
Model-Driven Consistency Checking of Behavioural Specifications

Bas Graaf
Delft University of Technology

The Netherlands
b.s.graaf@tudelft.nl

Arie van Deursen
Delft University of Technology and CWI

The Netherlands
arie.vandeursen@tudelft.nl

Abstract
For the development of software intensive systems dif-
ferent types of behavioural specifications are used. Al-
though such specifications should be consistent with re-
spect to each other, this is not always the case in prac-
tice. Maintainability problems are the result. In this
paper we propose a technique for assessing the consis-
tency of two types behavioural specifications: scenar-
ios and state machines. The technique is based on the
generation of state machines from scenarios. We specify
the required mapping using model transformations. The
use of technologies related to the Model Driven Architec-
ture enables easy integration with widely adopted (UML)
tools. We applied our technique to assess the consistency
of the behavioural specifications for the embedded soft-
ware of copiers developed by Océ. Finally, we evaluate
the approach and discuss its generalisability and wider
applicability.

1. Introduction

System understanding is a prerequisite for modify-
ing a software intensive system [1]. As such the (typ-
ical) absence of up-to-date design documentation ham-
pers successful software maintenance and evolution. In
this paper we address this problem for the documenta-
tion of a system’s behaviour. We focus on ensuring the
consistency of two types of behavioural specifications:
interaction-based and state-based behavioural models.
The use of such specifications is illustrated by the de-
velopment process depicted in Figure 1. It is based on
the well-known V-model [2] and the starting point of our
research.

On the left branch of the ‘V’ analysis activities take
place. Based on Requirements, the high-level Architecture
is defined. This architecture identifies the main compo-
nents of the system and assigns responsibilities. In par-
allel requirements are made more concrete by Use cases

Requirements

Use cases

Architecture

Scenarios

State machines

Components

Integrator

Architect

Problems

Maintenance

Mistakes

Shortcuts

Inconsistencies

Stakeholders
Product

Tools/Developers

Developers

Figure 1. Typical development process

that specify typical interactions a user may have with the
system. One distinctive property of use cases is that the
system is considered to be a black box [3]. These use
cases are the first interaction-based behavioural models.

Based on the use cases a set of Scenarios is defined
that specifies the interactions of the system’s compo-
nents in terms of exchanged messages. Typically, ev-
ery use case results in one (normal behaviour) or more
(including exceptional behaviour) scenarios. These sce-
narios are also interaction-based behavioural models, but
now the system is considered to be a white-box; they
show the interactions between the components defined
by the architecture.

Eventually, the architecture’s components need to
be implemented. This requires a complete behavioural
specification. Scenarios are, however, not intended to
provide such a specification for an individual compo-
nent. Not only is the specification of a component’s be-
haviour scattered across multiple scenarios, they also are
usually only defined for the components’ most typical
and important behaviours. Therefore, a complete state-
based behavioural model, a State machine, is created for
each component based on the set of scenarios. This state

machine is used to implement or generate the compo-
nent. Finally, on the right-hand side of the ‘V’, the dif-
ferent components are integrated into a complete prod-
uct.

Such a software development process, where state-
based component design is based on the specification of
a set of use cases, is advocated by many component-
based, object-oriented, and real-time software develop-
ment methods [4–7]. As such, many software devel-
opment organisations deploy similar development pro-
cesses.

As software evolves it is often the case that changes
are made to ‘downstream’ software development arte-
facts without propagating the changes to the correspond-
ing ‘upstream’ software development artefacts. This can
be the result of change requests, but also of design flaws
that are only discovered on a more detailed level. Even
more inconsistencies are simply introduced by misinter-
pretations of ‘upstream’ development artefacts.

In this paper we focus on inconsistencies be-
tween interaction-based behavioural models and state-
based behavioural models. Inconsistencies between
these models can be particularly important because
they decompose behaviour along different dimensions.
Interaction-based models are decomposed according to
the different use cases, that is, they are requirements-
driven. State-based models, on the other hand, are de-
composed according to the different components that
were identified during architecture design, that is, they
are architecture-driven. This makes it hard to discover
inconsistencies [8, 9]. Furthermore, when different de-
velopment groups are responsible for the development of
the different architectural components, and these groups
individually resolve inconsistencies in different ways,
this may obviously lead to problems during integration
and maintenance.

In industrial practice behavioural models are often
specified as UML models. Moreover, tools are available
that, based on UML, are capable of generating source
code from such models. Considering such a model-
based infrastructure, we believe it makes sense to view
consistency checking of behavioural specifications as a
model transformation problem. In this paper we inves-
tigate what the advantages and disadvantages are of us-
ing model transformation technology to discover incon-
sistencies between interaction-based and state-based be-
havioural models. Furthermore, we aim to minimise the
impact of our approach on existing development pro-
cesses, for instance, in terms of the languages and tools
used.

In Section 2 we introduce the industrial case that
motivated this paper: an embedded software control
component developed by Océ, a large copier manufac-

turer. At Océ an important copier subsystem is devel-
oped using a process corresponding to Figure 1. More-
over, the components for this subsystem are generated
from state machine models. As such, debugging, for in-
stance, is performed on the level of state machines. As
a result inconsistencies between scenarios and state ma-
chines become even more likely, making it a concern for
Océ. Other work on the relation between scenarios and
state machines is discussed in Section 3. The enabling
technologies for our approach, as well as, the relevant
part of the underlying UML specification, and our pro-
cess for consistency checking are discussed in Section 4.
In Section 5 we customise an existing mapping between
scenarios and state machines based on Whittle and Schu-
mann [10] for specification as model transformations and
consistency checking.

