Computational Logic and Satisfiability

IN4077

Introduction

Marijn J.H. Heule

September 9, 2008
Motivation satisfiability solving

From 100 variables, 200 constraints (early 90’s) to 1,000,000 vars. and 5,000,000 clauses in 15 years.
Motivation satisfiability solving

From 100 variables, 200 constraints (early 90’s) to 1,000,000 vars. and 5,000,000 clauses in 15 years.

Applications:
Hardware and Software Verification, Planning, Scheduling, Optimal Control, Protocol Design, Routing, Combinatorial problems, Equivalence Checking, etc.
Motivation satisfiability solving

From 100 variables, 200 constraints (early 90’s) to 1,000,000 vars. and 5,000,000 clauses in 15 years.

Applications:

Hardware and Software Verification, Planning, Scheduling, Optimal Control, Protocol Design, Routing, Combinatorial problems, Equivalence Checking, etc.

SAT used to solve many other problems!
Defying NP-Completeness

Current state of the art complete SAT solvers can handle very large problem instances of real-world combinatorial:

We are dealing with formidable search spaces of exponential size — to prove optimality we have to implicitly search the entire search, HOW?

The problems we are able to solve are much larger than would predict given that these are in general NP complete

Disclaimer: A hard random unsat 3-SAT formula with 1000 vars. cannot be solved while real-world sat and unsat instances with over 1,000,000 vars. are solved in a few minutes.
Overview

- Introduction
- The Satisfiability problem
- Terminology
- SAT solving
- SAT benchmarks
"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or both. The king, in a spiteful mood, wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of the entire royal family?"
Introduction

"You are chief of protocol for the embassy ball. The crown prince instructs you either to invite Peru or to exclude Qatar. The queen asks you to invite either Qatar or Romania or both. The king, in a spiteful mood, wants to snub either Romania or Peru or both. Is there a guest list that will satisfy the whims of the entire royal family?"

\[(P \lor \neg Q) \land (Q \lor R) \land (\neg R \lor \neg P)\]
Introduction: SAT question

Given *formula*, does there exist an *assignment* to the *Boolean variables* that satisfies all *clauses*?
Terminology: Variables and literals

Boolean variable

• can be assigned the Boolean values 0 or 1

Literal

• refers either to x_i or its complement $\neg x_i$

• literals x_i are satisfied if variable x_i is assigned to 1 (true)

• literals $\neg x_i$ are satisfied if variable x_i is assigned to 0 (false)
Terminology: Clauses

Clause

- Disjunction of literals: E.g. $C_j = l_1 \lor l_2 \lor l_3$
- Can be falsified with only *one* assignment to its literals: All literals assigned to false
- Can be satisfied with $2^k - 1$ assignment to its k literals
- One special clause - the empty clause (denoted by \emptyset) - which is always falsified
Terminology: Formulae

Formula

- Conjunction of clauses: E.g. $F = C_1 \land C_2 \land C_3$
- Is *satisfiable* if there exists an assignment satisfying all clauses, otherwise *unsatisfiable*
- Formulae are not only defined in *Conjunction Normal Form* (CNF), but generally also stored as such - also learned information
Terminology: Assignments

Assignment

- Mapping of the values 0 and 1 to the variables
- \(\varphi \circ \mathcal{F} \) results in a reduced formula \(\mathcal{F}_{\text{reduced}} \):
 - all satisfied clauses are removed
 - all falsified literals are removed
- satisfying assignment \(\leftrightarrow \mathcal{F}_{\text{reduced}} \) is empty
- falsifying assignment \(\leftrightarrow \mathcal{F}_{\text{reduced}} \) contains \(\emptyset \)
- partial assignment versus full assignment
SAT solving: Unit propagation

A *unit clause* is a clause of size 1

UnitPropagation \((\varphi, \mathcal{F})\):

