN
Workshop on Domain-Specific Languages[Kam97], pages 59–74.

Author’s Address
Dr. van Deursen, A.
CWI, P.O. Box 94079
1090 GB Amsterdam
The Netherlands
Tel.: +31 20 592 4075
Fax.: +31 20 592 4199
Email: arie@cwi.nl
URL: http://www.cwi.nl/˜arie/