Using our approach we identified several inconsis-
tencies in the behavioural specifications of an industrial
system that could lead to integration and maintenance
problems. These are discussed in Section 7. Finally, we
reflect on our approach in Section 8 and conclude with
an overview of the contributions of this paper and oppor-
tunities for future work in Section 9.

2. Running Example

Our original motivation for investigating the consis-
tency between interaction- and state-based behavioural
models comes from a product-line architecture for em-
bedded software in copiers developed by Océ. We use
this architecture as our running example and case study,
and for that reason briefly explain it first.

At Océ a reference architecture for copier engines
is developed. In a copier both the scanning and printing
subsystems are referred to as an engine. The reference
architecture describes an abstract engine that can be in-
stantiated for (potentially) any Océ copier.

As a running example we use one of the reference
architecture’s components: the Engine Status Manager
(ESM). This component is responsible for handling sta-
tus requests and status updates in the engine. ESM and
the other main components of the reference architecture
are depicted in Figure 2.

In a copier engine ESM communicates with two
types of components: status control Clients, and Functions.
Clients request engine state transitions. Requests by the
external status control client (Controller) are translated by
the EAI (Engine Adapter Interface) component. To per-
form status requests of Clients, ESM controls the status of
individual Function components. Functions, in turn, recur-
sively control the status of their composing Functions.

For the development of ESM and other engine com-
ponents a process is used similar to the process outlined

Figure 2. Architecture for copier engines

in Section 1. For this Océ relies on a model-driven ap-
proach based on UML [11]. Architects specify use case
realisations using UML sequence diagrams. Based on
these sequence diagrams, for every component a UML
statechart diagram is created. Using special tooling1,
the source code for the engine components (e.g., ESM)
is largely generated based on those statechart diagrams.
For Océ’s developers these statechart diagrams actually
are the implementation.

One of the reasons for introducing a (automated)
model-driven development approach was to overcome
consistency problems with respect to state machine mod-
els and source code [11]. By automatically generating
source code from state machines this problem is effec-
tively moved ‘upwards’ to the consistency between sce-
narios and state machines.

For ESM, each use case addresses a specific engine
state transition. A use case is accompanied by a UML
sequence diagram. As an example, consider the dia-
gram in Figure 6(a). It depicts the interaction that oc-
curs when a copier engine is requested to go to standby,
while it is running. At Océ these sequence diagrams
are purely used for communication purposes, rather than
input for automatic processing (e.g., model transforma-
tions, or code generation). Because of this, they are not
always complete and precise. Furthermore, proprietary
(non-UML) constructs are used. As an example, in these
sequence diagrams the lifeline of the ESM component is
decorated with the name of its (high-level) state at that
point of the interaction.

To ensure successful evolution and maintenance of
the reference architecture and the components it defines,
a means to assess the consistency of the involved be-
havioural specifications is essential. It is this challenge
we address in this paper.

1IBM Rational Rose RealTime - http://www.ibm.com/
software/awdtools/developer/technical/

3. Related Work

Several formal approaches have been proposed that
address problems similar to ours. Lam and Padget [12]
translate UML statecharts into π-calculus to determine
behavioural equivalence using bisimulation. Schäfer
et al. [13] presents a tool that uses model checking to ver-
ify state machines against collaboration diagrams. The
use of such tools and approaches requires complete,
precise and integrated interaction- and state-based be-
havioural models. This implies, for instance, that send-
ing and reception of messages in scenarios are explic-
itly linked to events and effects in state machines. In
our case, for the sequence diagrams, this is problematic.
They are created early in the development process and
not intended to be complete or precise.

To take this into account, we generate a state ma-
chine from a set of input scenarios, that, subsequently,
is compared to the state machine that was created by the
developers.

Many approaches have been defined for synthesis of
state-based models from scenario-based models. Amyot
and Eberlein [8], and Liang et al. [14] both evaluate over
twenty of them. Evaluation criteria include languages,
means to define scenario relationships and state model
type. Our industrial case gives us the requirements with
respect to these criteria for a synthesis approach.

Instead of using a more powerful scenario language
such as live sequence charts [15], we limit ourselves to
UML sequence diagrams augmented with decorations,
as dictated by our industrial case study. The decora-
tions with state information can be interpreted as condi-
tions from which inter-scenario relationships can be de-
rived. Finally, with respect to state model type, we con-
sider approaches that result in state models for individual
components (instead of global state models). Consider-
ing Liang et al. [14] one approach best meets these re-
quirements [10].

Whittle and Schumann [10] present an algorithm to
map UML sequence diagrams to UML statecharts. In this
mapping the messages in a scenario are first annotated
with pre- and postconditions on state variables, referred
to as a domain theory. The mapping is based on the as-
sumption that a message only affects a state variable if
its pre- or postcondition explicitly specifies it does; the
domain theory does not need to be complete. Thus, this
so-called frame axiom , together with the pre- and post-
conditions, results in a pair of state vectors for each mes-
sage (before and after). For every scenario it is checked
whether it (the message ordering) is consistent with the
domain theory. If not, either one can be reconsidered.
Then, for each scenario a ‘flat’ state machine is gener-
ated for every component. Messages towards a compo-

nent result in an event that triggers a transition; messages
directed away from a component result in an action that
is executed upon a transition. Loops are identified by de-
tecting states that have unifiable state vectors. Two states
vectors are unifiable if they do not specify different val-
ues for the same state variable. Subsequently, the ‘flat’
state machines generated for a component from differ-
ent scenarios are merged by merging similar states. Two
state are similar if their state vector is identical and they
have at least one incoming transition with the same label.
Hierarchy is added to the resulting statecharts by a user
provided partitioning and (partial) ordering of the state
variables.