1. **while** \(\emptyset \notin \mathcal{F}\) and unit clause \(y\) exists **do**
2. expand \(\varphi\) and simplify \(\mathcal{F}\)
3. **end while**
4. **return** \(\varphi, \mathcal{F}\)
Unit propagation: Example

\[\mathcal{F}_{\text{unit}} := \neg x_1 \lor \neg x_3 \lor x_4 \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2) \land (x_1 \lor x_3 \lor x_6) \land (\neg x_1 \lor x_4 \lor \neg x_5) \land (x_1 \lor \neg x_6) \land (x_4 \lor x_5 \lor x_6) \land (x_5 \lor \neg x_6) \]
Unit propagation: Example

\[F_{\text{unit}} := (\neg x_1 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3) \]
\[(\neg x_1 \lor x_2) \land (x_1 \lor x_3 \lor x_6) \land (\neg x_1 \lor x_4 \lor \neg x_5) \]
\[(x_1 \lor \neg x_6) \land (x_4 \lor x_5 \lor x_6) \land (x_5 \lor \neg x_6) \]

\(\varphi = \{ x_1 = 1 \} \)
Unit propagation: Example

\[F_{\text{unit}} := (\neg x_1 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2) \land (x_1 \lor x_3 \lor x_6) \land (\neg x_1 \lor x_4 \lor \neg x_5) \land (x_1 \lor \neg x_6) \land (x_4 \lor x_5 \lor x_6) \land (x_5 \lor \neg x_6) \]

\[\varphi = \{ x_1=1, x_2=1 \} \]
Unit propagation: Example

\[F_{\text{unit}} := (\neg x_1 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3) \]
\[\land (\neg x_1 \lor x_2) \land (x_1 \lor x_3 \lor x_6) \land (\neg x_1 \lor x_4 \lor \neg x_5) \]
\[\land (x_1 \lor \neg x_6) \land (x_4 \lor x_5 \lor x_6) \land (x_5 \lor \neg x_6) \]

\[\varphi = \{ x_1 = 1, x_2 = 1, x_3 = 1 \} \]
Unit propagation: Example

\[F_{\text{unit}} := (\neg x_1 \lor \neg x_3 \lor x_4) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2) \land (x_1 \lor x_3 \lor x_6) \land (\neg x_1 \lor x_4 \lor \neg x_5) \land (x_1 \lor \neg x_6) \land (x_4 \lor x_5 \lor x_6) \land (x_5 \lor \neg x_6) \]

\[\varphi = \{ x_1=1, x_2=1, x_3=1, x_4=1 \} \]
SAT solving: DPLL

Davis Putnam Logemann Loveland [DP60,DLL62]

- Simplify (Unit Propagation)
- Split the formula
 - Variable Selection Heuristics
 - Direction heuristics
DPLL: Example

\[F_{\text{DPLL}} := (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \]
\[(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \]
DPLL: Example

\[\mathcal{F}_{\text{DPLL}} := (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \]
\[(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \]
DPLL: Example

\[\mathcal{F}_{\text{DPLL}} := (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \]
\[(\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor x_3) \land (\neg x_1 \lor \neg x_3) \]
SAT solving: Decisions, implications

Decision variables

- Selected by the heuristics
- Play a crucial role in performance

Implied variables

- Assigned by reasoning (e.g. unit propagation)
- Maximizing the number of implied variables is an important aspect of look-ahead SAT solvers
SAT Solving: Clauses ↔ assignments

- A clause C represents a set of falsified assignments, i.e. those assignments that falsify all literals in C
- A falsifying assignment φ for a given formula represents a set of clauses that follow from the formula
 - For instance with all decision variables
 - Important feature of conflict-driven SAT solvers
SAT solvers

Conflict-driven

- "brute-force", complete
- examples: zchaff, minisat, rsat

Look-ahead

- lots of reasoning, complete
- examples: march, OKsolver, kcnfs

Local search

- local optimazations, incomplete
- examples: WalkSAT, UnitWalk
Applications: Industrial

- Model Checking
 - Turing award ’07: Edmund M. Clarke
- Software Verification
- Hardware Verification
- Equivalence Checking Problems
Applications: Crafted

- Combinatorial problems
- Sudoku
- Factorization problems
Random k-SAT: Introduction

- All clauses have length k
- Variables have the same probability to occur
- Each literal is negated with probability of 50%
- Density is ratio Clauses to Variables
Random 3-SAT: phase transition
Random 3-SAT: threshold
SAT game
Computational Logic and Satisfiability

IN4077

Introduction

Marijn J.H. Heule

September 9, 2008