Most work in this area focusses on the synthesis al-
gorithm, whereas the integration in industrial practice re-
mains implicit. In fact, many of the approaches are not
supported by a tool or validated in industrial practice.
Their application in practice only becomes realistic when
they integrate with existing tools and standards used in
industry. Therefore, we focus in this paper on UML se-
quence diagrams as a notation for scenarios, and UML
state machines.

4. Model-Driven Consistency Checking

In this section we outline our approach for consis-
tency checking of behavioural specifications, but, first,
we introduce the technologies that enable our model-
driven approach and the underlying structure of the in-
volved behavioural models.

4.1. Enabling Technologies

Our approach takes advantage of the standards that
are widely used in industry, such as UML and XMI (XML
Metadata Interchange), enabling easy integration with
the tools used in industrial practice. XMI provides a
means to serialise UML models to be manipulated, for
instance, using XSLT (Extensible Stylesheet Language
Transformations). However, the XMI format is very ver-
bose, making it a tedious and error prone task to develop
such transformations [16].

OMG’s Model Driven Architecture (MDA) offers,
among others, a solution to this problem. MDA is OMG’s
incarnation of model-driven engineering (MDE). With
MDE, software development largely consists of a series
of model transformations mapping a source to a target
model. Essential to MDE are models, their associated
metamodels, and model transformations. In the case of
MDA, metamodels are defined using the MetaObject Fa-
cility (MOF). The UML metamodel is only one example
of such metamodels. Finally, model transformation lan-
guages are used to define transformations.

We used the Atlas Transformation Language
(ATL) [17] to specify and implement the mapping be-
tween scenarios and state machines. ATL is used to de-
velop model transformations that are executed by a trans-
formation engine. In ATL, transformations are defined
in transformation modules that consist of transformation
rules and helper operations. The transformation rules
match model elements in a source model and create ele-
ments in a target model. To this end the rules define con-
straints on metamodel elements in a syntax similar to that
of the Object Constraint Language (OCL). A helper is
defined in the context of a metamodel element, to which
it effectively adds a feature. Helpers can be used in rules,
and optionally take parameters.

The ATL transformation engine can be used with
XMI serialisations of models and metamodels defined
using the MOF. For the sequence diagrams and state ma-
chines in this paper we used the MOF-UML metamodel
available from the OMG [18]. To create the associated
models, we use a UML modelling tool supporting XMI
export.

Once the source model and metamodel, target meta-
model, and transformation module are defined and lo-
cated, the ATL transformation engine generates the tar-
get model in its serialised form, which, in turn, can be
imported in a UML modelling tool for visualisation, or
serve as source model for another model transformation.

4.2. Behavioural Modelling

For the creation of interaction-based and state-based
behavioural models we use UML sequence and statechart
diagrams. The underlying structure of these diagrams
is described by the Collaborations and State Machines
subpackages of the UML metamodel. Because our trans-
formation rules are defined on the metamodel level, we
introduce them briefly. Although we discuss only sim-
plified versions of these packages, the implementation of
our technique and our case study are based on the com-
plete UML metamodel (version 1.4 [18]).

In general the UML specification [18] allows every
model element to be associated with a set of constraints.
We use this to add pre- and postcondition to Messages
and state invariants to states. To distinguish between
preconditions, postconditions, and other constraints that
might be used in the model we use stereotypes.

Source: Collaborations The Collaboration package
and some other UML elements are depicted in Figure 3.
In the context of a Collaboration the communication pat-
terns performed by Objects are represented by a set of
Messages that is partially ordered by the predecessor re-
lation. For each message sender and receiver Objects are

Collaboration

ObjectMessage

CallAction

−actualArgument:in t

Class

+ isActive:Boolean

*

dispatchAction+
classifier+

predecessor

*

sender+

receiver+

ownedElement+
**

Operation

Attribute

operations+ *

operation+

type+

attributes+*

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 3. Collaborations (simplified)

StateMachine

−context:Class

State

CompositeState SimpleState

StateVertex

Pseudostate

+ kind:PseudostateKind

Transition

outgoing+

*source+

incoming+

*target+

CallAction

+ script:ActionExpression

effect+0..1

CallEvent

*

trigger+0..1

container+

0..1

subvertex+
*

0..1

top+

0..1

transitions+
*

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 4. State machines

specified. As such, a Collaboration can be seen as the spec-
ification of one or more scenarios. The cause of a Mes-
sage is a CallAction (dispatchAction) that is associated with
an Operation. In turn, this Operation is part of the Class
that is the classifier of the Object that receives the Message.
Finally, a Class optionally contains Attributes that have a
type.

Target: State Machines Using the (target) metamodel
in Figure 4, UML state machines can be constructed that
model behaviour as a traversal of a graph of state nodes
interconnected by transition arcs.

A state node, or StateVertex, is the target or source of
any number of Transitions and can be of different types.
A State represents a situation in which some invariants
(over state variables) hold. The metamodel defines the
following types of States. A CompositeState contains
(owns) a number of sub-states (subvertex). A SimpleState
is a State without any sub-states.

Next to state nodes that describe a distinct situation,
the metamodel also offers a type of StateVertex to models
transient nodes: Pseudostate. Only one Pseudostate type
(PseudostateKind) is relevant for the state models in this
paper: initial Pseudostate. An initial Pseudostates is the
default node of a CompositeState. It only has one outgoing
Transition leading to the default State of a CompositeState.

Nodes in a state machine are connected by Transi-
tions that model the transition from one State (source) to
another (target). A Transition is fired by a CallEvent (trigger).

The effect of a Transition specifies an CallAction to be exe-
cuted upon its firing. Finally, a StateMachine is defined
in the context of a Class and consists of a set of Transitions
and one top State that is a CompositeState.

4.3. Consistency Checking Approach

As said, the set of scenarios is not expected to be
complete or precise. For instance, when comparing, the
set of scenarios and the state machines created by the de-
velopers it is unclear whether a scenario specifies univer-
sal or existential behaviour [15]. However, if we are to
generate a state machine for a set of scenarios we have
to take a position with respect to the meaning of those
scenarios. The generation of scenarios is based on the
approach in Whittle and Schumann [10]. For this, we
interpret Océ’s scenarios in principle as universal. This
means that if the start condition of a scenario is satis-
fied the system behaves exactly as specified by that sce-
nario. We consider the start condition of a scenario to
be the first condition specified as decoration and occur-
rence of the first message. As such, the scenario in Fig-
ure 6(a) specifies exactly what happens when ESM re-
ceives the message m SetUnit(standby) while it is in state
running. However, when during execution of a scenario
the start condition of another scenario is satisfied, execu-
tion continues according to that scenario. For instance,
in the case of Figure 6(a), while ESM is stopping, exe-
cution could continue according to the scenario that per-
forms the request of ESM going back to running while it
was stopping.

In our approach we use model transformations for
the generation of a state machine from a set of scenarios.
The specification of those transformations is discussed
in Section 5. To include all required information, the
source model has to comply to a set of modelling con-
ventions. When considering an arbitrary industrial case
(e.g., Océ’s reference architecture), the models used typ-
ically do not comply to those conventions. Therefore, we
first require models to be normalised. This is discussed
in Section 6.

Finally, the generated state machine is compared to
the state machine that was already developed based on
the same set of scenarios, the implementation state ma-
chine. Because the sequence diagrams are created early
on in the development process, it is not expected that
they are exactly covered by the state machines. There-
fore, mismatches are expected between the generated
and implementation state machine with respect to tran-
sition labels and order. This makes automating the com-
parison step particularly difficult. For now we manu-
ally compare the generated and implementation state ma-
chine and mainly focus on inconsistencies with respect

to top-level states and transitions.

As such, we use three steps to check to consistency
of behavioural specifications: normalise, transform, and
compare. In the current approach only the transforma-
tion is automatic. Furthermore, the normalisation step is
context-specific as it depends on the type of input mod-
els.

5. Generating State Machines

Given the source and target metamodels discussed
in the previous section, we now describe how to instan-
tiate source models, as well as the mapping between
source and target models, expressed as ATL model trans-
formations. We published all (executable) ATL transfor-
mations that we implemented, as well as (normalised)
source and target (meta)models for the ATM example of
Whittle and Schumann [10] in the ATL Transformations
Zoo [19].

5.1. Instantiating a Source Model

Our approach based on model transformations and
UML requires that all necessary information is encoded
in a UML model. Whittle and Schumann [10] requires
the following information for its mapping: scenarios, a
domain theory, a set of state variables, and an ordered
partition of that set.

The set of scenarios is specified as sequence dia-
grams. The types of the interacting Objects (compo-
nents) are specified in a class model. The Class that cor-
responds to the component of interest is marked active.
All Operations involved in the relevant scenarios are also
specified. The pre- and postconditions of a domain the-
ory are applied to these Operations as stereotyped Con-
straints. These Constraints have the form state variable

= value. We currently do not allow pre- and postcon-
ditions in the domain theory that refer to formal param-
eters, as this would require interpretation of these con-
ditions. If necessary, such constraints can be added di-
rectly to the Messages that specify an actual parameter
in the sequence diagrams.

The active Class contains an Attribute for each state
variable. The partition of state variables used for intro-
ducing hierarchy is encoded by setting the visibility of
all state variables included in the partition to public and
the others to private. Finally, the order of the state vari-
able Attributes on the Class represents the prioritisation
of state variables (the top one having the highest prior-
ity).

5.2. Model Transformations

Our transformations generate a state machine for the
component that is represented by the active Class in the
source model. A scenario specifies one particular path
through the state machine for that component, on which
it proceeds to the next state upon each communication.
We refer to the state machine that only describes that
path as a ‘flat’ state machine.

We tailored the approach in Whittle and Schumann
[10] (see Sec. 3) to account for the type of input in the
Océ case, our model-driven strategy, and for our goal:
consistency checking. For this reason we introduce less
abstractions. This makes detecting and resolving incon-
sistencies more convenient. Our mapping consists of
four separate steps: 1) apply domain theory, 2) gener-
ate flat state machines, 3) merge flat state machines, and
4) introduce hierarchy to merged state machine.

We formalised our mapping from scenarios to state
machines as four ATL model transformations that corre-
spond to the four steps of our mapping. Every consecu-
tive transformation uses the target model of the previous
transformation as its source model.

Together, these transformations are specified in less
than 700 lines of ATL code. Before these transforma-
tions can be applied to the Océ case, a normalisation step
is required, which is discussed in Section 6.

Apply Domain Theory This step is specific to our ap-
proach. Unlike Whittle and Schumann [10], but in ac-
cordance with the UML, we distinguish between pre-
and postconditions on the Operations of a Class and on
the CallActions associated with Messages in a sequence
diagram. This has two advantages. First, it allows for
simple pre- and postconditions to be specified only once
(i.e., on the Operations of a Class). Second, it circum-
vents the need to evaluate conditions that refer to formal
parameters of an Operation.

When we apply the domain theory to a set of sce-
narios, we simply attach the pre- and postconditions on
the Operations of a Class to corresponding Messages to
or from instances of that Class.

The ATL specification of this mapping is straight-
forward. The Constraints on an Operation are copied
to Messages, via their associated CallAction. Listing 1
specifies a rule that matches all CallActions. For each
it generates a CallAction, ca_out, in the target model
and initialises its constraint feature with the constraints
applied to the Operation associated with the matching
CallAction. Note that the constraints are added to the
constraints already applied to the matched CallAction
(using the union operation).

The result is a set of sequence diagrams in which

rule ConstrainedCallAction {
from ca_in:UML!CallAction
to ca_out:UML!CallAction(
operation <- ca_in.operation,
constraint <- ca_in.operation.constraint->union(
ca_in.constraint))

}

Listing 1. Applying constraints to CallActions

Constraints are applied to Messages based on the pre-
and postconditions of a domain theory on Operations.
See Figure 6(b) for an example.

Sequence Diagrams → Flat State Machines The
next step of our approach is to generate a flat state ma-
chine for every scenario in which the component of in-
terest plays a role. In this step we map every commu-
nication to a Transition and a target State. The source
State of this transition is the target State corresponding
to the previous communication of the component in the
scenario. As in the approach in Whittle and Schumann
[10]; if the involved communication was the receipt of
a Message, we say the Transition was triggered by that
Message. If the involved communication was the send-
ing of a Message, we say the effect of the Transition was
sending that Message.

Based on the pre- and postconditions applied to the
Messages in the scenarios by the previous step, we cal-
culate the state vector for each State. For this we ‘prop-
agate’ pre- and postconditions through the sequence di-
agram by application of the frame axiom. The result is a
set of flat StateMachines, in which state vectors are ap-
plied to States as a set of Constraints over state variables.

As an example, the EffectTransition rule in List-
ing 2 matches all Messages in the source model sent by
the component of interest. The target pattern specifies
that for each such Message (m) among others, a Transi-
tion (t_effect) and a SimpleState (trgt) are created in
the target model. The effect and target features of the
Transition element are simply initialised to the CallAc-
tion (ca) and SimpleState created in the same rule. The
source of the Transition is initialised to the target of the
Transition that correspond to the previous Message (not
shown).

The constraint feature of the generated SimpleState
element is initialised to the set of constraints (state in-
variants) that hold after the Message that matched the
rule. This is determined by the stateVector helper. For
this it applies the frame axiom (specified in the frame

helper) subsequently to the postconditions of the current
Message (’posts’), the preconditions of the current Mes-
sage (pres), and the state vector after the previous Mes-
sage (stateVectorPrev). As such conditions propagate in

rule EffectTransition {
from m:UML!Message (m.sender.isActive)
to t_effect: UML!Transition(
effect <- ca,
target <- trgt,
source <- ...),

ae:UML!ActionExpression (...),
ca:UML!CallAction (...),
trgt:UML!SimpleState (
name <- ae.body+’_sent’,
constraint <- m.stateVector)

}
helper context UML!Message def: stateVector : Set(UML
!Constraint) =
let stateVectorPrev:Set(UML!Constraint) = ... in
let pres:Set(UML!Constraint) = ... in
let posts:Set(UML!Constraint) = ... in
let sv:Set(UML!Constraint) =

thisModule.frame(stateVectorPrev,thisModule.frame(
pres,posts)) in

if thisModule.unifiable(stateVectorPrev,pres) then
sv

else
sv.debug(’INCONSISTENCY DETECTED!’)

endif
;
helper def: frame(frame:Set(UML!Constraint), framed:
Set(UML!Constraint)): Set(UML!Constraint) =
frame->iterate(c; cs:Set(UML!Constraint)=framed |
if cs->exists(e|e.stateVariable=c.stateVariable)
then
cs

else
cs->including(c)

endif)
;

Listing 2. Message →effect Transition

‘forward’ direction (i.e., downwards in a sequence dia-
gram).

Additionally the stateVector helper notifies the user
if an inconsistency is detected between the state vec-
tor after the previous Message and the preconditions for
the current Message (these sets of Constraints should be
unifiable).

The frame helper simply iterates over the Constraints
in the frame argument and adds every constraint involv-
ing a state variable that is not referred to in framed to that
set.

Unlike Whittle and Schumann [10] we do not apply
unification of state vectors at this stage. The declarative
style of our ATL specifications results in an infinite recur-
sion: to complete a state vector we need to know whether
it can be unified with other state vectors. To determine
this we have to consider state vectors in ‘forward’ as well
as in ‘backward’ direction. However, the state vectors
in ‘forward’ direction, in turn, consider state vectors in
‘backward’ direction because of the frame axiom strat-
egy.

Application of this step yields a set of flat state ma-
chines for a component. As an example, consider Fig-
ure 5. It depicts the flat state machine corresponding to
the sequence diagram in Figure 6(b). Note that the ex-

Figure 5. Flat state machine

ample only involves a single state variable and that the
names of the States are derived from the particular Mes-
sage that was sent or received by the component.

Merging Flat State Machines In this step we merge
the flat state machines. We merge every set of states with
unifiable state vectors and identical incoming transition
(in terms of effect or trigger) into a single state.

Merging of states is done by the rule and helpers
in Listing 3. The rule matches all states selected by
the mergedStates helper that iteratively selects one Sim-
pleState from every group of equal SimpleStates in the
source model. A call to the mergeable helper results in
true when 1) the receiving StateVertex and the param-
eter StateVertex (s) are unifiable, and 2) have the same
name (i.e., the incoming transitions had the same trigger
or effect). The unifiable helper evaluates to true for two
sets of Constraints that do not specify different values for
the same state variable, meaning that the constraint that
refers to a particular state variable that is also referred to
in the other set, is actually included in that set.

Transitions are matched by another rule (not
shown). To discard redundant Transitions, it only
matches one Transition of the Transitions between any
two sets of SimpleStates that are merged.

Introducing Hierarchy As suggested by Whittle and
Schumann [10] we use an ordered partition of the set
of state variables to add hierarchy by means of Com-
positeStates. The problem here, is that there is not
always a matching source model element to create a
CompositeState for. Therefore, we use a called rule
(CompositeState). A called rule is an imperative rule that
is not matched by a source model element, but is explic-
itly called and can have parameters. This rule creates
a CompositeState for a given set of Constraints (cseq).
These Constraints (i.e., state invariants) are determined
by the compositeStateConstraintSetsAt helper that takes a

rule MergedSimpleState {
from s_in:UML!SimpleState (
thisModule.mergedStates->includes(s_in))

to s_out:UML!SimpleState(
name<-s_in.name,
constraint <- s_in.constraint)

}
helper def: mergedStates: Set(UML!StateVertex) =
thisModule.allSimpleStates->union(thisModule.
allPseudostates)
->iterate(s; mss:Set(UML!StateVertex)=Set{} |
if mss->exists(e|(e.mergeable(s)) then
mss

else
mss->including(s)

endif)
;
helper context UML!StateVertex def: mergeable(s:UML!
StateVertex): Boolean =
thisModule.unifiable(self.constraint,s.constraint)
and self.name=s.name

;
helper def: unifiable(cseq1:Sequence(UML!Constraint),
cseq2:Sequence(UML!Constraint)): Boolean =
cseq1->includesAll(cseq2->select(c|cseq1->collect(e|
e.stateVariable)->includes(c.stateVariable)))

;

Listing 3. Merging SimpleStates

set of Constraints that represents the current Composite-
State and determines the sets of Constraints that corre-
spond to the CompositeStates at that level. For each of
those sets a CompositeState is created. This called rule
is used to initialise the subvertex feature in the rule that
matches the top CompositeState of the merged StateMa-
chine, as well as (recursively) in the CompositeState rule
itself. The do clause in the CompositeState rule returns
the created CompositeState.

rule TopCompositeState {
from cs_in:UML!CompositeState
using {
sm:UML!StateMachine=thisModule.allStateMachines->
select(sm|sm.top=cs_in);

}
to cs_out:UML!CompositeState (
name <- cs_in.name,
subvertex <- sm.simpleStateStatesAt(Set{})
->union(sm.compositeStateConstraintSetsAt(Set{})
->collect(cs|thisModule.CompositeState(sm,cs))))

}
rule CompositeState (sm:UML!StateMachine, cseq:Set(
UML!Constraint)) {
to cs:UML!CompositeState(
subvertex <- sm.simpleStateStatesAt(cseq)->union(
sm.compositeStateConstraintSeqsAt(cseq)->collect(
cs|thisModule.CompositeState(sm,cs))))

do{cs;}
}

Listing 4. Adding hierarchy to state machine

Figure 7. Merged state model of ESM (fragment)

6. Normalising the Source Model

In the case of Océ, neither a domain theory, nor a set
of state variables were available. To overcome this, we
normalise Océ’s sequence diagrams. In particular, we
interpret the decorations on object lifelines as pre- and
postconditions on a single state variable: state. The mes-
sage preceding a state decoration apparently resulted in
the component moving to the indicated state. Hence, we
(manually) attach a corresponding postcondition (e.g.,
esm.state=starting). A message succeeding a state dec-
oration apparently requires the component to be in the
indicated state. Hence, we attach a corresponding pre-
condition. As an example, consider Figure 6. Finally,
we added a (public) attribute, state, to the class corre-
sponding to the ESM component.

7. Results

A fragment of the result of application of the trans-
formation step to Océ’s ESM component, is depicted in
Figure 7. The dashed line indicates the path through the
state machine that is traversed when ESM is requested to
go to standby while it is running. This path corresponds
to the scenario depicted in Figure 6.

We compared this derived state machine with the
implementation state machine, from which Océ gener-
ates code. There are many inconsistencies with respect
to low-level states and transitions. In the implementation
state machine low-level states are not only decomposed
further, the sequence of states and transitions is also dif-
ferent in many cases. This is not surprising considering
the fact that the sequence diagrams of the source model
from which we derived a state machine, constitute the
first behavioural model that is created for the ESM com-
ponent, while, in the implementation state machine, low-
level transitions and states often correspond to a single
method call in the generated code. If we restrict the com-

parison step to the top-level states, however, the imple-
mentation state machine largely conforms to the derived
state machine. Although we cannot show the implemen-
tation state machine, we were able to make several other
interesting observations:

• Several transitions between top-level composite states
are missing in the derived state machine. This indi-
cates not all scenarios have been specified in a se-
quence diagram.

• Some top-level composite states in the derived state
machine were modelled as low-level (sub) compos-
ite states in the implementation state machine. This
merely indicates changes to the decomposition of
states, and does not necessarily result in different be-
haviour.

• In the derived state machine, sometimes extra paths
exists between two composite states. This indicates
specific sequences of events and actions that occur in
different scenarios are not specified consistently. This
was the case, for instance, when two versions of a sce-
nario existed: one for normal behaviour, and one for
exceptional behaviour. For two such versions the first
interactions should typically be identical (until some
exception occurs), but in practice this was not the case.

• The derived state machine contains a number of un-
conditional transitions that form a loop, resulting in
non-deterministic behaviour. This had the same cause
as the previous observation.

As a response to these observations Océ could decide to
add missing use cases and scenarios, and to refactor al-
ternative sequence diagrams to remove inconsistencies
in event and action sequences. Here, care must be taken,
as such modifications affect the state machines of other
components that play a role in the involved scenarios as
well. On the other hand, if such steps are not taken and
behavioural inconsistencies are only removed in the im-
plementation state machine, other development groups,
responsible for other components, might do so differ-
ently, resulting in integration and maintainability prob-
lems.

Although, the normalised source model in the Océ
case only contains a single state variable, we also applied
our transformation step to the ATM example in Whittle
and Schumann [10]1. This example involves three state
variables. By application of our approach (in both cases)
we detected several inconsistencies.

1Images of the (normalised) source model, as well as all (interme-
diate) target models for the ATM example can be downloaded from
the ATL Transformations Zoo [19]

aFunction:Function esm:ESM acm:ACM

 : m_Stop()

 : m_StopDone()

running

stopping

standby

 : m_SetUnit(standby)

 : m_UnitStatus(stopping)

 : m_UnitStatus(standby)

Created with Poseidon for UML Community Edition. Not for Commercial Use.
(a) Sequence diagram with decorated lifeline (b) Normalised sequence diagram

Figure 6. Example scenario: request a copier engine to go to standby while it is running

8. Discussion

Generalisability of the approach To a large extent
our approach is generic.

We applied our approach successfully to both Whit-
tle and Schumann [10]’s ATM example and Océ’s refer-
ence architecture. Our approach is generic with respect
to input models that comply to the model conventions
as outlined in Section 5.1. As such, we require a (man-
ual) normalisation step that is context specific; it depends
on the modelling conventions in use at a particular com-
pany.

Our modelling conventions are most restrictive with
respect to the type of pre- and postconditions used in the
domain theory. As we do not evaluate these conditions,
we require them to be of the form stateVariable=value.
In the case the conditions for an Operation refer to a
formal parameter. Our approach can still be applied if
the Messages associated with that Operation in the se-
quence diagrams specify a corresponding actual param-
eter. Then, we (manually) apply the condition directly to
the Message in the sequence diagram and substitute the
formal parameter for the actual parameter. More com-
plicated conditions requires real interpretation of OCL
expressions.

Of course, pre- and postconditions have to be avail-
able for our approach to produce more than only flat state
machines. In the case of Océ’s, we derived pre- and post-
conditions from decorations in the sequence diagrams.
In general, pre- and postconditions are not always obvi-
ous from design documentation. In such situations these
might have to be derived indirectly from documentation
or reverse engineered from source code.

The introduction of pre- and postconditions effec-
tively is a normalisation to the UML standard used by
Océ and our tools (version 1.4 [18]). For the latest UML
(version 2.0) this is not necessary, as such lifeline deco-
rations became part of the specification (the correspond-

ing metamodel element is called StateInvariant). To sup-
port this, only minor modifications to our ATL transfor-
mations are required.

Scalability of the approach Our approach constitutes
a first step towards fully automated consistency check-
ing.

In the Océ case, the source model for the transfor-
mation step includes 10 sequence diagrams that specify
62 messages. The resulting integrated, hierarchical state
machine, of which a fragment was depicted in Figure 7
contains 23 transitions between 14 composite states con-
taining in total 47 simple states.

Our approach is a first step to fully automated con-
sistency checking of behavioural specifications. For
now, we rely on manual inspection of the resulting state
machine for actual evaluation of the consistency. As
such, the scalability is currently not limited by the trans-
formation steps (in the Océ case they each take less than
seconds), but by the comparison step. For cases were the
number of states is limited and developers have knowl-
edge on the system, this is a feasible approach. For ESM,
which is a medium-sized component (approximately 10
KLOC), this turned out not to be a problem.

Automatic consistency checking could be done by
relying on naming. An example of such an approach
is discussed in Van Dijk et al. [16]. It checks the con-
sistency of the underlying XMI representations of UML
models. In general this problem is equivalent to graph
matching. Also for automatic approaches, however, the
generation of a state machine from a set of scenarios, as
discussed in this paper, is likely to be a first step.

Applicability of the approach Our approach can be
applied to iteratively develop behavioural specifications.

We generated a state machine with the purpose of
checking the consistency of different behavioural speci-
fications. However, our approach might have other types

of applications as well. A generated state machine could
also be used for other types of analyses, such as model
checking or performance analysis.

Next to analysis purposes, our approach is particu-
larly also interesting for forward engineering, especially
in the context of model-driven development approaches
as in the case of Océ. Using our transformations based
on UML, developers can easily generate different views
on the behaviour of a software system or component.
Furthermore, the generation not only provides insight in
the consistency of the sequence diagrams with respect to
each other, it also provides developers with a first candi-
date state machine that can be refined. As such, our tech-
nique can be applied iteratively to develop complete be-
havioural specifications of components: (1) specify the
interactions of an initial set of use cases as scenarios,
(2) generate a state machine, (3) refactor scenarios to re-
move inconsistencies in event and action sequences, and
add missing scenarios, (4) goto step 2.

The main reason to choose for a model-driven ap-
proach based on UML for our consistency check, was the
integration with Océ’s development process. It circum-
vents the need to extract information from the MDA do-
main to another domain, e.g, the grammarware, or XML
domain. Unfortunately, despite the availability of stan-
dards, currently available tools for (meta)modelling and
transformations do not integrate well, hampering actual
integration of our approach in practice. For a large part
this is due to the abundance of possible combinations of
XMI, UML, and MOF versions, as well as vendor spe-
cific implementation of those standards. Other problems
occur due to different capabilities of modelling tools. As
an example, we used Poseidon for UML to create source
models because its metamodel is available from the de-
veloper’s website. However, the UML models we gen-
erate do not contain layout information. Unfortunately,
Poseidon is not capable of displaying UML models that
do not contain layout information. As a consequence we
had to use another tool for visualisation. From a large
set of tools we tried, only Borland’s Together is capa-
ble of generating a layout for a UML model. However,
the XMI representations used by this tool are not com-
patible with those generated by the ATL engine. As a
workaround we developed a minimal XSLT transforma-
tion that maps the XMI ‘flavour’ generated by the ATL
engine to that of Together. An alternative is to gener-
ate the layout information required by Posedion using a
model transformation.

UML vs. MOF The use of UML in a limited domain
makes transformation definitions unnecessary complex

The genericity and resulting complexity of the UML
metamodel result in, sometimes, inconvenient naviga-

tion through source and target models to select a certain
element. Also, often relations are defined as n : n while in
a specific case 1 : 1 would suffice. The result is that sets
have to be converted to sequences of which the first ele-
ment has to be selected. This is required very frequently,
resulting in unnecessary complex ATL-code.

In cases, where only limited parts of the UML meta-
model are used, an alternative could be considered. In-
stead of using the UML metamodel, custom MOF-based
metamodels could be used, for instance, for scenarios
and state machines. These metamodels could be much
simpler, resulting in simpler transformation definitions.

9. Conclusions

In this paper we demonstrated the use of model
transformations to check the consistency of behavioural
specifications. For this we presented an approach that
consist of normalisation, transformation, and compari-
son steps. We consider the following to be the main con-
tributions of this paper:

• A specification of the mapping between scenarios and
state machines using model transformations that is
made available via the ATL Transformations Zoo [19].
An advantage of such a specification is that it can be
executed by the ATL transformation engine. Further-
more, it is completely based on UML, allowing easy
integration in industrial practice.

• Modelling conventions for encoding the information
required for the transformation step in a single UML
model. Additionally, as an example, we discussed the
required normalisation step for Océ’s reference archi-
tecture.

• Validation of the proposed approach by application to
an industrial system, resulting in the identification of
a number of inconsistencies in its behavioural specifi-
cations.

Finally, the proposed approach could be applied for other
purposes than consistency checking as well, such as for-
ward engineering and early behavioural analysis based
on the generated state machine.

Currently we are extending our work with additional
case studies. Furthermore, we investigate the possibili-
ties to do consistency checking automatically. Again, by
the use of MDA model transformation technologies.

Acknowledgement Part of the research described in
this paper was sponsored by NWO via the Jacquard Re-
constructor project. Furthermore we would like to thank
Océ, and in particular Lou Somers for providing the case
study.

References

[1] M. M. Lehman and L. A. Belady, eds. Program evo-
lution: processes of software change. Academic Press,
1985.

[2] A.P. Bröhl and W. Dröschel. Das V-Modell. Der Stan-
dard für die Softwareentwicklung mit Praxisleitfaden.
Oldenbourg-Verlag, München, 2nd edition, 1995.

[3] Ivar Jacobson. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley, 1992.

[4] Desmond Francis D’Souza and Alan Cameron Wills. Ob-
jects, Components, and Frameworks with UML : The
Catalysis Approach. Addison-Wesley, 1998.

[5] Phillipe Kruchten. The Rational Unified Process.
Addison-Wesley, 1998.

[6] Ivar Jacobson, Grady Booch, and James Rumbaugh. The
Unified Software Development Process. Addison-Wesley,
1999.

[7] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-
Time Object-Oriented Modeling. Wiley, 1994.

[8] Daniel Amyot and Armin Eberlein. An evaluation of sce-
nario notations and construction approaches for telecom-
munication systems development. Telecommunication
Systems, 24(1), September 2003.

[9] Yves Bontemps, Patrick Heymans, and Pierre-Yves
Schobbens. From live sequence charts to state machines
and back: A guided tour. IEEE Trans. Software Engi-
neering, 31(12):999–1014, December 2005.

[10] Jon Whittle and Johann Schumann. Generating statechart
designs from scenarios. In Proc. 22nd Int’l Conf. Soft-
ware Engineering (ICSE 2000), pages 314–323. IEEE
CS, 2000.

[11] L. A. J. Dohmen and L. J Somers. Experiences and
lessons learned using UML-RT to develop embedded

printer software. In Proc. PROFES 2002, volume
2559/2003 of LNCS, pages 475–484. Springer-Verlag,
2003.

[12] Vitus S.W. Lam and Julian Padget. Analyzing equiva-
lences of uml statechart diagrams by structural congru-
ence and open bisimulations. In Proc. 2003 IEEE Sym-
posia on Human Centric Computing Languages and En-
vironments (HCC 2003), pages 137–144. IEEE CS, Oc-
tober 2003.

[13] Timm Schäfer, Alexander Knapp, and Stephan Merz.
Model checking uml state machines and collaborations.
In Proc. Workshop on Software Model Checking, vol-
ume 55 of Electronic Notes in Theoretical Computer Sci-
ence, pages 357–369. Elsevier, 2001.

[14] Hongzhi Liang, Juergen Dingel, and Zinovy Diskin.
A comparative survey of scenario-based to state-based
model synthesis approaches. In Proc. 5th Int’l Workshop
on Scenarios and State Machines: Models, Algorithms
and Tools (SCESM 2006), pages 5–11. ACM, 2006.

[15] Werner Damm and David Harel. LSCs: Breathing life
into message sequence charts. Formal Methods in System
Design, 19:45–80, 2001.

[16] Hylke W. van Dijk, Bas Graaf, and Rob Boerman. On the
systematic conformance check of software artefacts. In
Proc. 2nd European Workshop on Software Architecture
(EWSA 2005). Springer-Verlag, June 2005.

[17] Frédéric Jouault and Ivan Kurtev. Transforming models
with ATL. In Proc. Model Transformations in Practice
Workshop at MoDELS2005, 2005.

[18] OMG. OMG Unified Modeling Language Specification,
Version 1.4. http://www.uml.org, 2001.

[19] ATL Transformations Zoo. http://www.eclipse.
org/gmt/atl/atlTransformations/
#UMLSD2STMD.

